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Plant-parasitic nematodes (PPNs), such as root-knot nematodes (RKNs) and cyst 
nematodes (CNs), are among the most devastating pests in agriculture. RKNs and CNs 
induce redifferentiation of root cells into feeding cells, which provide water and nutrients 
to these nematodes. Plants trigger immune responses to PPN infection by recognizing 
PPN invasion through several different but complementary systems. Plants recognize 
pathogen-associated molecular patterns (PAMPs) derived from PPNs by cell surface–
localized pattern recognition receptors (PRRs), leading to pattern-triggered immunity 
(PTI). Plants can also recognize tissue and cellular damage caused by invasion or 
migration of PPNs through PRR-based recognition of damage-associated molecular 
patterns (DAMPs). Resistant plants have the added ability to recognize PPN effectors via 
intracellular nucleotide-binding domain leucine-rich repeat (NLR)-type immune receptors, 
leading to NLR-triggered immunity. Some PRRs may also recognize apoplastic PPN 
effectors and induce PTI. Plant immune responses against PPNs include the secretion 
of anti-nematode enzymes, the production of anti-nematode compounds, cell wall 
reinforcement, production of reactive oxygen species and nitric oxide, and hypersensitive 
response–mediated cell death. In this review, we summarize the recognition mechanisms 
for PPN infection and what is known about PPN-induced immune responses in plants.

Keywords: pattern-triggered immunity, NLR-triggered immunity, anti-nematode enzymes, anti-nematode 
compounds, cell wall reinforcement, reactive oxygen species, nitric oxide, hypersensitive response cell death

INTRODUCTION

Plant-parasitic nematodes (PPNs) are among the most devastating agricultural pests worldwide 
with an annual global crop loss estimated at about 80 billion USD (Jones et al., 2013). PPNs infect a 
broad host range of commercially important crop families such as the Solanaceae (tomato, potato, 
pepper), Fabaceae (soybean), Malvaceae (cotton), Amaranthaceae (sugar beet), and Poaceae 
(syn. Gramineae; rice, wheat, maize). In general, the economically important PPNs have a broad 
host range and are highly virulent. PPNs may possess sophisticated virulent strategy as they can 
infect many plants without inducing strong immune responses (Warmerdam et al., 2018). This 
characteristic feature makes it difficult to isolate mutants of Arabidopsis thaliana that are defective 

Abbreviations: BABA, β-aminobutyric acid; CC, coiled-coil; CN, Cyst nematode; FTR, ferredoxin:thioredoxin reductase; 
HR, hypersensitive response; JA, jasmonic acid; LRR, leucine-rich repeat; NLR, nucleotide-binding domain leucine-rich 
repeat; NO, nitric oxide; OG, oligogalacturonides; PAMP, pathogen-associated molecular pattern; PG, polygalacturonase; 
PGIP, polygalacturonase inhibitor proteins; PLCP, papain-like cysteine protease; PPN, plant parasitic nematode; PRR, pattern 
recognition receptor; PTI, pattern-triggered immunity; RBOH, respiratory burst oxidase homolog; RKN, root-knot nematode; 
RLK, receptor-like kinase; ROS, reactive oxygen species; SNP, sodium nitroprusside; SPRYSEC, secreted SP1a and ryanodine 
receptor (SPRY) domain; TIR, toll-interleukin 1 receptor; TRX, thioredoxin.
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in immunity against PPNs. However, recent progress in plant 
and nematode genomics has opened a way to understanding 
the plant’s mechanisms for recognizing PPN infection. There is 
now a large body of work surrounding the immune, tolerance, 
and susceptible responses of plant species to nematode infection 
(summarized in Supplementary Table 1). In this review, we 
summarize the known plant recognition mechanisms for PPN 
infection, and the host immune responses to PPN. In addition, 
we discuss how different recognition systems activate different 
immune responses.

PPN LIFE CYCLES

PPNs are divided into three major groups according to feeding 
behavior: ectoparasitic, semi-endoparasitic, and endoparasitic 
(Decraemer and Hunt, 2013; Palomares-Rius et al., 2017; Smant 

et al., 2018). Ectoparasitic nematodes spend their entire life 
cycle outside of the host, with the only physical contact being 
the insertion of a long and rigid feeding stylet (Figure 1A). 
Semi-endoparasitic nematodes penetrate roots to feed, with its 
posterior part remaining in the soil. Endoparasitic nematodes 
completely enter the root and feed on internal tissues. Each of 
these feeding types is further divided into either migratory or 
sedentary lifestyles. For example, migratory endoparasites (e.g., 
the root-lesion nematodes Pratylenchus spp., and the burrowing 
nematodes Radopholus spp.) migrate through root tissues to 
feed on plant cells, causing damage to tissues as they migrate 
(Figure 1B), whereas sedentary endoparasites move into the 
vascular cylinder and induce redifferentiation of host cells into 
multinucleate and hypertrophic feeding cells. The two main 
PPNs in the sedentary group are the root-knot nematodes 
(RKNs) in the genus Meloidogyne, and the cyst nematodes (CNs) 
including the genera Globodera and Heterodera (Figures 1C, D). 

FIGURE 1 | Infection strategies of PPNs (A) Ectoparasites take up nutrients from plant cells without invading the plant root. Some ectoparasites such as needle 
nematodes (Longidorus spp.) and dagger nematodes (Xiphinema spp.) induce the formation of nurse cells which extends the period of feeding. (B) Migratory 
endoparasites move through inside of the root tissues causing destruction en route and feed on plant tissues. Sedentary endoparasites include the root-knot 
nematodes (RKNs), Meloidogyne spp. and the cyst nematodes (CNs), including Globodera spp. and Heterodera spp. (C) Second-stage RKN juveniles enter the 
root near the root-tip then migrate intercellularly to the vascular cylinder where they reprogram root tissues into giant cells. After establishment of giant cells, RKN 
juveniles become sedentary and take up nutrients and water through a feeding stylet. Adult RKN females form an egg mass on or below the root surface. (D) 
Second-stage juveniles of the CNs move inside of the root intracellularly, causing destruction of plant tissues as they go, and establish syncytia in the vascular 
tissues as feeding cells. CN juveniles also become sedentary and start feeding from syncytia. Adult CN females retain eggs inside of the body, which forms a cyst 
after death. 
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RKNs and CNs are the most devastating nematodes in the world 
(Jones et al., 2013).

Both RKNs and CNs induce host-cell redifferentiation to 
establish feeding cells for own development and reproduction, 
but in two different ways. Infective RKN juveniles enter near the 
root-tip and migrate intercellularly to the vascular cylinder where 
feeding cells are formed. Once RKNs enter a favorable location, they 
induce the redifferentiation of plant cells into multinucleate giant 
cells by repeated nuclear divisions without cytoplasmic division 
(Abad et al., 2009; Escobar et al., 2015). About 4–6 weeks after 
infection, the pear-shaped mature adult RKN female lays eggs in a 
gelatinous egg mass on or below the surface of the root (Abad et 
al., 2009; Escobar et al., 2015). RKNs exhibit variable reproduction 
modes such as amphimixis, facultative parthenogenesis and obligate 
parthenogenesis. In particular, the most devastating RKN species, 
Meloidogyne incognita, Meloidogyne arenaria, and Meloidogyne 
javanica, reproduce by obligate parthenogenesis and males appear 
to have no role in reproduction (Castagnone-Sereno, 2006). CN 
juveniles enter the root and move intracellularly into the vascular 
cylinder where, unlike RKNs, they induce syncytia through the 
local dissolution of cell walls and protoplast fusion of neighboring 
plant cells. Hundreds of eggs are produced inside of the female body 
after mating. When the female dies, its body forms a cyst, which can 
protect the eggs for many years in the soil (Bohlmann and Sobczak, 
2014; Bohlmann, 2015). Both RKNs and CNs secrete virulence 
effectors through a stylet to manipulate host cells for establishing 
feeding cells. PPNs secrete effectors include cell wall degrading 
enzymes, inhibitors of anti-nematodal plant enzymes, plant immune 
signaling suppressors, and proteins required for the establishment 
of feeding cells (Davis et al., 2008; Gheysen and Mitchum, 2011; 
Hewezi and Baum, 2013; Goverse and Smant, 2014; Smant et al., 
2018; Mejias et al., 2019).

RECOGNITION OF PPNS

In general, pathogens are perceived by several different recognition 
systems in plants (Jones and Dangl, 2006; Dodds and Rathjen, 
2010). The first recognition system is mediated by the perception 
of pathogen-associated molecular patterns (PAMPs) (e.g., bacterial 
flagellin, fungal chitin) and damage-associated molecular patterns 
(DAMPs) released by the disrupted host plant tissues. PAMPs and 
DAMPs are perceived by cell surface–localized pattern recognition 
receptors (PRRs), leading to pattern-triggered immunity (PTI) 
(Boutrot and Zipfel, 2017; Hou et al., 2019). Plant PRRs are 
usually either receptor-like kinases (RLKs) or receptor-like 
proteins (Boutrot and Zipfel, 2017). Successful pathogens secrete 
effector proteins into host apoplast and cytoplasm to interfere 
with recognition and immune signaling. In resistant plants, 
however, these effectors are often recognized by intracellular 
nucleotide-binding domain leucine-rich repeat (NLR)-type 
immune sensors, leading to NLR-triggered immunity (Cui et al., 
2015). The N-terminus of NLR proteins usually contains a toll-
interleukin 1 receptor (TIR) domain or coiled coil (CC), which 
are used to classify NLR proteins into two subgroups TIR-NLRs 
and CC-NLRs. In addition, some PRRs in resistant plants also 
recognize apoplastic effectors to induce PTI.

PPNs are known to induce PTI in plants. For example, 
ascaroside, an evolutionarily conserved nematode pheromone, is 
the first and only nematode PAMP identified so far (Manosalva 
et al., 2015). Ascr#18, the most abundant ascaroside in PPNs, 
activates typical plant immune responses, such as mitogen-
activated protein kinases, PTI-marker gene expression, and 
salicylic acid– and jasmonic acid (JA)–mediated defense signaling 
pathways. Importantly, treatment with Ascr#18 increases 
resistance to both RKNs and CNs in Arabidopsis. Moreover, 
Ascr#18 is also recognized by tomato, potato, and barley, 
suggesting that the recognition of Ascr#18 is well conserved in 
both monocots and dicots. However, the corresponding PRR 
for recognizing Ascr#18 has not yet been identified. The first 
identified PRR involved in the induction of PTI in response to 
a PPN-derived molecule is a leucine-rich repeat (LRR)-RLK 
encoded by Arabidopsis Nilr1 (nematode-induced LRR-RLK 
1) (Mendy et al., 2017). NILR1 was isolated as an essential 
component for recognizing “NemaWater,” an aqueous solution 
incubated with infective-stage juveniles of CN (Heterodera 
schachtii) and RKN (M. incognita) as PTI inducers. Interestingly, 
the extracellular receptor domain of NILR1 is widely conserved 
among dicots and monocots, which is consistent with the fact 
that NemaWater activates immune responses in tomato, sugar 
beet, tobacco, and rice. However, the corresponding PAMP 
molecule recognized by NILR1 has not been identified. The 
importance of PTI in immunity against PPNs has also been 
demonstrated in Arabidopsis PTI-deficient mutants (Teixeira 
et al., 2016; Mendy et al., 2017). The susceptibility of Arabidopsis 
to RKNs was enhanced in bak1–5 and bik1 mutants (Teixeira 
et al., 2016). BAK1 is a co-receptor for many PRRs inducing PTI, 
and in the BIK1 mutant, it is a required receptor-like cytoplasmic 
kinase for PTI signaling. bak1–5 and bak1–5 bkk1 (BKK1 is the 
closest homolog of BAK1) mutants are more susceptible to CNs 
(Mendy et al., 2017). Importantly, RKNs and CNs have multiple 
virulence effectors that are able to suppress PTI responses (Chen 
et al., 2013; Jaouannet et al., 2013; Lin et al., 2016; Chen et al., 
2018; Naalden et al., 2018; Kud et al., 2019; Yang et al., 2019). 
PPN infections induce host-cell damage, thus they likely 
produce DAMP(s), which results in PTI induction. For 
example, CNs migrate intracellularly, thus their migration 
results in the release of oligogalacturonides (OGs) from plant 
cell walls. Fungal pathogens produce cell wall degrading enzymes 
like polygalacturonase (PG) to digest plant cell wall materials 
(D’Ovidio et al., 2004), and most plants have polygalacturonase 
inhibitor proteins (PGIPs) that attenuate pectin degradation 
by PGs, resulting in OG release. The released long-chain OGs 
activate PTI (Bishop et al., 1981; Hahn et al., 1981; Nothnagel 
et al., 1983; Benedetti et al., 2015). Arabidopsis has two PGIPs, 
PGIP1, and PGIP2, both of which are rapidly expressed during 
the migratory stage of CNs. A genetic study showed that PGIP1 
activates plant camalexin and indole-glucosinolate pathways, 
thus attenuating CN infection (Shah et al., 2017). In addition, 
exogenous treatment with OGs enhances resistance against CNs. 
These results suggest that upon CN infection, Arabidopsis PGIP1 
releases OGs, triggering PTI (Shah et al., 2017). Furthermore, CN 
infection induces ethylene production by the host, a signaling 
step that delays establishment of the syncytial-phase, indicating 
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that damage-induced ethylene responses contribute to immunity 
against CNs (Marhavý et al., 2019). In contrast, there is as yet 
no clear evidence for damage-induced immunity against RKNs, 
which migrate intercellularly and are thus less-destructive than 
CNs. For example, neither PGIP1 nor PGIP2 are induced during 
the migratory stages of RKNs, and PGIP-mediated DAMP 
responses are not required for resistance against RKNs (Shah 
et al., 2017). Similarly, the loss of other DAMP receptors, PEPR1 
and PEPR2 for plant elicitor peptides or DORN1 for extracellular 
ATP, fails to affect susceptibility to RKNs (Teixeira et al., 2016). 
However, it is possible that unknown DAMPs might be important 
for inducing immunity against RKNs, as PTI activation by 
exogenous application of known DAMPs is quite effective for 
suppressing the reproduction of RKNs (Lee et al., 2018).

NLR proteins also play critical roles in recognizing PPNs. 
NLRs involved in PPN recognition are mostly encoded by 

resistance (R) genes (Kaloshian et al., 2011). Well-studied R 
genes include tomato Mi-1.2, Mi-9, and Hero-A; potato Gpa2 
and Gro1–4; pepper CaMi; and prune Ma (Milligan et al., 
1998; van der Vossen et al., 2000; Ernst et al., 2002; Paal et al., 
2004; Chen et al., 2007; Jablonska et al., 2007; Claverie et al., 
2011). Mi-1.2, Mi-9, CaMi, and Ma confer resistance against 
RKNs, while Hero-A, Gpa2, and Gro1–4 provide resistance 
against CNs. Gro1–4 and Ma encode TIR-NLRs, whereas the 
others encode CC-NLRs. Interestingly, Ma protein has a large 
and highly polymorphic C-terminal post-LRR region that is 
thought to be important for the recognition of PPNs (Claverie 
et al., 2011). Few examples of PPN avirulence factors recognized 
by NLRs are known. Gp-RBP-1, one of the secreted SP1a and 
RYanodine receptor (SPRY) domain (SPRYSEC) proteins from 
CN Globodera pallida, is an effector that induces hypersensitive 
response (HR)–cell death in the presence of GPA2 and Ran 

FIGURE 2 | Multiple plant immune responses against PPNs (A) Plants secrete anti-nematode enzymes such as papain-like cysteine proteases (PLCPs) and 
chitinases into the apoplast to attack PPNs. (B) Resistant plants produce a wide range of secondary metabolites in response to PPN infection. Some metabolites 
inhibit egg hatching, suppress the motility of migrating PPNs, arrest growth and development, or kill nematodes. Plants may also reduce chemoattraction by 
secreting less amounts of attractants or more repellents. (C) Plants reinforce their cell walls by accumulating lignin, suberin, and callose, which strengthen the 
physical barrier to PPNs. (D) PPN infection induces the production of ROS, which may be directly toxic to PPNs. Hydrogen peroxide plays a role in cell wall 
cross-linking. ROS may also work as a transducing signal to activate immune responses and to control HR-cell death. (E) NO production is induced upon PPN 
infection and may play a role in JA-mediated defense responses, possibly through the production of protease inhibitor 2. (F) HR-cell death is crucial for limiting 
PPN movement and completing the life cycle. (F-1) HR-cell death occurs during penetration and migration of PPNs in cortical and epidermal tissues, contributing 
to inhibition of migration. (F-2) HR-cell death is induced in cells infected by RKNs or CNs, which inhibit the formation of feeding cells. (F-3) HR-cell death is also 
induced in cells surrounding feeding cells, often resulting in degeneration of feeding cells. Even if some feeding cells survive, the nutrient transport from surrounding 
tissues to the feeding cells is limited, causing a reduction in the number of eggs, and production of relatively more males. Some resistant plants induce the 
deterioration of feeding cells without any HR-cell death of surrounding cells.
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GTPase-activating protein 2 (RanGAP2) (Blanchard et al., 2005; 
Sacco et al., 2009). The proline residue at position 187 in the 
SPRY domain of Gp-RBP-1 is required for recognition by GPA2, 
whereas the virulent type Gp-RBP-1 variant allele has a mutation 
at this position, allowing it to avoid host recognition. Moreover, 
RanGAP2 interacts with the CC domain of GPA2 (Tameling 
and Baulcombe, 2007), suggesting that the RanGAP2-GPA2 
complex is required for the recognition of the SPRY domain of 
Gp-RBP-1. Other example of an avirulence factor recognized by 
plants is Cg-1 in M. javanica, an RKN. The Cg-1 gene is present in 
an Mi-1.2-avirulent population, but virulent RKN strains carry 
a deletion of Cg-1 (Gleason et al., 2008; Gross and Williamson, 
2011). Moreover, silencing of Cg-1 in an avirulent strain 
increased virulence on Mi-1.2-containing tomato, suggesting a 
possible role for Cg-1 as a factor recognized by R protein Mi-1.2, 
although its signal transduction mechanism is unclear.

Surface-localized PRRs are also known to recognize PPN 
effectors. Venom allergen–like protein Gr-VAP1 from the CN 
Globodera rostochiensis interacts with apoplastic papain-like 
cysteine protease (PLCP) RCR3pim in tomato to suppress host 
immunity (Lozano-Torres et al., 2012). However, Cf-2, a plasma 
membrane-localized receptor-like protein with extracellular 
LRRs, recognizes the interaction of Gr-VAP1 with RCR3pim, 
triggering HR-cell death in resistant hosts. Notably, Cf-2 was 
originally identified as a resistance gene against the fungal 
pathogen Cladosporium fulvum (Rooney et al., 2005). Similar 
to Gr-VAP1, C. fulvum secretes AVR2, which interacts with 
and inhibits RCR3pim, and this interaction is recognized by 
Cf-2 protein. Thus, Cf-2 recognizes both fungal and nematode 
pathogens by monitoring RCR3pim.

SECRETION OF ANTI-NEMATODE 
ENZYMES INTO THE APOPLAST

The fact that the PPN effector Gr-VAP1 inhibits RCR3pim, a PLCP, 
implies that its enzymatic activity is important in immunity 
against PPNs (Figure 2A). Indeed, the absence of RCR3pim 
homologs in Arabidopsis results in enhanced susceptibility to CN 
(Lozano-Torres et al., 2014). In addition to Gr-VAP1, Mc1194, 
an effector of RKN Meloidogyne chitwoodi targets another PLCP, 
RD21A in Arabidopsis (Davies et al., 2015b). Lack of RD21A leads 
to hyper-susceptibility to M. chitwoodi, showing that this PLCP 
also plays a positive role in immunity against RKN. However, it is 
not yet known how these PLCPs inhibit PPN infection.

Chitinases are also potentially important apoplastic enzymes 
in immunity against PPNs (Figure 2A). Upon fungal infection, 
plants often secrete chitinases, which degrade chitin in the fungal 
cell walls (Kumar et al., 2018; Pusztahelyi, 2018). In nematodes, 
chitin is the main component of the egg shell (Clarke et al., 1967; 
McClure and Bird, 1976; Perry and Trett, 1986) and makes up 
part of the pharyngeal lumen walls of Caenorhabditis elegans 
(Zhang et al., 2005), suggesting that chitinases may have anti-
nematodal activity and thus contribute to immunity against 
PPNs. Consistent with this idea, chitinase activity and transcript 
levels are upregulated after PPN infection in resistant plants (Qiu 

et al., 1997; de-Deus Barbosa et al., 2009; Bagnaresi et al., 2013). 
However, there is currently no genetic evidence connecting plant 
chitinases to resistance against PPNs.

PRODUCTION OF ANTI-NEMATODE 
COMPOUNDS

Plants produce secondary metabolites in response to PPN 
invasion (Figure 2B). For instance, chlorogenic acid, a phenolic 
compound, is produced in various plants including solanaceous 
plants (Milne et al., 1965; Hung and Rohde, 1973; Pegard et al., 
2005), carrots (Knypl et al., 1975), and rice (Plowright et al., 1996), 
suggesting a common defense response against PPN infection. 
Although the production of chlorogenic acid is well-correlated 
with PPN resistance levels, chlorogenic acid itself is only weakly 
nematicidal for M. incognita (Mahajan et al., 1985; D’Addabbo 
et al., 2013) with moderate activity against Nacobbus aberrans, 
a false root-knot nematode (López-Martínez et al., 2011). One 
possible explanation for this lack of correlation between response 
and effectiveness is that metabolized products of chlorogenic 
acid have higher nematicidal activity in the target organism, 
but those compounds may be unstable or highly toxic in plants. 
Chlorogenic acid can be hydrolyzed to quinic acid and caffeic 
acid, with the latter being further oxidized to orthoquinone, 
which is toxic to PPNs (Mahajan et al., 1985). However, the roles 
of caffeic acid and orthoquinone in resistance against PPNs need 
to be further established.

Another phenolic compound, phenylphenalenone anigorufone 
accumulates at the infection sites of the burrowing nematode 
Radopholus similis in a resistant banana cultivar (Musa sp.) 
(Dhakshinamoorthy et al., 2014; Hölscher et al., 2014). 
Anigorufone has high nematicidal activity because of the 
formation of large lipid–anigorufone complexes in the bodies 
of R. similis. Anigorufone is also known as an antifungal 
phytoalexin, and its synthesis is activated by infection with 
the pathogenic fungus Fusarium oxysporum (Luis et al., 1995). 
Interestingly, anigorufone also kills the human protozoan parasite 
Leishmania through the inhibition of succinate dehydrogenase in 
the mitochondrial respiratory complex II (Luque-Ortega et al., 
2004). However, the toxic mechanism of anigorufone in PPNs 
and its relationship to the formation of large lipid–anigorufone 
complexes remains to be determined.

Flavonoids constitute a large class of secondary 
metabolites in plants. Some flavonoids play important roles 
in PPN resistance by functioning as nematicides, nemastatic 
compounds (which do not kill but inhibit their movement), 
repellents, or inhibitors of egg hatching (Chin et al., 2018). 
These flavonoids that have anti-nematodal activity mostly 
belong to the classes of flavonols (e.g., kaempferol, quercetin, 
myricetin), isoflavonoids, and pterocarpans (e.g., medicarpin, 
glyceollin). Kaempferol inhibits egg hatching of R. similis 
(Wuyts et al., 2006b). Kaempferol, quercetin, and myricetin 
are repellents and nemastatic to M. incognita juveniles (Wuyts 
et al., 2006b), and medicarpin also inhibits the motility of 
Pratylenchus penetrans in a concentration-dependent manner 
(Baldridge et al., 1998). Similarly, patuletin, patulitrin, 
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quercetin, and rutin are nematicidal for infective juveniles of 
Heterodera zeae, a CN (Faizi et al., 2011). The synthesis of 
some flavonoids is also induced during infection in resistant 
plants. For instance, M. incognita–resistant soybean cultivars 
accumulate glyceollins, a group of soybean-specific prenylated 
pterocarpan phytoalexins that are expressed upon infection 
(Kaplan et al., 1980). Interestingly, glyceollin inhibits the 
motility of M. incognita (Kaplan et al., 1979; Kaplan et al., 
1980). Glyceollin accumulation is also higher in CN-resistant 
soybean cultivars than in susceptible ones. One of the 
glyceollin isomers, glyceollin I accumulates in tissues adjacent 
to the head of the CN in resistant soybean roots (Huang and 
Barker, 1991), suggesting accumulation of glyceollin is spacio-
temporally specific to the infection site.

Apart from phenolic compounds, other nematicidal 
chemicals are produced by several nematode-antagonistic plants, 
such as marigold and asparagus, which have been used for 
reducing nematode populations in soil. Marigold roots secrete 
α-terthienyl (Gommers and Bakker, 1988; Wang et al., 2007; Faizi 
et al., 2011), an oxidative stress-inducing chemical that effectively 
penetrates the nematode hypodermis and exerts nematicidal 
activity (Nivsarkar et al., 2001; Hamaguchi et al., 2019). Similarly, 
asparagus produces asparagusic acid, which inhibits hatching 
of two important CNs, Heterodera glycines and G. rostochiensis 
(Takasugi et al., 1975).

In Brassicaceae family plants, the broad spectrum 
antimicrobial isothiocyanates and indole glucosinolates 
are considered as anti-PPN compounds. Isothiocyanates 
effectively inhibit hatching of CNs and RKNs (Brown 
et al., 1997; Yu et al., 2005) and also have toxicity to 
RKNs and the semi-endoparasitic nematode Tylenchulus 
semipenetrans (Zasada and Ferris, 2003). In Arabidopsis, the 
synthesis of camalexin, an indole alkaloid glucosinolate-
type phytoalexin, is catalyzed by three cytochrome P450-
dependent monooxygenases, CYP79B2, CYP79B3 (Hull 
et  al., 2000; Mikkelsen et al., 2000; Bak et al., 2001; Mikkelsen 
et al., 2004), and PAD3 (phytoalexin-deficient 3, CYP71B15). 
Double mutants cyp79b2/b3 which do not accumulate indolic 
glucosinolates are more susceptible to CNs (Shah et al., 2017), 
while pad3, camalexin-deficient mutants are more susceptible 
to RKNs than wild type (Teixeira et al., 2016). These results 
suggest that some indole glucosinolates including camalexin 
have some inhibitory effects on PPNs, but there have so far 
been no reports of direct toxicity of indolic glucosinolates 
on PPNs.

In addition to nematicides and nemastatic compounds, 
interruption of PPN chemotaxis may also be an effective plant 
response for inhibiting or limiting PPN infection. Ethylene, 
which is normally produced after wounding as well as during 
pathogen invasion, reduces PPN attraction to the root (Booker 
and DeLong, 2015; Guan et al., 2015; Marhavý et al., 2019). An 
ethylene-overproducing Arabidopsis mutant is less attractive 
for PPNs, and attractiveness is greater in plants treated with 
ethylene-synthesis inhibitors or in ethylene-insensitive 
mutants (Fudali et al., 2013; Hu et al., 2017). These results 
suggest that PPN infection induces ethylene production, 
which possibly prevents secondary PPN invasion by reducing 

attractiveness. The reduced attractiveness could be due to a 
reduction in attractant secretion or an increase in repellents. 
However, the molecular basis of the attractiveness for PPNs 
is still largely unknown. Several groups have tried to identify 
RKN attractants from root tips (Čepulytė et al., 2018) and 
seed-coat mucilage (Tsai et al., 2019). The identification of 
chemoattractants and chemorepellents may offer some insight 
into how plants respond to nematodes in the rhizosphere both 
before and during PPN infection.

REINFORCEMENT OF CELL WALL AS A 
PHYSICAL BARRIER

Since all PPNs must penetrate the cell wall for feeding, 
reinforcement of cell wall structure has been implicated as an 
effective defense as a physical barrier (Figure 2C). For instance, 
PPN infection often induces accumulation of lignin in resistant 
plants (Balhadère and Evans, 1995a; Balhadère and Evans, 1995b; 
Andres et al., 2001; Dhakshinamoorthy et al., 2014). Moreover, 
Arabidopsis mutants with increased levels of syringyl lignin have 
reduced M. incognita reproduction rates (Wuyts et al., 2006a). 
These results suggest that lignin accumulation in roots is an 
effective antagonist to PPN infection.

The effectiveness of lignin accumulation for suppressing 
nematode infection is also supported by plant immune 
inducers such as β-aminobutyric acid (BABA), thiamine, 
and sclareol. BABA, a non-protein amino acid, has broad 
efficacy against viruses, bacteria, fungi, and oomycetes in 
various plants (Alexandersson et al., 2016; Cohen et al., 2016). 
Treatment with BABA inhibits RKN invasion, delays giant 
cell formation, and retards RKN development. Interestingly, 
BABA induces lignin accumulation in roots, and callose 
accumulation in galls (Ji et al., 2015). Thiamine (vitamin B1) 
treatment also induces lignin accumulation in roots; enhances 
the expression of phenylalanine ammonia-lyase, a key enzyme 
of the phenylpropanoid biosynthesis pathway; reduces PPN 
penetration; and delays PPN development (Huang et al., 2016). 
An inhibitor of phenylalanine ammonia-lyase suppresses 
thiamin-mediated immunity, indicating that activation 
of the phenylpropanoid pathway with subsequent lignin 
accumulation is important for thiamin-mediated immunity 
against nematodes. Treatment with sclareol, an antimicrobial 
compound with activity against some plant-pathogenic bacteria 
and fungi (Bailey et al., 1975; Kennedy et al., 1992; Seo et al., 
2012), also induces lignin accumulation and suppresses RKN 
penetration (Fujimoto et al., 2015). Importantly, an Arabidopsis 
mutant of cinnamoyl-coA reductase (ccr2) defective in lignin 
accumulation cannot induce sclareol-mediated suppression 
of RKN penetration, suggesting that lignin accumulation is 
important for the sclareol-mediated immunity.

Similar to lignin accumulation, callose deposition and suberin 
accumulation may also reinforce cell walls and contribute to 
immunity against PPNs. The RKN Meloidogyne naasi induces 
callose deposition at an early infection stage, and suberin 
accumulation at a later stage in the resistant grass plant Aegilops 
variabilis (Balhadère and Evans, 1995a; Balhadère and Evans, 
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1995b). Infection of Arabidopsis by RKN or CN also induces 
transcriptional activation of suberin biosynthesis genes at the 
site of infection (Holbein et al., 2019). Overexpression of the 
transcription factor RAP2.6 in Arabidopsis leads to enhanced 
callose deposition at syncytia and results in higher resistance 
to CN (Ali et al., 2013). RAP2.6 is strongly downregulated in 
syncytia compared to uninfected root; therefore, it is possible that 
CN suppresses RAP2.6 expression to inhibit callose deposition 
within syncytia.

Lignin and suberin in suberin lamellae and casparian strips 
at the endodermis are also important basal physical barriers 
to RKNs. RKNs are not able to directly cross the endodermis 
because of the reinforcement of cell walls by suberin lamellae 
and casparian strips (Wyss et al., 1992; Abad et al., 2009). Indeed, 
Arabidopsis mutants defective in casparian strips are more 
susceptible to RKNs (Holbein et al., 2019).

REACTIVE OXYGEN SPECIES (ROS)

The rapid production of ROS, such as superoxide anion and 
hydrogen peroxide, is a conserved signaling response across 
kingdoms, and in plants, it is induced at an early stage of PPN 
infection (Figure 2D). ROS have direct antimicrobial properties 
but also serve as signaling molecules to activate additional and 
complementary immune outputs such as strengthening cell walls 
by cross-linking polymers, amplifying and propagating intra- 
and intercellular defense signals, and regulating HR-cell death 
(Torres et al., 2006; Kadota et al., 2015). Resistant tomato plants 
carrying the Mi-1.2 gene respond to RKN infection with a strong 
and prolonged induction of ROS. On the other hand, susceptible 
tomato plants have weak and transient ROS induction in response 
to nematode infection (Melillo et al., 2006; Melillo et al., 2011; 
Zhou et al., 2018). Similarly, strong ROS production is induced 
in Arabidopsis roots during incompatible interactions with the 
soybean CN H. glycines (Waetzig et al., 1999). Histochemical 
studies showed that hydrogen peroxide accumulates in the 
apoplast after infection of the avirulent RKNs or CNs (Waetzig 
et al., 1999; Melillo et al., 2006).

The plasma membrane-bound NADPH oxidase respiratory 
burst oxidase homologs (RBOHs) are important for the 
production of apoplastic ROS (Kadota et al., 2015). In tomato, 
whitefly-induced 1 (WFI1), an RBOH homolog, is required for 
Mi-1.2-mediated ROS accumulation during RKN infection. 
Consistently, HSFA1, a class-A heat-shock factor that regulates 
Wfi1 transcription by binding to the Wfi1 promoter, is also 
critical for Mi-1.2-mediated ROS production (Zhou et al., 2018). 
In Arabidopsis, which has 10 RBOHs, RBOHD is the primary 
source of ROS production during PTI and NLR-triggered 
immunity. RBOHF may also work redundantly with RBOHD in 
some responses, because the rbohD rbohF double mutant has a 
stronger defense response phenotype against bacterial pathogens 
(Torres and Dangl, 2005; Torres et al., 2006). Similarly, rbohD 
rbohF produces more galls after RKN infection than the wild 
type (Teixeira et al., 2016), indicating a positive role for RBOHD 
and RBOHF ROS production in immunity against RKNs. 
Interestingly, fewer CNs develop in rbohD rbohF double mutant, 

suggesting that CNs require a different level of ROS control by 
RBOH for successful establishment of infection. Furthermore, 
rbohD rbohF exhibits larger regions of HR-cell death and less 
syncytium formation upon CN infection, suggesting that CNs 
utilize RBOHD- and RBOHF-mediated ROS to suppress HR-cell 
death in the host (Siddique et al., 2014).

To protect themselves from the toxicity of produced ROS by 
the host, endoparasitic nematodes may have evolved a number 
of antioxidant enzymes on their surface and in the hypodermis 
(Henkle-Dührsen and Kampkötter, 2001). For example, both CNs 
and RKNs produce peroxiredoxins; some of the most abundant 
detoxifying antioxidant enzymes, which remove hydrogen 
peroxides from the apoplast of host plants by thioredoxin (TRX) 
cysteine thiol-disulfide exchange (Robertson et al., 2000; Henkle-
Dührsen and Kampkötter, 2001; Dubreuil et al., 2011). PRX2.1, 
a clade B peroxiredoxin in M. incognita, is expressed upon 
infection, and knock-down of the gene reduces resistance against 
oxidative stress, resulting in fewer galls. This interaction suggests 
a critical role for PRX2.1 in infection. CNs also secrete GPX-1, a 
glutathione peroxidase variant, from the hypodermis to scavenge 
host-derived ROS, thereby protecting external cell membranes 
from oxidation (Jones et al., 2004). M. incognita glutathione-
S-transferases are delivered into the host apoplast to detoxify 
the products of oxidative stress (Dubreuil et al., 2007). Indeed, 
freshly hatched infective juveniles of M. incognita are much more 
resistant to exogenous treatment with hydrogen peroxide than C. 
elegans (Isermann et al., 2004).

Another PPN strategy for protection against host ROS is to 
activate the host ROS-scavenging system by the secretion of 
virulence effectors. For example, CN effector 10A06 interacts 
with host spermidine synthase 2 and increases spermidine 
content in infected tissues (Hewezi et al., 2010). Spermidine 
in higher concentrations functions as a ROS scavenger, and in 
lower concentrations, it indirectly decreases oxidative stress by 
activating cellular antioxidant systems (Kasukabe et al., 2004). 
Indeed, ectopic expression of 10A06 in Arabidopsis increases 
the expression of several genes encoding antioxidant enzymes. 
Similarly, MjTTL5, a virulence effector from M. javanica interacts 
with the Arabidopsis ferredoxin:TRX reductase (FTR) catalytic 
subunit (FTRc) in plastids (Lin et al., 2016). FTR activates TRXs 
in chloroplasts or plastids by receiving reducing equivalents from 
reduced ferredoxin (Balmer et al., 2006; Kirchsteiger et al., 2012). 
The interaction of MjTTL5 with FTRc drastically increases host 
ROS-scavenging activity, thus modulating the plant immune 
reaction. Because peroxiredoxins use TRX to reduce hydrogen 
peroxide (Broin et al., 2002; Kotze, 2003), it is possible that FTRc 
works in part with peroxiredoxins by providing reduced TRX to 
lower ROS production in plants.

NITRIC OXIDE (NO) AND PROTEASE 
INHIBITOR-BASED IMMUNITY

NO is an essential signaling molecule that has multiple functions 
in plants (Delledonne et al., 1998; Torres et al., 2006; Bellin et al., 
2013; Mur et al., 2013; Scheler et al., 2013) (Figure 2E). After 
infection with M. incognita, resistant tomato plants carrying 
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Mi-1.2 produce more NO than susceptible cultivars (Melillo 
et al., 2011). Application of an exogenous NO donor, sodium 
nitroprusside (SNP), to susceptible tomato plants significantly 
enhances immunity against RKNs (Zhou et al., 2015). Treatment 
with SNP reduces the number of egg masses and restores the 
growth inhibition associated with PPNs, suggesting that NO 
plays a positive role in immunity. NO may be involved in the 
JA-dependent RKN defense pathway, as an NO scavenger 
partially inhibitis JA-induced RKN defense responses. Moreover, 
the inhibition of JA biosynthesis by chemical inhibitors 
significantly increased susceptibility to RKNs, but resistance was 
effectively restored by exogenous SNP application. Because both 
JA- and SNP-induced RKN defense responses are compromised 
by silencing protease inhibitor 2 (PI2), the NO- and JA-pathways 
likely converge to induce immunity against PPNs (Zhou et al., 
2015). However, it remains unclear which proteases PI2 inhibits. 
Since PPNs use a variety of proteases for their virulence and for 
their development (Urwin et al., 1997; Neveu et al., 2003), these 
activities can be inhibited by PI2. Interestingly, heterologous 
expression of various protease inhibitors, including trypsin 
inhibitors and cysteine protease inhibitors, confer resistance 

against PPNs, showing the effectiveness of protease inhibitor-
based immunity against PPNs (Hepher and Atkinson, 1992; 
Urwin et al., 2000; Urwin et al., 2003).

HR-CELL DEATH-BASED INHIBITION OF 
NEMATODE DEVELOPMENT

HR-cell death, a type of programmed cell death that is induced 
after the invasion of avirulent pathogens to prevent the spread of 
biotrophic pathogens (Huysmans et al., 2017), also plays a crucial 
role in PPN immunity (Figure 2F). HR-cell death has been 
observed at three different phases of PPN infection in resistant 
plants: (1) in the cortex and epidermis during PPN penetration 
and migration (Hung and Rohde, 1973; Thomason et al., 1976; 
Finetti Sialer, 1990; Balhadère and Evans, 1995b; Pegard et al., 
2005; Proite et al., 2008; Albuquerque et al., 2010; Khallouk et al., 
2011; Cabasan et al., 2014; Davies et al., 2015a), (2) in vascular 
tissues during the initiation of feeding cell formation (Paulson 
and Webster, 1972; Melillo et al., 2006), and (3) in cells adjacent 
to developing feeding cells (Kim et al., 1987; Rice et al., 1987; 

FIGURE 3 | Relationships between nematode recognition and immune responses Plants activate pattern-triggered immunity and NLR-triggered immunity against 
PPN infection using different immune receptors. These receptors trigger a variety of defense responses. Some immune responses, such as ROS/NO production, are 
induced in common by some immune receptors with different kinetics, while other responses, such as cell death, are induced by specific immune receptors.
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Sobczak et al., 2005; Kim et al., 2010; Kim et al., 2012; Cabasan 
et al., 2014; Seo et al., 2014; Ye et al., 2017).

During PPN penetration and migration, cell death is also often 
observed in susceptible plants, but it is less rapid and less frequent 
than in resistant varieties (Endo and Veech, 1970; Thomason 
et al., 1976; Sobczak et al., 2005). HR-cell death may inhibit 
nematode migration, but it is not clear if HR-cell death stops 
PPN movement directly, or indirectly by releasing nemastatic 
or nematicidal chemicals or DAMPs to activate other immune 
responses. HR-cell death is also induced during the initiation of 
feeding cell development. For instance, Mi-1.2-resistant tomato 
plants induce HR-cell death during the RKN induction of giant 
cells, thus inhibiting the development of feeding cells (Paulson 
and Webster, 1972; Melillo et al., 2006). Another possible function 
of HR-cell death is to create a physical gap between feeding cells 
and surrounding cells to block nutrient and water supplies. For 
example, in resistant tomato lines carrying the Hero gene, potato 
CN (G. rostochiensis) makes syncytia, but HR-cell death is induced 
in surrounding cells, which resulted in the separation of the 
syncytium from stelar conductive tissues (Sobczak et al., 2005). 
Disconnection of feeding cells from surrounding tissue also occurs 
in resistant plants after infection with RKNs (Seo et al., 2014; Ye 
et al., 2017). Disassociation of surrounding tissue leads to poor 
nutrient supply, thereby inhibiting growth or causing the death of 
feeding cells, reducing fecundity in females, and increasing male 
development (Acedo et al., 1984; Rice et al., 1987; Kouassi et al., 
2004; Sobczak et al., 2005). Increased male development coincides 
with a reduced number of females, resulting in the reduction of 
PPN eggs. In some resistant plants, death of feeding cells is also 
induced without HR-cell death of surrounding cells. For example, 
death of syncytia is induced in resistant soybeans (Yan and Baidoo, 
2018), and deterioration of giant cells is induced in resistant cowpea 
carrying Rk gene without typical HR-cell death in surrounding cells 
(Das et al., 2008). These differences in HR-cell death initiation site 
may depend on the specific expression pattern of host R genes (Yan 
and Baidoo, 2018) and PPN effectors.

The importance of HR-cell death is supported by the 
observation that both RKNs and CNs have effectors that suppress 
HR-cell death. The M. incognita effector MiISE5, a zinc-finger 
protein, suppresses HR-cell death induced by the non-host 
bacterial pathogen, Burkholderia glumae in N. benthamiana, 
possibly through reprogramming of the host transcriptome 
(Shi et al., 2018). The RKN effector MeTCTP from Meloidogyne 
enterolobii also suppresses HR-cell death triggered by the mouse 
pro-apoptotic protein, Bcl2 associated X protein (Zhuo et al., 
2017). CNs also have HR-cell death suppression effectors such 
as SPRYSEC effectors (Ali et al., 2015b), RHA1B, an E3 ubiquitin 
ligase (Kud et al., 2019), and GrEXPB2, an expansin-like protein 
(Ali et al., 2015a). However, these CN effectors do not specifically 
inhibit HR-cell death but also inhibit other defense responses.

CONCLUSIONS AND FUTURE 
DIRECTIONS

As a result of the identification of several NLR-type and 
PRR-type receptors involved in immunity against PPNs, we 

have gradually begun to understand how plants recognize 
and respond to nematode infection at the molecular level. 
However, PPN effectors and PAMPs are still largely unknown, 
and the corresponding receptors remain unidentified. 
Similarly, various immune responses against nematodes in 
a wide range of resistant crop and model plants have been 
recognized (Figure 2 and Supplementary Table 1), but there 
is still much that is unknown between the phenomena of PPN 
recognition and the triggering of specific immune responses 
(Figure 3). Thus, significant challenges for future research 
in the field of plant and nematode interactions would be to 
identify immune receptor-ligands pairs (PAMPs, DAMPs, 
and  effectors), to clarify the molecular bases of signaling 
pathways leading to individual immune responses, to 
understand the interactions of these components and signaling 
pathways in PPN immunity, and to identify the molecular 
components that define host specificity. Loss of significant 
agricultural productivity in a burgeoning global population 
goes beyond monetary losses. The absence of truly effective 
strategies for controlling nematode populations and infection 
has serious and worsening consequences for sustainable 
agriculture. Understanding the molecular mechanisms of 
PPN recognition and immune signaling networks will provide 
a knowledge  base for much-needed PPN disease control 
strategies in the future.
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