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Phosphorus (P), zinc (Zn), and iron (Fe) are three essential elements for plant survival, and 
severe deficiencies in these nutrients lead to growth retardation and crop yield reduction. 
This review synthesizes recent progress on how plants coordinate the acquisition and 
signaling of Pi, Zn, and Fe from surrounding environments and which genes are involved in 
these Pi–Zn–Fe interactions with the aim of better understanding of the cross-talk between 
these macronutrient and micronutrient homeostasis in plants. In addition, identification of 
genes important for interactions between Pi, Zn, and/or Fe transport and signaling is a 
useful target for breeders for improvement in plant nutrient acquisition. Furthermore, to 
understand these processes in arbuscular mycorrhizal plants, the preliminary examination 
of interactions between Pi, Zn, and Fe homeostasis in some relevant crop species has been 
performed at the physiological level and is summarized in this article. In conclusion, the 
development of integrative study of cross-talks between Pi, Zn, and Fe signaling pathway 
in mycorrhizal plants will be essential for sustainable agriculture all around the world.

Keywords: phosphorus, zinc, iron, Pi–Zn–Fe interactions, arbuscular mycorrhizal plants

INTRODUCTION

Inorganic phosphate (Pi), zinc (Zn), and iron (Fe) are three essential macronutrient and 
micronutrients for the survival and development of all living organisms including mycorrhizal plants 
and edible crops (Westheimer, 1987; Briat et al., 1995; Marschner, 1995; Salgueiro et al., 2000). These 
three mineral elements are relatively inaccessible to plants and crops because of their low solubility 
and relative immobilization in the agricultural soils (Lopez et al., 2000; Hirsch et al., 2006). Crops 
are therefore subjected to Pi, Zn, and Fe deficiencies, which can adversely impact multiple metabolic 
processes in cells. Nevertheless, plants have evolved a number of strategies to cope with low Pi, Zn, 
and Fe availabilities, including development of a mycorrhizal symbiosis (Karandashov and Bucher, 
2005; Smith and Read, 2008), conversion of metabolism, remodeling of root morphology, secretion 
of root exudates, and induction of the high-affinity transport systems.

In recent decades, the effects of Pi, Zn, and Fe deficiencies on crop yield and quality have become 
a global concern due to the issues of food availability and malnutrition (Abelson, 1999; Neset and 
Cordell, 2012; Shahzad et al., 2014). To guarantee the sustainable food source for the growing 
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population, worldwide agriculture has become dependent on 
the massive use of Pi, Zn, and Fe fertilizers for improving crop 
yield and quality. Nevertheless, this strategy has adverse long-term 
economic and ecological impacts. Development of sustainable 
agricultural practices will require crops with improved Pi, 
Zn, and Fe nutrition in order to reduce the application of these 
fertilizers. The novel plant genotypes with high-efficiency nutrient 
use are genetically desired in an appropriate way to fit the lower 
input into the environment. Despite the importance of these issues, 
the biological interactions between P, Zn, and Fe elements still 
remain incompletely studied, and our understanding is limited of 
how various signaling pathways are induced in response to nutrient 
availability and how these changes are integrated with relation 
to other nutrients (Briat et al., 2015). On the other hand, some key 
genes involved in the acquisition and distribution of macronutrient 
and micronutrients in nonmycorrhizal and mycorrhizal plants 
have been identified (Javot et al., 2007a; Gojon et al., 2009; Pilon et 
al., 2009; Giovannetti et al., 2014; Watts-Williams and Cavagnaro, 
2018), and their expression in response to nutrient status has started 
to be elucidated (Schachtman and Shin, 2007; Giehl et al., 2009; Liu 
et al., 2009; Hindt and Guerinot, 2012).

Approximately 72% of terrestrial vascular plant species are 
capable of establishing symbiotic mutualistic associations with 
obligate biotrophic soil-borne arbuscular mycorrhizal fungi (AMF) 
from the phylum Glomeromycota (Remy et al., 1994; Schüßler et al., 
2001; Bonfante, 2018). The endosymbiotic associations between plants 
and AMF, namely, arbuscular mycorrhizas (AM), are widespread in 
terrestrial ecosystems (Parniske, 2008). In AM symbiosis, the fungal 
symbiont provides mineral nutrients to the plant and in return obtains 
sugars and lipids (Smith and Read, 2008; Jiang et al., 2017), and thus, 
this symbiosis has significant contribution to plant productivity and 
ecosystem function (van der Heijden et al., 1998).

AM symbiosis not only is capable of significantly improving the 
acquisition of macronutrients such as Pi, N, and S to host plant 
(Ames et al., 1983; Smith et al., 2003; Smith and Read, 2008; Allen 
and Shachar, 2009; Leigh et al., 2009; Sieh et al., 2013) but also 
facilitates the uptake and translocation of micronutrients such as 
Zn and Fe in the soil–AMF–plant continuum (Caris et al., 1998; Liu 
et al., 2000; Chen et al., 2003; Farzaneh et al., 2011; González et al., 
2016). The acquisition of Pi, N, and S in AM symbiosis through a 
specific symbiotic uptake pathway has been extensively described 
(Rausch et al., 2001; Harrison et al., 2002; Javot et al., 2007b; Chen 
et al., 2007; Guether et al., 2009; Yang et al., 2012; Giovannetti et al., 
2014; Volpe et al., 2016). However, very few studies have been 
undertaken to uncover the molecular mechanisms underlying the 
uptake and homeostasis of Zn and Fe from AM fungus Rhizophagus 
irregularis to the plant (González et al., 2005; Tamayo et al., 2014; 
Tamayo et al., 2018), and the impact of this symbiosis on Zn and Fe 
homeostasis in plant is far from being understood (Chorianopoulou 
et al., 2015; Watts-Williams et al., 2015). A very recent study has 
revealed the involvement of AM-modified ZmNAS1, ZmNAS3, 
and ZmYS1 genes in the regulation of Fe homeostasis in mycorrhizal 
maize through sulfate deficiency signaling (Chorianopoulou et al., 
2015), suggesting the existence of a cross-talk between S and Fe 
homeostasis in mycorrhizal symbiosis. Nevertheless, the molecular 
basis of the double or tripartite interactions between Pi, Zn, and Fe 
homeostasis in AM symbiosis is still lacking in mycorrhizal plants. 

Therefore, it is of biological significance to decipher the mechanisms 
of coordinating the Pi, Zn, and Fe deficiency signaling in AM 
symbiosis and consequently profit mycorrhizal plant growth and 
fitness during multiple Pi–Zn–Fe deficiency stresses.

In such context, the aim of this review is to summarize current 
knowledge on cross-talk between Pi and Zn, Pi and Fe, Zn and 
Fe, and tripartite Pi–Zn–Fe homeostasis in both nonmycorrhizal 
and mycorrhizal plants. Additionally, Pi (or Fe) nutrition is also 
affected by the interaction between Zn and Fe (or Pi) in plants, 
such as Arabidopsis and rice. The MYB transcription factor (TF) 
PHR1 acting as a potential integrator of Pi, Zn, and Fe nutrient 
signals to regulate mineral nutrition in plants is discussed. 
Moreover, a novel role of the OsPHO1;1 in Fe transport through 
integrating Pi and Zn deficiency signaling is proposed, and these 
complicated nutritional interactions are presented, with a focus on 
the emerging roles of nutrient transporters in mycorrhizal plants.

Membrane Transporters  
and Their Roles in Mineral Uptake 
and Homeostasis in Plants
In plants, Pi, Zn, and Fe are acquired at the root periphery in the 
form of free ions (Guerinot, 2000; Curie et al., 2001; Vert et al., 
2002; Nussaume et al., 2011; Milner et al., 2013), and the uptake 
and translocation of these minerals in plants involve multiple 
and complex transport systems.

The Pi is taken up at the root system via the high-affinity 
Pi:H+ symporters belonging to members of the PHT1 family 
(Schachtman et al., 1998; Bucher, 2007; Nussaume et al., 2011). 
The Arabidopsis, rice, soybean, and tomato genomes harbor 9, 13, 
14, and 8 members of the PHT1 family, respectively (Paszkowski 
et al., 2002; Poirier and Bucher, 2002; Fan et al., 2013; Chen et 
al., 2014). Some of these Pht1 genes are predominantly expressed 
in roots, and the encoded proteins function as high-affinity Pi 
uptake transporters (Muchhal et al., 1996; Shin et al., 2004; Remy 
et al., 2012; Sun et al., 2012). Nevertheless, the transcripts of 
Pht1 genes are also detected in shoots (including vegetative and 
reproductive tissues), implicating their role beyond Pi uptake 
at the root surface (Mudge et al., 2002; Nagarajan et al., 2011; 
Chen et al., 2014). In Arabidopsis, five out of nine Pht1 members 
have been functionally characterized by genetic approaches. 
Earlier work reported that both AtPT1 and AtPT4 transporters 
contributed to Pi uptake in Arabidopsis thaliana under both 
low and high Pi levels (Shin et al., 2004). However, the double 
mutant pht1;1Δpht1;4Δ showed a more pronounced reduction 
in Pi acquisition relative to wild-type from both low and high 
Pi environments, suggesting redundant functions of these two 
Pi transporters (Shin et al., 2004). Nevertheless, Nagarajan et al. 
(2011) showed that the AtPT5 could mobilize Pi between the 
source and sink organs for Pi homeostasis in A. thaliana. Recently, 
it was demonstrated that AtPT8 and AtPT9 transporters act in 
a redundant manner during Pi uptake in Arabidopsis seedlings 
during Pi starvation (Remy et al., 2012). These results indicated the 
compensatory effects of root Pi uptake and shoot Pi accumulation 
between the four Arabidopsis Pi transporters AtPT1, AtPT4, 
AtPT8, and AtPT9 during Pi deficiency. In rice (Oryza sativa), a 
total of 13 members of the PHT1 family have been identified (Goff 
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et al., 2002), and 10 out of 13 genes had been well characterized 
in O. sativa by reverse genetics. The constitutively expressed 
OsPT1 mediates Pi translocation in shoots and also induces root 
hair growth in rice during Pi-repletion (Sun et al., 2012). Ai et al. 
(2009) demonstrated that OsPT2 was transcriptionally induced in 
roots under Pi deficiency and functioned in Pi translocation in rice, 
while OsPT3 mediated Pi uptake, translocation, and remobilization 
in rice under extremely low Pi regimes (Chang et al., 2019). OsPT4 
not only facilitated Pi mobilization but also played a pivotal role 
in embryo development (Zhang F et al., 2015), whereas OsPT6 
displayed a broad role in Pi acquisition and translocation throughout 
the plant (Ai et al., 2009). It was observed that the high-affinity Pi 
transporter gene OsPT8 was involved in Pi homeostasis in rice (Jia 
et al., 2011). However, Wang et al. (2014b) found that OsPT9 and 
OsPT10 redundantly functioned in Pi uptake under both low and 
high Pi conditions. OsPT11 and OsPT13 were exclusively induced 
in arbusculated cells and non-redundantly regulated the arbuscular 
mycorrhizal symbiosis in rice (Paszkowski et al., 2002; Yang et al., 
2012). The current understanding of the Pi transport activities of 
Pht1 transporters and their complex regulation in plants has been 
well documented and intensively summarized in multiple reviews 
in recent years (Poirier and Bucher, 2002; Bayle et al., 2011; Lin 
et al., 2013; Chen et al., 2015; Poirier and Jung, 2015; Gu et al., 2016).

For Zn2+ acquisition in roots, transmembrane transporters 
belonging to the ZIP (ZRT and IRT-like protein) family are 
considered to be the primary Zn2+ uptake transporters, which 
have been identified in both dicotyledons and monocotyledons 
(Eng et al., 1998; Maser et al., 2001; López et al., 2004; Palmer 
and Guerinot, 2009; Lee et al., 2010; Tiong et al., 2014). Some ZIP 
family transporters preferentially localize to the plasma membrane 
of root epidermal cells and deletion, or overexpression of these 
genes results in plants that accumulate less or more Zn2+ than do 
wild-type plants, respectively. This is indicative of their roles in Zn2+ 
acquisition at root–soil interface (Lee et al., 2010; Milner et al., 2012). 
In Arabidopsis, the plasma membrane-localized AtIRT1, belonging 
to the ZIP gene family, is involved in Zn2+ uptake at root epidermal 
cells (Henriques et al., 2002; Vert et al., 2002; Barberon et al., 2011). 
The well-characterized ZIP gene IRT3 is transcriptionally induced 
in response to Zn2+ deficiency and confers increased shoot Zn2+ 
accumulation when overexpressed in Arabidopsis (van de Mortel 
et  al., 2006; Sinclair and Krämer, 2012). Moreover, AtIRT3 is 
localized to the plasma membrane where it transports Zn2+ across 
the plasma membrane into the cell (Lin et al., 2009). In rice, the 
node-localized transporter, OsZIP3, is responsible for unloading 
Zn2+ from the xylem as well as Zn2+ distribution to the developing 
tissues (Sasaki et al., 2015), whereas the OsZIP4 located in the 
phloem cells acts as a Zn2+ transporter that may be responsible 
for Zn2+ translocation within plant (Ishimaru et al., 2005). Other 
Arabidopsis and rice ZIP family members involved in Zn2+ uptake 
and homeostasis are barely known, and therefore, further works 
need to determine their precise roles in plants.

Iron (Fe) from the soils enters the root cells through two 
distinct strategies (Figure 1), according to non-Graminacea 
plants (strategy I) and Graminacea plants (strategy II). In strategy 
I plants, the ferric iron (Fe3+) is reduced in the ferrous iron 
(Fe2+) prior to uptake into the root epidermal cells (Morrissey 

and Guerinot, 2009; Conte and Walker, 2011). For example, in 
Arabidopsis, under Fe deficiency, the FIT and bHLH TFs, bHLH38 
and bHLH39, are activated in roots and bind to the promoters of 
the iron-responsive genes. Subsequently, the induction of ferric 
reductase oxidase 2 (FRO2) and IRT1 activity is co-regulated in 
response to iron deficiency through the reduction-based strategy 
I for iron uptake (Figure 1A), while iron in rhizosphere is firstly 
solubilized by the activated H+-ATPase AHA2 and is then reduced 
from ferric (Fe3+) to ferrous (Fe2+) iron by the reductase FRO2 
(Ivanov et al., 2012). Fe2+ is then imported into the root cell by the 
metal transporter IRT1 (Vert et al., 2002).

In strategy II plants, the ferric iron (Fe3+) is first chelated by 
interaction with mugineic acids (MAs) (Figure 1B), and then 
these Fe3+–MA complexes are taken up into root cells by plasma 
membrane-localized transporter proteins (Curie et al., 2001). For 
example, in maize, under iron deficiency, MAs are synthesized in 
root cells by nicotianamine synthase (NAS), NA aminotransferase 
(NAAT), and deoxymugineic acid synthase (DMAS); and MAs 
are secreted into rhizosphere by transporter of MA family 
phytosiderophores1 (TOM1) (Li et al., 2018). Then, Fe3+–MAs 
are transported into root cells by the transmembrane transporter 
yellow stripe 1-like (YSL) (Curie et al., 2001).

After their uptake at the root surface, these minerals can be 
transported to the vacuoles. Alternatively, Pi, Zn2+, and iron can 
undergo symplastic journey towards the root xylem for movement 
upward to the aerial tissues. For Pi, phosphate exporters PHO1 and 
PHO1;H1 have been identified as important components in the 
long-distance transfer of Pi from roots to shoots (Poirier et al., 1991; 
Hamburger et al., 2002; Stefanovic et al., 2011; Kisko et al., 2015).

For Zn2+, two plasma membrane transporters AtHMA2 and 
AtHMA4 belonging to P1B-ATPase subfamily played key roles 
in Zn loading into the xylem and root-to-shoot translocation 
of Zn2+ in Arabidopsis (Hussain et al., 2004; Verret et al., 2004; 
Hanikenne et al., 2008; Wong et al., 2009). NA had been proposed 
to form stable complexes with Zn and to play an important role 
in Zn2+ movement in the xylem and phloem (Stephan and Scholz, 
1993). NAS genes were induced under Zn2+ deficiency (Wintz 
et al., 2003) and were functionally involved in the intercellular 
movement and long-distance transport of Zn2+ in A. thaliana 
(Takahashi et al., 2003). Overexpression of AhNAS2 gene in roots 
contributed to Zn2+ hyperaccumulation of Arabidopsis halleri 
(Deinlein et al., 2012). Interestingly, the constitutive expression 
of NAS genes from other plant species caused an increase in 
Zn2+ translocation and accumulation in polished rice grains 
(Masuda et al., 2009; Lee et al., 2011), illustrating the significant 
importance of the NAS proteins in the Zn2+ translocation in 
plants. The major facilitator superfamily (MFS) transporter 
(Pao et al., 1998), zinc-induced facilitator 1 (ZIF1), was shown 
to contribute to Zn2+ tolerance in Arabidopsis (Haydon and 
Cobbett, 2007), and tonoplast-localized ZIF1 proteins have 
been implicated in vacuolar Zn2+ sequestration (Arrivault et al., 
2006; Kawachi et al., 2009). Under Zn2+ deficiency, the vacuole-
stored Zn2+ was remobilized (Lanquar et al., 2004) to the cytosol. 
Natural resistance-associated macrophage protein (NRAMP) 
family members played roles in heavy metal transport in plants 
(Belouchi et al., 1995; Thomine et al., 2000). Arabidopsis NRAMP4 
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localized to the vacuolar membrane and associated with Zn2+ 
remobilization (Lanquar et  al., 2004). Whether other members 
of the NRAMP family could contribute to Zn2+ remobilization in 
plants remains unknown.

For Fe, many transporters and soluble proteins responsible for 
Fe long-distance transfer and distribution have been characterized 
in recent years (Morrissey and Guerinot, 2009; Kobayashi and 
Nishizawa, 2012). In Arabidopsis, the AtFRD3 protein, which 
is a member of the multidrug and toxic compound extrusion 
(MATE) family, functions during efflux of citrate into xylem and 
is responsible for Fe long-distance transport from root xylem to 
shoots (Green and Rogers, 2004; Durrett et al., 2007; Magalhaes 
et al., 2007), whereas the rice OsFRDL1, the ortholog of FRD3, 
maintains the Fe3+ levels in the xylem sap (Yokosho et al., 2009). 
YSL transporters play a significant role in the transportation and 
distribution of Fe through the phloem (Curie et al., 2009) and 
are also involved in loading Fe from old leaves to flowers and 
developing seeds (Kobayashi and Nishizawa, 2012). Moreover, in 
rice, OsYSL2 and OsYSL15 may coordinate the long-distance Fe 
transport from root to shoot to seed (Koike et al., 2004; Inoue 
et al., 2009). In addition to YSLs, the iron transport protein 
ITP, which is an Fe-binding dehydrin in the phloem sap, helps 

promote Fe3+ mobility within the phloem of Ricinus communis 
(Kruger et al., 2002). Plant NAS genes are also required for long-
distance Fe transport. For instance, in Arabidopsis, AtNAS2 
and AtNAS4 may be involved in Fe translocation from roots 
to shoots (Klatte et al., 2009). Interestingly, the rice OsIRT1 
are highly expressed in the companion cells of phloem under 
Fe deficiency (Ishimaru et al., 2006), and it is possible that the 
corresponding encoding protein OsIRT1 could transport Fe2+ 
into the phloem prior to being chelated by NA. More recently, 
the involvement of OsPHO1;1 in the Fe loading into the root 
xylem has been reported, where it may affect overaccumulation 
of Fe in roots of the Ospho1;1 mutant under Pi and Zn deficiency 
(Saenchai et al., 2016).

Nutrition Sensing and Signaling in Plants
Considerable advances have been made in studying the molecular 
mechanisms underlying Pi, Zn, and Fe sensing and signaling in 
plants in recent decades (Abel et al., 2002; Chiou and Lin, 2011; 
Assuncão et al., 2013; Kobayashi and Nishizawa, 2014; Zhang et al., 
2014). Nevertheless, the cross-talks between these signaling 
pathways integrating the tripartite interaction among Pi, Zn, and 

FIGURE 1 | Diagrams illustrating the iron deficiency response in Arabidopsis and Graminacea plants. (A) Under Fe deficiency, in Arabidopsis roots, the FIT and bHLH 
transcription factors, such as bHLH38 and bHLH39 in Arabidopsis, are activated by an unknown PM iron sensor in order to bind to the promoters of the iron-responsive 
genes. Subsequently, the induction of FRO2 and IRT1 activity is co-regulated in response to iron deficiency through the reduction-based strategy I for iron uptake. Iron is 
firstly reduced from ferric (Fe3+) to ferrous (Fe2+) iron by the reductase FRO2. Fe2+ is then imported into the root cell by the metal transporter IRT1. (B) Under Fe deficiency, 
the FIT and bHLH transcription factors are activated to induce the strategy II Fe uptake system in Graminacea plant roots. Fe3+–MAs are transported into the root cell by 
the YSL. PM, plasma membrane; YSL, yellow stripe like; IRT1, iron-regulated transporter 1. The arrows refer to the positive interactions, while the question marks indicate 
the unknown iron sensor. 
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Fe homeostasis remains poorly understood (Briat et  al., 2015; 
Saenchai et al., 2016). How Pi homeostasis is regulated in plants has 
already been documented in numerous studies, and plant Pi sensing 
seems to be conserved in flowering plants, with several signaling 
networks having been proposed (Rouached et al., 2010; Wang 
et al., 2014a). The defined mechanism is the systemic Pi signaling 
cascade, which contains the MYB TF PHR1, the miRNA399, and 
the ubiquitin E2 conjugase PHO2 components (Bari et al., 2006; 
Pant et al., 2008). Generally, the well-characterized PHR1–PHO2–
miRNA399 signaling pathway controls the expression of most Pi 
starvation-induced (PSI) genes in plants (Figure 2). In response to 
low Pi, miRNA399 is transcriptionally induced by PHR1 activity 
(Figure 2A) and then mediates shoot-to-root Pi signaling via the 
phloem, where it targets the mRNA of PHO2 (Lin et al., 2008; Pant 
et al., 2008). The inhibition of PHO2 leads to an increase in the 
PHR1-dependent expression of root Pi transporters that include 
the members of PHT1 and PHO1, and hence an increase in Pi 
acquisition in roots and Pi translocation to shoots (Bari et  al., 
2006; Lin et al., 2008). Under high Pi conditions, miRNA399 is 
down-regulated due to the inhibition of PHR1 activity (Figure 
2B), and the PHO2–miR399 pathway in roots is dysfunctional 
through target mimicry between miR399 and PHR1-dependent 
IPS1 (Franco et al., 2007). Target genes of PHR1 are also reduced 
at transcriptional level, and PHO2 protein is activated to facilitate 
the degradation of Pi transporters.

Recently, the SPX domain-containing proteins have been 
proposed to function as the intracellular Pi sensors for sensing 
cellular Pi levels and controlling Pi homeostasis in both 
monocotyledonous and dicotyledonous plants. In Arabidopsis, the 
PHR1-dependent AtSPX1 gene is transcriptionally induced under 
Pi deficiency (Figure 2A), while the AtSPX1 protein can interact 
with the AtPHR1 at the protein level under Pi sufficiency, inhibiting 
AtPHR1 binding to P1BS cis-element (GNATATNC) (Puga et al., 
2014). Similarly, in rice, OsSPX1 and OsSPX2 inhibit Pi deficiency 
response through interaction with OsPHR2 in a Pi-dependent 
manner (Wang et al., 2014a), involvement of SPX proteins in the 
Pi sensing, and signaling mechanisms in plants (Figure 2B). Very 
recently, it has demonstrated that both the diphosphoinositol 
pentakisphosphate kinases (PPIP5K) VIH1 and VIH2 function 
redundantly to synthesize the inositol pyrophosphate (InsP8) (see 
Figure 2B), and InsP8 can directly bind to the intracellular Pi sensor 
SPX1 to control Pi homeostasis in Arabidopsis during Pi repletion 
(Dong et al., 2019). This study revealed that InsP8 acts as an 
intracellular phosphate signal in plants. The next major challenge 
in this field is to unmask the extracellular Pi sensor sensing.

In plants, how Zn-deficient signal is sensed, relayed, and 
integrated into a signal response remains elusive. Nevertheless, a 
first working model of Zn deficiency signaling has been proposed 
by Assuncão et al. (2013). Two bZIP TFs, bZIP19/23, have been 
identified in Zn homeostasis via the regulation of target genes, 

FIGURE 2 | Schematic representation of the phosphate (Pi) signaling pathway essential for plant adaptation to low Pi concentration. Under Pi deficiency (A), a set of 
phosphate starvation-induced (PSI) genes are transcriptionally activated through binding of the transcription factor PHOSPHATE STARVATION RESPONSE 1 (PHR1) 
to the cis-element (P1BS) present in the promoter region of the PSI genes, and subsequently PHT1 and PHO1 mRNAs are induced to be necessary for Pi uptake 
and translocation in roots. The SPX1/2 and miR399 genes are also activated by PHR1 during Pi starvation. miR399 inhibits the ubiquitin E2 conjugase PHO2 in order 
to maintain the PHT1 protein activity at the PM. It could be proposed that the Pi signaling is activated for sensing external low Pi through an unknown PM Pi sensor, 
which induces the low Pi responsive genes PHT1, PHO1, SPX1/2, and miR399, whereas the PHO2 is repressed, thus activating the Pi regulatory pathway to modulate 
Pi uptake and homeostasis. Under high Pi concentration (B), the Pi signaling pathway is repressed, the diphosphoinositol pentakisphosphate kinases VIH1 and VIH2 
function redundantly to synthesize InsP8, and InsP8 can directly bind to the SPX domain of SPX1 and is essential for the interaction between SPX1/2 and PHR1. This 
interaction leads to the inhibition of PHR1 binding to the cis-element P1BS present in the promoter region of the PSI genes. Thus, the PSI genes, including PHT1, 
PHO1, SPX1/2, and miR399, are transcriptionally repressed, while the PHO2 is activated to be responsible of the ubiquitination of PHT1 and PHO1 proteins to promote 
Pi transporters degradation. IPS1 encodes a non-coding RNA and enables post-transcriptional regulation under high Pi through RNA mimicry. IPS1-miR399 matching 
thus results in the inhibition of the miR399 activity to target PHO2. It is also predicted that there may exist an unknown PM Pi sensor responsible for high Pi sensing. PM, 
plasma membrane. The arrows and flat-ended lines refer to the positive and negative interactions, respectively. The dotted arrows represent the repression processes.
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including the members of ZIP family (Guerinot, 2000; Assuncão 
et al., 2010a) for root Zn transport and NAS2/4 for NA synthesis 
(Assuncão et al., 2010b), since the shoots appear to the first organ 
to sense the Zn deficiency and then transmit the signal to the 
roots where these ZIP transporters are activated (Assuncão et al., 
2013). This observation has led to the proposal of the existence 
of unknown long-distance Zn deficiency signaling molecules. 
Additionally, a ZDRE element (RTGTCGACAY) is present in the 
promoter regions of both the ZIP and NAS genes in response to 
Zn deficiency (Assuncão et al., 2010; Assuncão et al., 2010b).

How the Fe status of plant is sensed and how this signal is 
transmitted to the transcriptional networks for Fe acquisition 
and response are currently areas of great interest in the field 
of Fe homeostasis in plants (Briat et al., 2015). A major goal is 
to find a master Fe sensor controlling Fe homeostasis in plants 
(Hindt and Guerinot, 2012). Some degree of progress towards 
these aims has been achieved by exploiting members of the basic 
helix-loop-helix (bHLH) TF family (Hindt and Guerinot, 2012; 
Ivanov et al., 2012; Kobayashi and Nishizawa, 2012; Moran et 
al., 2014). Also, hemerythrin motif-containing RING and zinc-
finger proteins HRZ1/2 and its ortholog E3 ligase BTS that have 
been recently characterized in both the monocotyledonous and 
dicotyledonous plants, respectively (Kobayashi and Nishizawa, 
2014). The tomato FIT is referred as to FER (Ling et al., 2002; 
Brumbarova and Bauer, 2005 ), and FER mutant fit-1 repressed 
about 50% of Fe deficiency-induced genes in roots (Colangelo 
and Guerinot, 2004). A second PYE bHLH protein is exclusively 
induced in roots under Fe deficiency. The pye-1 mutant line is 
sensitive to low Fe. In pye-1 mutant, three Fe transport-related 
genes, NAS4, FRO3, and ZIF1, are strongly induced under Fe 
deficiency and are identified as the targets of PYE (Long et al., 
2010). In addition, Arabidopsis bHLH104 and ILR3 play crucial 
roles in the regulation of Fe deficiency responses through 
targeting other bHLH genes and PYE expression (Zhang et 
al., 2015). The overexpression lines of rice iron-related TF 2 
(OsIRO2), ortholog of Arabidopsis bHLH38/39, showed both 
enhanced Fe uptake and transportation to seeds (Ogo et al., 
2007; Ogo et al., 2011). Furthermore, a PYE homologous protein 
OsIRO3 is induced under Fe deficiency, whereas it is a negative 
regulator of Fe deficiency responses due to the hypersensitivity 
to Fe deficiency and the inhibition of genes up-regulated by 
Fe deficiency (Zheng et al., 2010). Recently, rice bHLH133 
was identified to play an important role in the regulation of Fe 
translocation from roots to shoots (Wang et al., 2013). On the 
other hand, BTS and its orthologs HRZ1/2 could negatively 
regulate Fe acquisition, accumulation of Fe, and tolerance to Fe 
deficiency in rice HRZ1/2 mutants (Kobayashi et al., 2013).

Interactions Between P, Zn, and Fe 
Homeostasis in Plants
Cross-talks between macronutrient and micronutrients in plants 
have long been recognized, and these interactions are understood 
to some extent. Hence, we here emphasize the interactions 
between Pi, Zn, and iron (Fe) homeostasis at the physiological 
and molecular levels. The interaction between two nutrients 
homeostasis has been observed in crop species.

The interaction between Pi and Zn homeostasis in plants is 
relatively well understood. Pi deficiency results in overaccumulation 
of Zn in shoots, and inversely, Zn deficiency leads to 
overaccumulation of Pi in the aerial part of plants (Reed, 1946; 
Cakmak and Marschner, 1986; Huang et al., 2000; Bouain et  al., 
2014a; Khan et al., 2014; Ova et al., 2015). In addition to the well-
known antagonistic effect of Pi and Zn nutrition in plants, there is 
some evidence of similar physiological interactions between Pi and 
Fe nutrition (Zheng et al., 2009), and between Zn and Fe nutrition 
(Haydon et al., 2012) as well. Pi acquisition in both roots and shoots 
is promoted under Fe deficiency, and conversely, Pi deficiency 
significantly increases Fe availability within the plants (Misson 
et al., 2005; Hirsch et al., 2006; Ward et al., 2008; Zheng et al., 2009; 
Briat et al., 2015). Fe deficiency leads to an accumulation of Zn, 
while an excess Zn causes physiological Fe deficiency (Haydon 
et al., 2012; Shanmugam et al., 2012; Briat et al., 2015).

In plants, the intricate cross-talks between the homeostasis 
of macronutrients and micronutrients have recently become 
clear (Briat et al., 2015), and evidence of a complex tripartite 
interaction between Pi, Fe, and Zn nutrients for maintenance 
of Pi homeostasis in Arabidopsis has been described (Rai et al., 
2015). In addition, Saenchai et al. (2016) have also provided 
evidence that iron transport in rice is regulated by integration 
of Pi and Zn deficiencies, highlighting the presence of tripartite 
cross-talk between Pi, Zn, and Fe homeostasis for better plant 
survival and fitness (Figure 3).

Molecular Evidence for Pi, Zn, and Fe 
Interactions in Plants
Although the cross-talks between Pi, Zn, and Fe homeostasis 
have been reported in many plant species (Briat et al., 2015), the 
molecular basis and biological significance of these nutritional 
interactions remain thus far largely unknown. It can be first 
achieved through transcriptomic and genetic analyses of Pi-, Zn-, 
or Fe-deficient plants (Hammond et al., 2003; Wu et al., 2003; 
Misson et al., 2005; van de Mortel et al., 2006; Zheng et al., 2009; 
Bustos et al., 2010; Thibaud et al., 2010; Rouached et al., 2011b; 
Pineau et al., 2012; Khan et al., 2014; Moran et al., 2014; Rai et al., 
2015; Saenchai et al., 2016).

Zn deficiency activates the transcription of numerous Pi-related 
genes (van de Mortel et al., 2006), while Pi deficiency up-regulates 
the expression of genes involved in Zn and Fe homeostasis 
(Misson et al., 2005; Bustos et al., 2010). More recently, several 
reports have proposed that PHR1, PHO1 and PHO1;H3 are 
coordinatively involved in the homeostasis between Pi and Zn in 
Arabidopsis (Bouain et al., 2014b; Khan et al., 2014; Kisko et al., 
2015), reinforcing the interaction between Pi and Zn signaling at 
the molecular level (Figure 3).

In the absence of Pi, plants induce the expression of genes in 
response to sufficient Fe, whereas Pi-starvation plants reduce the 
transcripts of genes in response to Fe deficiency (Misson et al., 
2005; Müller et al., 2007; Thibaud et al., 2010). Reciprocally, Fe 
deficiency alters the transcription of Pi-related genes (Zheng 
et al., 2009; Moran et al., 2014). Genome-wide analysis further 
reveals 547 and 579 overlapping genes regulated by both Pi and 
Fe deficiency in rice and Arabidopsis roots, respectively (Zheng 
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et al., 2009; Li and Lan, 2015). In these cases, the expression of 
FER1 gene encoding Fe storage protein ferritin is in response to Pi 
starvation mediating by PHR1 (Figure 3) and Fe excess (Petit et al., 
2001; Bournier et al., 2013), and NAS3 and YSL8 genes responsible 
for Fe homeostasis are also induced upon Pi starvation in plants 
(Bustos et al., 2010). However, the IRT1/2, FRO3/6, and NAS1 
genes are repressed in response to Fe deficiency in Pi-deficient 
plants. Recently, it has reported that the Arabidopsis phr1 × phl1 
double mutant influenced Fe distribution and Fe-related gene 
expression (Bournier et al., 2013; Briat et al., 2015), suggesting 
that PHR1 and PHL1 may integrate Fe and Pi nutrient signals. 
The high-affinity copper transport protein COPT2 acts as a key 
player in the interaction between Pi and Fe deficiency signaling in 
Arabidopsis (Perea et al., 2013). COPT2 may play a dual role under 
Fe deficiency. It participates in copper uptake and distribution in 
Fe-limited roots to minimize iron loss. On the other hand, loss of 
COPT2 function exacerbates Pi starvation responses in Arabidopsis 
plants. These findings open new approaches to mitigate iron 
deficiency in crop species.

For Zn and Fe cross-talk, transcriptomic analysis indicates that 
many Zn uptake- and homeostasis-related genes are up-regulated 
in Fe-deficient soybean root and leaf (Moran et al., 2014), including 
those encoding six members of the ZIP gene family, IRT1, the NAS2, 
and NRAMP3. Similarly, the Fe deficiency responsive AtIRT1 gene 
(Figure 3) identified could be a key player in the coordination 

between Zn- and Fe-deficient signaling in Arabidopsis (Connolly 
et al., 2002; Vert et al., 2002; Briat et al., 2015). Furthermore, the 
vacuolar membrane protein encoding genes MTP3, HMA3, and 
ZIF essential for Zn tolerance are up-regulated in response to Fe 
deficiency or Zn excess (Becher et al., 2003; Arrivault et al., 2006; 
van de Mortel et al., 2006; Haydon and Cobbett, 2007; Haydon et al., 
2012). A recent study has confirmed that the MATE transporter 
gene FRD3 is involved in cross-talk between Zn and Fe homeostasis 
for the tolerance to Zn excess in Arabidopsis (Pineau et al., 2012), 
highlighting the complexity of cross-talk between these signaling 
pathways to regulate Fe deficiency and Zn excess.

Several recent reports have started to discuss the complex 
tripartite cross-talks among Pi, Zn, and Fe (Briat et al., 2015; Rai 
et al., 2015). Pi nutrition is affected by the interaction between Zn 
and Fe in plants. The MYB TF PHR1 apparently acts as a common 
regulator of Pi, Zn, and Fe homeostasis (Figure 3) and functions as 
a general integrator of multiple nutrition signals (Briat et al., 2015). 
Firstly, PHR1 was defined as a key regulator for the expression of 
Pi transporters PHT1 and PHO1;H1 through PHR1–miR399–
PHO2 pathway. Secondly, PHR1 seems to be a regulator of the ZIP 
transporters ZIP2 and ZIP4 for Zn mobilization. In addition, the 
transcriptional activation of some genes involved in maintaining Fe 
homeostasis is also shown to be PHR1-dependent manner, including 
the FER1 gene encoding the Fe storage protein ferritin, and the 
PHO1;1 gene encoding Pi transporter. Saenchai et al. (2016) have 

FIGURE 3 | Schematic representation of Pi, Zn, and Fe homeostasis interactions in plants. The cross-talks between phosphate (Pi), zinc (Zn), and iron (Fe) nutrients 
are shown at the physiological level by two-way arrows. For the molecular bases of the Pi–Zn–Fe cross-talks, the PHR1 acts as a potential integrator of Pi, Zn, and Fe 
nutrient signals in plants. Firstly, the PHR1 was defined as a key regulator of the expression of Pi transporters PHT1 and PHO1; H1 through the PHR1–miR399–PHO2 
pathway (see Figure 2). Secondly, ZIP2 and ZIP4 genes, belonging to plant ZIP gene family, are transcriptionally induced via the activated PHR1 transcription factor 
binding to the P1BS (GNATATNC) sequences found in the promoter regions of their genes. Under Zn sufficiency, the bZIP19/23 transcription factors are inactivated, 
and bZIP19/23-mediated Zn regulatory pathways repress the plant ZIP gene family transporters in order to regulate Zn homeostasis. On the other hand, PHO1;H3, 
which is transcriptionally down-regulated by high Zn supply, and the PHR1 and PHO1 proteins contribute to the Pi–Zn nutrient homeostasis cross-talk. In addition, the 
transcriptional activation of some genes involved in maintaining Fe homeostasis is also shown to be PHR1-dependent manner, including the FER1 gene encoding the 
Fe storage protein ferritin, and the PHO1;1 gene encoding Pi transporter. The arrows and flat-ended lines indicate the positive and negative interactions, respectively.
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reported the OsPHO1;1 is involved in the coordination between 
Fe transport and Pi–Zn deficiency signaling in rice. Nevertheless, 
fundamental aspects regulating the cross-talk between Pi, Zn, 
and Fe deficiency signaling and the regulation of nutritional 
homeostasis in plants remain to be discovered.

Pi and Zn Interactions in Mycorrhizal 
Plants
In the last several decades, the cross-talk between Pi and Zn 
nutrient homeostasis has been well recognized at the physiological 
level in many mycorrhizal plants (Reed, 1946; Cakmak and 
Marschner, 1986; Huang et al., 2000; Watts-Williams et al., 2014; 
Watts-Williams et al., 2017; Nafady and Elgharably, 2018). High 
Pi treatment substantially decreased Zn concentration in wheat 
shoots and grain when these plants were grown in native soils 
(Ova et al., 2015), and these data also revealed that the negative 
effect of increasing Pi application on root Zn accumulation and 
shoot Zn distribution in wheat is dependent on mycorrhization. 
Furthermore, Zhang et al. (2016) proposed that Pi treatment 
decreased the Zn concentration in wheat, and they also found 
that Zn concentration in roots and shoots of maize decreased 
with increasing Pi supply, and root Zn accumulation exhibits the 
Pi-induced Zn deficiency during mycorrhization (Zhang et  al., 
2017), because Pi treatment inhibits colonization resulting 
in impaired mycorrhizal uptake pathway and then affects the 
Zn uptake and tissue Zn status of host plants (Loneragan and 
Webb, 1993; Marschner, 2012; Watts-Williams et al., 2013). The 
negative relationship between Pi application and the grain Zn 
status was also confirmed in field studies (Ryan et al., 2008; Zhang 
et al., 2012). Conversely, under AM conditions, Pi content in 
shoots of Medicago truncatula was greatly reduced when excess 
Zn was applied in soil (Watts-Williams et al., 2017). Interestingly, 
an experiment with lettuce plants grown under excessive Zn 
levels showed that Zn content in mycorrhizal lettuce was greatly 
reduced when the nutrient solution contained low Pi concentration 
(Konieczny and Kowalska, 2017). This is indicative of the “protective 
effect” of arbuscular mycorrhiza, where host plants acquire much 
less Zn from the Zn excess soils (Chen et al., 2003; Watts-Williams 
et al., 2013; Christie et al., 2004). Altogether, the interaction between 
Pi–Zn nutrients during AM symbiosis can be concluded as follows: 
Crops grown with sufficient Pi decrease Zn in the roots and/or 
shoots of crops, and inversely, excess Zn reduces Pi in the shoots. 
However, the underlying molecular mechanisms of the Pi–Zn 
interaction in mycorrhizal symbiosis are still unclear, and only 
a few reports discuss the molecular basis of these interactions 
(Cakmak and Marschner, 1986; Zhu et al., 2001; Watts-
Williams et  al., 2013; Watts-Williams et al., 2017). Future 
studies are required to elucidate the molecular basis of the 
interactions between Pi and Zn nutrient homeostasis during  
AM symbiosis.

Pi and Fe Interactions During 
AM Symbiosis
The antagonistic physiological and molecular interactions between 
Pi and Fe nutrition have been established in model systems such 

as Arabidopsis and rice (Hirsch et al., 2006; Ward et al., 2008; 
Zheng et al., 2009; Jain et al., 2013; Rai et al., 2015), but very little 
information is available on their interactions in mycorrhizal plants.

A couple of studies performed in some edible crop species 
uncovered the existence of a negative relationship between Pi 
and Fe uptake in mycorrhizal plants (Azcón et al., 2003; Ferrol 
et al., 2016; Hoseinzade et al., 2016; Nafady and Elgharably, 2018). 
Under low Pi supply, the acquisition of Fe increases in mycorrhizal 
plants (Watts-Williams and Cavagnaro, 2014; Ferrol et al., 2016), 
and conversely, host plants decrease the Fe accumulation under 
high Pi conditions during AM symbiosis. Interestingly, Fe content 
of the straw was greatly increased with low Pi supply during AM 
symbiosis (Hoseinzade et al., 2016), indicating that mycorrhized 
rice has reduced Fe nutrient transported to shoots at high Pi status. 
Very recently, Nafady and Elgharably (2018) reported a similar 
negative effect of Fe content when maize was treatment with Pi 
fertilizers. These studies have demonstrated the negative effects 
of high Pi application in soil on Fe accumulation in mycorrhizal 
plants (Azcón et al., 2003). Further, the studies have showed the 
effect of high Pi application on the uptake and transport of Fe 
nutrition in both rice and maize during AM symbiosis, which 
could result in the appearance of iron deficiency symptoms under 
low Fe conditions. However, the effect of Fe treatments on Pi 
nutrition has not been investigated so far during mycorrhization. 
The molecular bases of the cross-talk between Pi and Fe in 
mycorrhizal plants need to be further explored.

Zn and Fe Interactions in Mycorrhizal 
Plants 
Zinc interacts with some micronutrients such as Fe and copper 
(Cu) in plants (Poshtmasari et al., 2008; Jain et al., 2013). The 
cross-talk between the effects of Zn rates on Fe accumulation and 
translocation has been partially studied in several mycorrhizal 
plants. Zinc treatment resulted in Fe accumulation in soybean 
roots under arbuscular mycorrhizal conditions but inhibited Fe 
translocation from roots to shoots (Ibiang et al., 2017), indicating 
the cross-talk in Zn and Fe status within the whole soybean 
during AM symbiosis. However, excess Zn increased root to fruit 
Fe translocation during AM symbiosis in tomato plants (Ibiang 
et al., 2018), whereas excess Zn could also lead to a decrease in 
Fe concentration in mycorrhizal roots. These studies performed 
under AM conditions have revealed that the physiological 
antagonistic interaction between Zn and Fe nutrients occurred 
in roots or shoots depending on the host-plant species. Zn status 
may therefore affect Fe uptake and transport mechanisms in 
mycorrhizal plants. These studies have indicated the effect of Zn 
treatment on the accumulation and homeostasis of Fe nutrition 
in mycorrhizal plants. However, the effect of Fe availability on 
Zn nutrition in mycorrhizal plants has not been studied yet, and 
little information is available on this issue. From the nutritional 
aspect, there exists a competition between Zn and Fe elements; 
host plants require coordinate Zn–Fe homeostasis to avoid ion 
imbalances. Under excess Zn, mycorrhizal plants will decrease 
the overaccumulation of Fe in shoots prone to Fe starvation. 
Few studies have identified the potential molecular components 
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involved, and no key genes have been characterized so far acting 
in the phenomenon. Therefore, the molecular bases of the Zn–Fe 
interactions in mycorrhizal plants remain largely unknown, and 
the evidence for the molecular basis of the Zn–Fe co-regulation 
that mediates the adaptation of a mycorrhizal plant to Zn and Fe 
availability should be provided in future studies. In particular, the 
potential genes are involved in the cross-talk between the Zn and 
Fe homeostasis during AM symbiosis. For instance, the expression 
of the zinc- and iron-regulated transporter-like proteins (ZRT, 
IRT-like proteins, referred as to ZIP family) encoding genes in 
roots and shoots is induced at the transcriptional level by Zn 
and/or Fe availability (Pedas et al., 2009; Li et al., 2013; Fu et al., 
2017), indicating that these ZIP genes may control the uptake and 
homeostasis of Zn and Fe in mycorrhizal plant species (Grotz 
et al., 1998; Hall and Williams, 2003).

Cross-Talk Between Pi–Zn–Fe  
Nutrient Homeostasis in Mycorrhizal 
Plants
The above studies provide new insights on genes involved in the 
potential regulation of nutrient homeostasis in conditions when an 
individual element is limiting. However, recent research indicated 
that plant survival is affected by a complex cross-talk between Pi, 
Zn, and Fe homeostasis (Briat et al., 2015). Interestingly, Saenchai 
et al. (2016) reported that OsPHO1;1 was transcriptionally 
up-regulated in response to Pi–Zn–Fe combined stresses and 
involved in Fe transport and integrative Pi–Zn deficiency 
signaling in rice, providing a genetic basis for tripartite Pi–Zn–Fe 
signaling cross-talks in plants. However, how the members of the 
plant PHO1-type Pi transporter family function as key linkers in 
the cross-talks between Pi–Zn–Fe signaling during AM symbiosis 
has not been elucidated. Although the cross-talks between these 
nutrients have been touched upon in some model plant studies 
(Misson et al., 2005; Zheng et al., 2009; Saenchai et al., 2016), the 
molecular mechanisms of the tripartite interactions during AM 
symbiosis are still lacking.

CONCLUSION

Over the last seven decades, large numbers of studies have focused 
on how to interpret the potential mechanisms for phosphorus 
uptake and signaling at molecular and cellular levels in Arabidopsis 
or rice. The combination of molecular and cellular biology, 
multiple “omics” approaches, and reverse genetics has resulted 
in the characterization of many important genes that control Pi 
accumulation and homeostasis in Arabidopsis and rice in response 

to Pi limitation. However, Pi is well known to interact with some 
micronutrients such as Zn and Fe in plants (Bouain et al., 2014a; 
Briat et al., 2015). Future research will need to undertake an 
integrative study to uncover the defined mechanisms by which 
plants coordinate the Pi, Zn, and Fe deficiency signaling in order 
to enhance their fitness during multiple Pi, Zn, and Fe deficiency 
stresses. In such a context, the principal aim of this review is to 
broaden the current understanding of the cross-talk between 
the Pi and Zn, Pi and Fe, Zn and Fe, and Pi–Zn–Fe homeostasis 
in nonmycorrhizal and mycorrhizal plants. In addition, the 
identification of important genes regulating the interactions 
between Pi, Zn, and/or Fe transport and signaling in plants, 
particularly in crop species, will help breeders develop new strategies 
for nutrient management, and taking into account the interactions 
between plants and their AM fungal symbionts. In conclusion, the 
development of the integrative study of cross-talk between Pi, Zn, 
and Fe signaling pathway will be of great interest and essential for 
sustainable agricultural development all around the world.
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