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Ammonium (NH4
+ ) alleviates manganese (Mn) toxicity in various plant species, but the 

underlying mechanisms are still unclear. In this study, we compared the effects of NH4
+  

and nitrate (NO3
− ) on rice (Oryza sativa L.) growth, accumulation and distribution of Mn, 

accumulation of iron (Fe), zinc (Zn) and copper (Cu), root cell wall components, and 
expression of Mn and Fe transporter genes. After rice seedlings were grown in non-
pH-buffered nutrient solution for 2 days, the pH of growth medium changed from an 
initial value of 4.5 to 3.5 and to 5.5 in the presence of NH4

+ and in the presence of  
NO3

−, respectively. Compared with NO3
−, ammonium decreased nutrient-solution pH and 

alleviated Mn toxicity and accumulation in rice under non-pH-buffered conditions. This 
alleviation disappeared when 5 mM Homo-PIPES pH buffer was added. Regardless of N 
form, roots, shoots, root cell sap, and xylem sap accumulated much lower Mn at pH 3.5 
than at pH 5.5, whereas Mn distribution in different leaves and Mn accumulation in root 
cell walls was affected by neither N form nor pH. Ammonium decreased the expression 
of the Mn influx transporter gene OsNramp5 in roots under non-pH-buffered conditions, 
but not under pH-buffered ones. OsNramp5 expression was down-regulated at pH 3.5 
compared with pH 5.5. Another efflux Mn transporter gene, OsMTP9, was not regulated 
by either N form or pH. High pH (5.5) enhanced the expression of the Fe transporter gene 
OsIRT1 and increased the accumulation of Zn but not Fe or Cu in shoots compared with pH 
3.5. Taken together, our results indicate that NH4

+ alleviates Mn toxicity and accumulation 
in rice through the down-regulatory effects of rhizosphere acidification on the Mn influx 
transporter gene OsNramp5. In addition, the up-regulation of OsIRT1 expression may 
contribute to the increased Zn uptake by rice at high pH of nutrient solution.
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INTRODUCTION

Manganese (Mn), an essential microelement required by plants, 
is involved in the regulation of several metabolic processes, such 
as photosynthesis, respiration, and antioxidant activity. As a 
cofactor, Mn plays an important role in activating approximately 
35 different enzymes (Broadley et al., 2012). Excess Mn can be 
toxic to plant growth, however, especially in acid soils where 
Mn availability is increased because of soil acidification. Mn 
toxicity may be the second most important limiting factor, 
after aluminum (Al) toxicity, for plants in acid soils (Foy, 1984; 
Millaleo et al., 2010). Approximately 30% of the world’s ice-free 
land and 50% of arable and potentially arable lands are composed 
of acid soils (Von Uexküll and Mutert, 1995). Low pH (<5.5) and 
reducing-soil conditions caused by excess water or poor drainage 
can greatly increase the concentration of soluble Mn2+ in soils, 
resulting in Mn toxicity to plants (Chesworth, 1991; Watmough 
et al., 2007; Huang et al., 2015). Depending on plant species, 
the threshold of Mn accumulation before Mn toxicity occurs 
generally varies from 200 to 3,500 mg Mn·kg−1 DW (Krämer, 
2010), but some Mn hyperaccumulators, such as Proteaceae, 
Phytolacca, and Gossia species, can accumulate more than 10,000 
mg Mn·kg−1 DW in their aerial parts without detrimental effects 
(Brooks et al., 1981; Xue et al., 2004; Fernando et al., 2009; Liu 
et al., 2010).

Nitrogen (N) is an essential macroelement required by plants 
and is taken up by roots in two main forms, ammonium (NH4

+) 
and nitrate (NO3

−) (Li et al., 2013). In acid soils, the predominant 
inorganic form of N is NH4

+ because such soils have a weak 
nitrification capacity due to low pH and the application of NH4

+

-N fertilizers (De Boer and Kowalchuk, 2001; Che et al., 2015). 
Previous studies have found that NH4

+ alleviates Mn toxicity  
and/or decreases the concentration of Mn compared with NO3

−  
in barley (Hordeum vulgare) (Arnon, 1937; Vlamis and Williams, 
1962), Holcus lanatus and Bromus erectus (McGrath and Rorison, 
1982), muskmelon (Cucumis melo L.) (Elamin and Wilcox, 1986), 
marigold (Tagetes erects L. and T. patula L.) (Reddy and Mills, 
1991), and Norway spruce (Picea abies L. Karst.) (Langheinrich 
et  al., 1992). Although the alleviatory effects of NH4

+ on Mn 
toxicity may be attributed to the antagonism of NH4

+ on Mn2+ 
uptake (McGrath and Rorison, 1982), the exact mechanisms 
are unclear.

Rice (Oryza sativa L.) is an important staple food crop 
consumed by nearly half of the world’s population (Muthayya 
et al., 2014). Approximately 13% of global rice production 
occurs in acid soils (Von Uexküll and Mutert, 1995). Rice has 
traditionally been cultivated in anaerobic paddy soils, where 
the predominant N source is NH4

+-N. Rice plants are thus 
considered to prefer NH4

+ over NO3
− (Zhao et al., 2014; Zhao 

and Shen, 2018). Rice is also one of the most Mn-tolerant crops 
(Lidon, 2001; Chen et al., 2013). Compared with other grasses, 
rice can accumulate 5–10 times more leaf Mn while showing 
milder symptoms of Mn toxicity (Foy et al., 1978). Rice can 
tolerate up to 5 g Mn·kg−1 dry weight in the leaves without 
showing any toxic symptoms, whereas barley suffers from Mn 
toxicity at accumulations of only 150 mg Mn·kg−1 dry weight 
(Vlamis and Williams, 1964). Despite these observations, 

relevant studies on the effects of the form of N on Mn toxicity 
in rice and the underlying mechanisms are still lacking. In 
the present study, we therefore investigated the effect of NH4

+ 
and NO3

− on Mn toxicity in rice and further explored potential 
physiological and molecular mechanisms.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
We used O. sativa ssp. japonica “Nipponbare” in this study. Seeds 
were soaked in deionized water at 30°C for 2 days in the dark and 
then transferred to a net floating on a 0.5mM CaCl2 solution (pH 
4.5) in a black plastic container. After 7 days, uniform seedlings 
were transferred to a 3.2-L black pot containing nutrient solution 
and cultivated in a controlled environmental growth chamber 
under a 14-h/10-h (30°C/25°C) day–night cycle and a relative 
humidity of 65% for 7 or 19 days. The nutrient solution was a 
modified full-strength Kimura B solution (pH 4.5) containing 
0.5 mM NH4NO3, 0.18 mM KH2PO4, 0.55 mM KCl, 0.54 mM 
MgSO4·7H2O, 0.36 mM CaCl2·2H2O, 0.5 µM MnCl2·4H2O, 3 µM  
H3BO3, 1 µM NaMoO4·2H2O, 0.4 µM ZnSO4·7H2O, 0.2 µM 
CuSO4·5H2O, and 20 µM Fe(III)-EDTA. The solution was 
renewed every 2 days. Rice seedlings (14 or 26 days old) 
were treated with 1 mM NH4

+  or 1 mM NO3
− at different Mn 

concentrations and pHs under non-pH-buffered or pH-buffered 
conditions as described below. NH4

+ and NO3
− were supplied as 

NH4Cl and NaNO3, respectively. Manganese was supplied as 
MnCl2·4H2O. All experiments were conducted with three to four 
biological replicates.

Experimental Treatments Under Non-pH-
Buffered Conditions
Rice seedlings (14 days old) were grown in a modified full-
strength Kimura B nutrient solution (pH 4.5) containing 1 mM 
NH4

+ or 1 mM NO3
− with different Mn concentrations depending 

on the experiments. After treated with 0.5 or 500 µM Mn2+ in 
different N forms for 1 and 3 days, the roots were sampled for 
the expression analysis of Mn transporter genes. The solution 
was renewed after 1.5 days. After treated with 0.5 or 500 µM 
Mn2+ in different N forms for 10 days, the roots were used for 
the extraction and measurement of cell wall polysaccharide 
fractions. After treated with 0.5, 200, 500, or 1,000 µM Mn2+ in 
different N forms for 14 days, the roots were washed three times 
with cold 5 mM CaCl2 solution and separated from the shoots for 
dry weight measurements and Mn determination. The solution 
was renewed every 2 days.

Experimental Treatments Under 
pH-Buffered Conditions
Rice seedlings (14 days old) were cultured in a modified full-
strength Kimura B nutrient solution containing 0.5 or 500 µM  
Mn2+ with 1 mM NH4

+ or 1 mM NO3
−  at a pH of 3.5 or 5.5  

buffered with 5 mM homopiperazine-1,4-bis(2-ethanesulfonic 
acid) (Homo-PIPES). After 3 days, the roots were washed 
three times with cold 5 mM CaCl2 solution and separated from 
the shoots for Mn, Fe, Zn, and Cu determination. The roots 
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were also sampled for the expression analysis of Mn and Fe 
transporter genes.

Rice seedlings (26 days old) were cultured in a modified 
full-strength Kimura B nutrient solution containing 500 µM 
Mn2+ with 1 mM NH4

+  or 1 mM NO3
−  at a pH of 3.5 or 5.5 

buffered with 5 mM Homo-PIPES. After 24 h, root cell sap, 
cell walls, and xylem Sap were collected. After 3 days, the 
roots and each individual leaf (leaf 2–10, from old to young) 
were sampled for dry weight and Mn determination. Leaf 1 
was too small to be sampled.

In the above experiments, the nutrient solution was adjusted 
to a pH of 3.5 or 5.5 every 12 h by addition of 0.1 M HCl or 
NaOH and renewed at 36 h.

Collection of Root Cell Sap, Cell Walls, 
and Xylem Sap
The shoots (2 cm above the root) were decapitated with a razor, 
and xylem sap was collected with a micropipette for 1 h. The 
excised roots were placed in a filter with 0.45 µm microporous 
membrane in a tube (Millipore, Billerica, MA, USA) and frozen 
at −80°C overnight. After thawing to room temperature, root 
cell sap was obtained by centrifugation at 20,600 ×g for 10 min. 
The residual cell walls were washed three times with 70% ethanol 
every 5 min and then dried at 70°C for 3 days. Mn concentrations 
in root cell sap, cell walls, and xylem sap were determined as 
described below.

Determination of Mn, Fe, Zn, and Cu
Dried samples were digested with concentrated HNO3 at 140°C. 
After appropriate dilution, the concentration of Mn and Fe in 
roots and shoots was determined by Inductive Coupled Plasma 
Optical Emission Spectroscopy (ICP-OES) (Optima8000; Perkin-
Elmer, Waltham, Massachusetts, USA), and that of Zn and Cu 
was determined by Inductive Coupled Plasma Mass Spectroscopy 
(ICP-MS) (7700X; Agilent Technologies, Santa Clara, California, 
USA). The Mn concentration in root cell sap, xylem sap, and 
digested cell walls was also determined by ICP-MS.

Expression Analysis of Mn and Fe 
Transporter Genes
Total RNA from rice roots was extracted using an RNeasy Plant 
Mini kit (Qiagen) and converted to cDNA using ReverTra 
Ace qPCR RT Master Mix with gDNA Remover (Toyobo) 
following the manufacturer’s protocols. The quantitative 
PCR was performed on a LightCycler 480 Instrument 
(Roche, Switzerland) using SYBR premix Ex Taq (Takara). 
Primer sequences used for amplification of OsNramp5 were 
5’-CAGCAGCAGTAAGAGCAAGATG-3’ (forward) and 5’-GT 
GCTCAGGAAGTACATGTTGAT-3’ (reverse); 5’-AGGACCA 
TTTCTTCGACGTG-3’ (forward) and 5’-TCCATCCACCAT 
TTGTACCG-3’ (reverse) for OsMTP9; 5’-CGTCTTCTTCTTC 
TCCACCACGAC-3’ (forward) and 5’-GCAGCTGATGATCG 
AGTCTGACC-3’ (reverse) for OsIRT1. HistoneH3 was used 
as an internal standard with primers pairs 5’-AGTTTGGTC 
GCTCTCGATTTCG-3’ (forward) and 5’-TCAACAAGTTGA 
CCACGTCACG-3’ (reverse). The relative expression was 
normalized by the ΔΔ Ct method.

Extraction and Measurement of Cell Wall 
Polysaccharide Fractions in Roots
Extraction of cell walls was conducted according to Zhong and 
Läuchli (1993). First, roots were homogenized in 8 ml of 75% 
ethanol for 20 min and centrifuged at 3,400 × g for 10 min. 
The resulting pellets (cell walls) were eluted in 8 ml acetone, 
1:1 methanol/chloroform, and then methanol for 20 min each 
and then dried at 60°C. The cell wall material was weighed 
(∼2 mg) and incubated three times with 1 ml ultrapure water 
in boiling water for 1 h. The supernatants were collected as 
the pectin fraction. The residues were extracted twice with 1 
ml of 24% KOH containing 0.02% KBH4 at room temperature, 
and the supernatants were used as the hemicellulose fraction. 
In accordance with previous studies, the uronic acid content 
of the pectin and hemicellulose fractions was determined 
spectrophotometrically at 520 and 490 nm, respectively (Dubois 
et al., 1956; Blumenkrantz and Asboe-Hansen, 1973).

FIGURE 1 | Effect of different N forms on the growth of rice exposed to various concentrations of Mn under non-pH-buffered conditions. (A) Shoot dry weight;  
(B) root dry weight. Rice seedlings (14 days old) were cultured in a modified Kimura B nutrient solution (pH 4.5) containing 1 mM ammonium or nitrate with different 
Mn concentrations for 14 days. Data represent means ± SD (n = 3). Different lowercase letters indicate a significant difference (P < 0.05) based on Duncan’s test.
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Statistical Analysis
All experiments were repeated independently at least two times 
with three to four biological replicates, and a representative set 
of data is presented in the Results. The significance of differences 
between means (at P < 0.05) was analyzed by Duncan’s test.

RESULTS

Ammonium Alleviated Mn Toxicity and 
Decreased Mn Uptake by Rice Compared 
With NO3

−−

At a Mn concentration of 0.5 µM, shoot dry weights were similar 
under NH4

+  and NO3
−  treatments (Figure 1A), whereas root dry 

weights were lower under NH4
+  than under NO3

−  (Figure 1B). 
At Mn concentrations of 200, 500, and 1,000 µM, however, dry 
weights of both roots and shoots were higher under NH4

+  than 
under NO3

−  (Figures 1A, B). Increasing the Mn concentration 
did not decrease dry weights of shoots and roots under NH4

+  
(Figures 1A, B). Compared with 0.5 µM Mn, however, dry weights 
of shoots and roots under NO3

−  decreased when rice plants were 
treated with 200, 500 or 1,000 µM Mn (Figures 1A, B).

Root and shoot Mn concentrations and Mn uptake were 
remarkably higher under NO3

− than under NH4
+  at either Mn 

treatment concentration (Figure 2). Regardless of the form 
of N, shoot Mn concentrations increased between 0.5 and 
500 µM Mn treatments, but not between 500 and 1,000 µM 
Mn (Figure 2A). Under both NH4

+  and NO3
− treatments, 

root Mn concentrations greatly increased between 0.5 and 
200 µM Mn treatments, but not between 200 and 1,000 µM 
Mn (Figure 2B). Mn uptake increased until the 500 µM Mn 
treatment under NH4

+  and until the 200 µM Mn treatment 
under NO3

−  (Figure 2C).

Low pH Decreased Rice Mn Uptake But 
Did Not Affect Mn Distribution in Rice 
Leaves
In the above experiment, the nutrient solution pH decreased 
from an initial value of 4.5 to 3.5 in the presence of NH4

+ before 
renewal of the nutrient solution and increased from 4.5 to 5.5 
in the presence of NO3

−. We therefore maintained the pH of 
nutrient solution at 3.5 and 5.5 by buffering with 5 mM Homo-
PIPES and further investigated whether the changes of the pH of 
the solutions due to uptake of NH4

+ and NO3
− help regulate the  

FIGURE 2 | Effect of different N forms on Mn accumulation in rice under various concentrations of Mn under non-pH-buffered conditions. (A–B) Mn concentration 
in shoots (A) and roots (B). (C) Mn uptake (mg Mn/g root DW). Mn uptake was calculated as the total Mn content in shoots and roots per root dry weight. Rice 
seedlings (14 days old) were cultured in a modified Kimura B nutrient solution (pH 4.5) containing 1 mM ammonium or nitrate with different Mn concentrations 
for 14 days. Data represent means ± SD (n = 3). Different lowercase letters above white columns indicate significant differences (P < 0.05, Duncan’s test) among 
different Mn concentrations under the ammonium-N treatment; different uppercase letters above black columns indicate significant differences (P < 0.05, Duncan’s 
test) among different Mn concentrations under the nitrate-N treatment. An asterisk indicates a significant difference (P < 0.05, Student’s t-test) between ammonium 
and nitrate treatments at the same Mn concentration.
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effects of the two forms of N on Mn uptake by rice. Regardless of 
the N form and the Mn concentration of the nutrient solution, 
Mn concentrations of roots and shoots and Mn uptake were 
always higher at pH 5.5 than at pH 3.5 (Figure 3). At a given pH, 
however, no difference was observed in the Mn concentration 
of roots and shoots and Mn uptake between NH4

+ and NO3
−  

(Figure 3).
To examine whether pH affects Mn distribution to different 

organs, we determined Mn concentrations of different organs 
and calculated distribution ratios at pH levels of 3.5 and 5.5 in 
the presence of NH4

+  or NO3
− . Approximately 10% of total Mn 

was distributed in the roots, while 5% was present in the nodes 
(Figure 4). The Mn distribution ratio in roots was higher at 
pH 3.5 than at pH 5.5 under the same N form (Figure 4). In 
aerial parts of rice plants, the majority of Mn was located 
in young leaves except for leaf 10, which had not yet fully 
expanded, but no difference was detected in Mn distribution 
of the leaves between pH 3.5 and pH 5.5 and between NH4

+ 
and NO3

−  (Figure 4).

Low pH Decreased Mn Concentrations in 
Rice Root Cell Sap and Xylem Sap, But 
Not Root Cell Walls
Mn concentrations in root cell sap and xylem sap were much 
higher at pH 5.5 than at pH 3.5 regardless of N form, but were 

similar between NH4
+ and NO3

− treatments at the same pH 
(Figures 5A, B). Neither pH nor the form of N had an effect on 
Mn concentrations in root cell walls (Figure 5C).

Low pH Decreased the Expression of the 
Mn Transporter Gene OsNramp5, But Not 
OsMTP9, in Rice Roots
Rice Mn uptake is mediated by two known transporters, 
OsNramp5 and OsMTP9 (Ishimaru et al., 2012; Sasaki et al., 
2012; Ueno et al., 2015). We therefore investigated expression 
levels of the two Mn transporter genes, OsNramp5 and 
OsMTP9, in roots exposed to non-pH-buffered or buffered 
solutions with different N forms and Mn concentrations. 
After 1-day exposure, the expression level of OsNramp5 was 
similar between NH4

+ and NO3
− at both Mn concentrations 

(Figure 6A). After 3-day exposure, the expression level of 
OsNramp5 was up-regulated by NO3

− compared with NH4
+ 

(Figure 6A). No difference was detected in the expression level 
of OsMTP9 between NH4

+  and NO3
− after either 1 or 3 days of 

exposure (Figure 6B). The expression level of OsNramp5 was 
up-regulated at pH 5.5 relative to pH 3.5 buffered with 5 mM 
Homo-PIPES regardless of N form and Mn concentration after 
3-day exposure, but was unaffected by the form of N at a given 
pH (Figure 7A). OsMTP9 expression was unaffected by pH and 
N form under pH-buffered conditions (Figure 7B). At a given 

FIGURE 3 | Effect of different pH levels and N forms on Mn accumulation in rice under pH-buffered conditions. (A–B) Mn concentration under 0.5 µM Mn (A) and 
500 µM Mn (B) treatments. (C–D) Mn uptake (mg Mn/g root DW) under 0.5 µM Mn (C) and 500 µM Mn (D) treatments (total Mn/root DW). Mn uptake was 
calculated as the total Mn content in shoots and roots per root dry weight. Rice seedlings (14 days old) were cultured in a modified Kimura B nutrient solution 
containing 1 mM ammonium or nitrate with 0.5 or 500 µM Mn at pH 3.5 or 5.5 for 3 days. The pH of the nutrient solution was buffered with 5 mM Homo-PIPES. 
Data represent means ± SD (n = 3). Different lowercase letters indicate a significant difference (P < 0.05) based on Duncan’s test
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FIGURE 4 | Effect of different N forms and pH levels on Mn distribution in different rice organs under pH-buffered conditions. Rice seedlings (26 days old) were 
cultured in a modified Kimura B nutrient solution containing 500 µM Mn with 1 mM ammonium or nitrate at pH 3.5 or 5.5 for 3 days. The pH of the nutrient 
solution was buffered with 5 mM Homo-PIPES. Data represent means ± SD (n = 3). Different lowercase letters indicate a significant difference (P < 0.05) based 
on Duncan’s test.

FIGURE 5 | Effect of different pH levels on Mn concentration in xylem sap, root cell sap, and cell walls under pH-buffered conditions. (A–C) Mn concentration in root 
cell sap (A), xylem sap (B), and root cell walls (C). Rice seedlings (26 days old) were cultured in a modified Kimura B nutrient solution containing 1 mM ammonium 
or nitrate with 500 µM Mn at pH 3.5 or 5.5 for 24 h. The pH of the nutrient solution was buffered with 5 mM Homo-PIPES. Data represent means ± SD (n = 4). 
Different lowercase letters indicate a significant difference (P < 0.05) based on Duncan’s test.
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FIGURE 6 | Effect of different N forms and pH levels on the expression of Mn transporter genes under non-pH-buffered conditions. (A) OsNramp5; (B) OsMTP9. 
Rice seedlings (14 days old) were cultured in 0.5 µM Mn (MnL) or 500 µM Mn (MnH) in the presence of 1 mM ammonium or nitrate with a non-pH-buffered solution 
(pH 4.5) for 1 and 3 days. The roots were sampled for RNA extraction. Data represent means ± SD (n = 3). Different lowercase letters indicate a significant difference 
(P < 0.05) based on Duncan’s test.

FIGURE 7 | Effect of different N forms and pH levels on the expression of Mn and Fe transporter genes under pH-buffered conditions. (A) OsNramp5; (B) OsMTP9; 
(C) OsIRT1. Rice seedlings (14 days old) were cultured in 0.5 µM Mn (MnL) or 500 µM Mn (MnH) in the presence of 1 mM ammonium or nitrate at a pH of 3.5 or 5.5 
buffered with 5 mM Homo-PIPES for 3 days. The roots were sampled for RNA extraction. Data represent means ± SD (n = 4). Different lowercase letters indicate a 
significant difference (P < 0.05) based on Duncan’s test.
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pH or exposure to the same N form, the Mn concentration 
of the growth medium did not affect the expression of either 
OsNramp5 or OsMTP9 (Figures 6 and 7).

Low pH Decreased the Expression of 
the Fe Transporter Gene OsIRT1 and Zn 
Uptake by Rice
OsNramp5 can also transport Fe in rice (Ishimaru et al., 2012; 
Sasaki et al., 2012). OsIRT1 was demonstrated to be involved in 
the uptake of Fe and Zn (Ishimaru et al., 2006; Lee and An, 2009). 
In order to investigate whether the effects of pH on Mn uptake 
and transporter gene expression are specific, we further examined 
the expression of the Fe transporter gene OsIRT1 in roots and the 
accumulation of Fe, Zn, and Cu in rice. The expression level of 
OsIRT1 was up-regulated at pH 5.5 relative to pH 3.5, and was 
up-regulated under NO3

−  relative to NH4
+  at pH 5.5 but not at 

pH 3.5 (Figure 7C). The Fe concentration of roots and shoots 
was higher under NH4

+  than under NO3
−  at pH 3.5 with 0.5 µM 

Mn (Figure 8A), but there was no significant difference between 
NH4

+  and NO3
−  under other conditions (Figures 8A, B). Low 

pH decreased the Fe concentration of roots but not shoots at 
both Mn concentrations (Figures 8A, B). Low pH decreased 
the Zn concentration of shoots at both Mn concentrations, and 
that of roots at only 500 µM Mn (Figures 8C, D). In contrast, 
low pH increased the Cu concentration of roots but not shoots 
(Figures 8E, F). Less difference was detected in the Cu and Zn 
concentrations of shoots and roots between NH4

+  and NO3
−  at a 

given pH (Figures 8C–F).

DISCUSSION

NH4
+ -Induced Rhizosphere Acidification 

Was Responsible for the Decreased Mn 
Accumulation in Rice
In agreement with previous studies of other plant species (Arnon, 
1937; Vlamis and Williams, 1962; McGrath and Rorison, 1982; 
Elamin and Wilcox, 1986; Reddy and Mills, 1991; Langheinrich 
et al., 1992), we found that NH4

+ alleviated Mn toxicity and decreased 
Mn accumulation in rice. The uptake of NH4

+ by roots resulted in a 
decrease in the pH of the growth medium because of the release 
of protons (Wang et al., 1993; Schubert and Yan, 1997; Zhao et al., 
2009). In contrast, the uptake of NO3

− by plants alkalized the 
rhizosphere as a result of the co-transport of H+ into cells (Marschner 
and Römheld, 1983; Moorby et al., 1985; Mistrik and Ullrich, 1996). 
The pH may be involved in the effects of NH4

+ and NO3
− on Mn 

toxicity and uptake by rice. When 5 mM Homo-PIPES was used to 
maintain the pH of the growth medium, no difference was observed 
in rice Mn accumulation between NH4

+ and NO3
−. Remarkably, Mn 

accumulation in rice was much lower at pH 3.5 than pH 5.5. The 
results of these analyses suggest that NH4

+-induced rhizosphere 
acidification was responsible for the decreased Mn accumulation in 
rice fed with NH4

+ compared with NO3
−, which thereby alleviated 

Mn toxicity to rice. Acid soils are chemically dominated by a high 
NH4

+/NO3
− ratio and an abundance of toxic Al and Mn (Zhao et al., 

2014). In our previous studies, we found that NH4
+ alleviated Al 

toxicity and reduced Al accumulation in rice and Lespedeza bicolor 
(Zhao et al., 2009; Chen et al., 2010; Wang et al., 2015a), while Al  

FIGURE 8 | Effect of different pH levels and N forms on the accumulation of Fe, Zn, and Cu in rice under pH-buffered conditions. (A–F) Concentration of Fe (A, B), 
Zn (C,D), and Cu (E,F) in the roots and shoots under 0.5 µM Mn (A,C,E) and 500 µM Mn (B,D,F) treatments. Rice seedlings (14 days old) were cultured in a 
modified Kimura B nutrient solution containing 1 mM ammonium or nitrate with 0.5 or 500 µM Mn at pH 3.5 or 5.5 for 3 days. The pH of the nutrient solution was 
buffered with 5 mM Homo-PIPES. Data represent means ± SD (n = 3). Different lowercase letters indicate a significant difference (P < 0.05) based on Duncan’s test.
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alleviated Mn toxicity and reduced Mn accumulation in rice (Wang 
et al., 2015b). In addition, Al-tolerant plants generally prefer NH4

+ 
over NO3

− (Zhao et al., 2013; Zhao and Shen, 2018). The interactions 
of coexisting factors, such as NH4

+, H+, and toxic Al and Mn, may 
thus facilitate the adaptation of plants to acid soils. This conclusion 
has important ecological implications for explaining the superior 
growth of plants in acid soils, where multiple stressful factors often 
coexist (Zhao et al., 2014).

NH4
+  Decreased Mn Accumulation by 

Reducing Mn Uptake Rather Than Mn 
Distribution in Leaves
The observed decrease in Mn accumulation in rice caused by 
low pH due to NH4

+ uptake relative to NO3
− may result from the 

reduced ability of roots to take up Mn from nutrient solutions 
and/or the decreased ability of rice plants to translocate Mn 
from roots to leaves. In the present study, although low pH 
increased Mn distribution ratio in roots, neither low pH nor 
the form of N affected the distribution of Mn in different rice 
leaves. This observation suggests that the low pH-decreased Mn 
accumulation phenomenon in rice can be mainly attributed 
to a decrease in root Mn uptake ability rather than decreased 
Mn distribution in leaves. Mn toxicity to plants results mainly 
from high Mn accumulation in shoots, and roots are much less 
sensitive to Mn toxicity (Horiguchi, 1987). We propose that NH4

+ 
decreases the amount of Mn taken up by rice roots because of 
the low pH, with less Mn consequently translocated to shoots, 
thereby alleviating Mn toxicity to rice.

Cell Wall Properties Were Not Related 
With the NH4

+ -Reduced Mn Accumulation
The decreased Mn accumulation in rice roots caused by low pH 
may be attributed to low Mn adsorption in root cell walls and/or 
low Mn transport across the plasma membrane into root cells. 
In addition, one of the most important mechanisms of plant 
tolerance to metal toxicity is preventing the entry of metal ions 
into root cells. The cell wall usually plays an important role in 
plant defensive responses to metal stress (Krzesłowska, 2011). 
The negatively charged polymers of cell walls are responsible for 
interactions with exchangeable cations in the external medium 
(Richter and Dainty, 1990). The polysaccharides pectin and 
hemicellulose in the cell wall are major sites of cation accumulation 
because of their negative charges (Krzesłowska, 2011; Yang et al., 
2011). In the present study, the Mn concentration in root cell 
walls was unaffected by either pH or the form of N when 5 mM 
Homo-PIPES pH buffer was added. Moreover, no difference was 
observed in the uronic acid contents of pectin and hemicellulose 
in cell walls extracted from rice roots between NH4

+ and NO3
− 

in a non-pH-buffered solution (Figure S1). We found that Mn 
concentrations in root cell sap and xylem sap were lower at a pH 
of 3.5 than at pH 5.5, regardless of the N form, which suggests 
that low pH inhibited Mn transport across the plasma membrane 
into root cells. In our previous study, we demonstrated that 
altered cell wall properties, including pectin and hemicellulose 
contents, are responsible for NH4

+-reduced Al accumulation in 
rice roots (Wang et al., 2015a). However, cell wall properties were 

not associated with the NH4
+-reduced Mn accumulation in rice 

roots observed here. This decrease in Mn accumulation due to 
low pH may be attributed to the decrease in the amount of Mn 
entering cells.

NH4
+  Reduced Mn Uptake by Down-

Regulating the Mn Transporter, OsNramp5
Two plasma membrane-localized Mn transporters, Nramp5 
and MTP9, have been identified in rice roots (Ishimaru et al., 
2012; Sasaki et al., 2012; Ueno et al., 2015). Nramp5 and MTP9 
are located on the distal and proximal sides, respectively, of 
both the exodermis and endodermis of rice roots (Sasaki et al., 
2012; Ueno et al., 2015). Nramp5 is correspondingly an influx 
Mn transporter and functions in transporting Mn from the soil 
solution to root exodermal and endodermal cells (Sasaki et al., 
2012), while MTP9 is an efflux Mn transporter required for 
release of Mn from these cells towards the root stele (Ueno et al., 
2015). Consistent with previous reports (Sasaki et al., 2012; Ueno 
et al., 2015), we found that the expression levels of both Nramp5 
and MTP9 were not regulated by different Mn concentrations. 
The decreased pH due to NH4

+ uptake, i.e., from pH 4.5 to 3.5, 
inhibited the expression of Nramp5 but not MTP9, whereas the 
N form itself had less of an effect on the expression of either gene. 
Consequently, the decreased Mn accumulation in rice plants 
caused by low pH due to NH4

+ uptake was associated with the 
down-regulation of expression of Nramp5 rather than MTP9.

A previous study found that Si-decreased Mn uptake and toxicity 
result from the down-regulation of OsNramp5 expression (Che et 
al., 2016). Similarly, Si reduces Cd accumulation and toxicity in 
rice by suppressing OsNramp5 gene expression and protein levels 
(Shao et al., 2017), because OsNramp5 can also transport Cd 
(Ishimaru et al., 2012; Sasaki et al., 2012). In the present study, the 
lower pH reduced Mn accumulation and OsNramp5 expression 
level in rice, while Mn concentrations had no effect on the gene 
expression. This result suggests that the down-regulation of 
OsNramp5 expression was caused by low pH itself rather than low 
pH-induced Mn changes. The exact mechanism underlying the 
down-regulation of expression of OsNramp5 caused by low pH 
remains to be investigated in the future.

The Up-Regulation of OsIRT1 May 
Contribute to Increased Zn Uptake at High 
pH
One previous report showed that excessive NO3

− supply up-regulated 
the expression of OsIRT1, which may be associated with increased 
medium pH by NO3

− uptake as nutrient solution was not pH-buffered 
(Yang et al., 2016). The present study showed that the expression 
level of OsIRT1 was also up-regulated at pH 5.5 relative to pH 3.5. 
This up-regulation may not contribute to the higher Mn uptake by 
rice at pH 5.5 than at pH 3.5, because previous research suggested 
that the role of OsIRT1 in Mn uptake by rice is negligible (Sasaki 
et al., 2012). Both OsNramp5 and OsIRT1 can transport Fe in rice 
(Bughio et al., 2002; Ishimaru et al., 2006; Ishimaru et al., 2012; Sasaki 
et al., 2012). Although high pH up-regulated the expression level of  
OsNramp5 and OsIRT1, high pH increased the Fe concentration 
of only roots but not shoots here. It is known that OsNramp5 
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and OsIRT1 are involved in the uptake of Fe2+ (Ishimaru et  al., 
2006; Ishimaru et al., 2012; Sasaki et al., 2012). Fe(III)-EDTA was 
supplied in this study, and this may explain why the up-regulation of 
OsNramp5 and OsIRT1 did not increase shoot Fe concentration. The 
increased Fe concentration of roots at high pH might be associated 
with other reasons such as immobilized Fe in roots. It is interesting 
to further investigate the effect of N forms and pH on the uptake of 
Fe2+ and Fe3+ by rice and its underlying molecular mechanism in the 
future. In addition, it was reported that over-expression of OsIRT1 
increased Zn accumulation in rice (Lee and An, 2009). In agreement 
with the expression of OsIRT1, the concentration of Zn in shoots 
was increased by high pH in the present study. And this indicated 
that the up-regulation of OsIRT1 may contribute to increased Zn 
uptake at high pH. The inconsistency of OsIRT1 expression with Cu 
concentration of roots and shoots here suggested that OsIRT1 might 
not be involved in Cu transport.

CONCLUSION

Our results indicate that NH4
+ decreases Mn accumulation and 

toxicity in rice relative to NO3
−, and this decrease is caused by a 

NH4
+ -decreased pH but not by NH4

+ itself. Low pH-decreased Mn 
accumulation in rice results from the decreased ability of roots to 
take up Mn because of the down-regulation of expression of the Mn 
influx transporter OsNramp5. In addition, high pH up-regulated 
the expression of OsIRT1 and increased Zn uptake by rice.
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