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Winter hardiness is a major constraint for autumn sown crops in temperate regions, 
and thus an important breeding goal in the development of new winter wheat varieties. 
Winter hardiness is though influenced by many environmental factors rendering 
phenotypic selection under field conditions a difficult task due to irregular occurrence 
or absence of winter damage in field trials. Controlled frost tolerance tests in growth 
chamber experiments are, on the other hand, even with few genotypes, often costly and 
laborious, which makes a genomic breeding strategy for early generation selection an 
attractive alternative. The aims of this study were thus to compare the merit of marker-
assisted selection using the major frost tolerance QTL Fr-A2 with genomic prediction 
for winter hardiness and frost tolerance, and to assess the potential of combining 
both measures with a genomic selection index using a high density marker map or a 
reduced set of pre-selected markers. Cross-validation within two training populations 
phenotyped for frost tolerance and winter hardiness underpinned the importance of 
Fr-A2 for frost tolerance especially when upweighting its effect in genomic prediction 
models, while a combined genomic selection index increased the prediction accuracy 
for an independent validation population in comparison to training with winter hardiness 
data alone. The prediction accuracy could moreover be maintained with pre-selected 
marker sets, which is highly relevant when employing cost reducing fingerprinting 
techniques such as targeted genotyping-by-sequencing. Genomic selection showed 
thus large potential to improve or maintain the performance of winter wheat for these 
difficult, costly, and laborious to phenotype traits.
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INTRODUCTION

Winter hardiness in wheat is a complex trait that is strongly influenced by a multitude of 
environmental factors such as the presence of a snow cover, soil fertility, soil heaving or ice 
encasement, as well as biotic factors like disease pressure or insect damage (Fowler et al., 1977). 
Tolerance to temperatures below freezing is though often of pivotal importance for the survival 
across winter, aside from the other mentioned indirect effects (Limin and Fowler, 1991). The ability 
to withstand prolonged exposure to low temperatures can substantially vary between genotypes 
(Fowler and Gusta, 1979; Skinner and Garland-Campbell, 2008a), and is among others associated 
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with their particular vernalization requirement (Koemel et al., 
2004) and a differential reaction to repeated thaw-freeze cycles 
that might occur in the field (Skinner and Bellinger, 2016). 
Despite the existing variation for winter hardiness and frost 
tolerance in wheat (Fowler et al., 1977; Longin et al., 2013; 
Sthapit Kandel et al., 2018), the improvement for these traits has 
been rather limited, and efforts to enhance them by using exotic 
sources with excellent winter hardiness like rye have been less 
promising (Limin and Fowler, 1991). One major reason for this 
limited genetic progress can be seen in the difficult phenotyping 
and lack of information concerning winter hardiness when 
conducting selection decisions caused by the absence or irregular 
occurrences of winter damage in field trials (Beil et al., 2019) that 
are in some years replaced by complete winter kill of an entire 
plant stand (Fowler, 1979). 

The presence of non-systematic trends like soil heterogeneity 
and differential snow cover within field trials can moreover result 
in biased performance estimates of the selection candidates, 
which requires experimental layouts that allow an appropriate 
adjustment for these trends, e.g., by applying spatial statistical 
methods (Burgueño et al., 2000). Alternatives for field trials are 
given by conducting semi-controlled experiments with snow-
out shelters (Hoeser, 1953; Sieber et al., 2014) or controlled frost 
tolerance experiments in climate chambers with predefined 
temperature programs (Gusta et al., 1997; Gusta et al., 2001; 
Skinner and Garland-Campbell, 2008b). The latter methods 
include the assessment of a lethal temperature at which 50% of the 
plants die due to freezing (LT50) (Gusta et al., 2001), recovery of 
the plants after prolonged storage at milder freezing temperatures 
of −5°C (Skinner and Garland-Campbell, 2008b), or exposing 
plants for a short time span to severe freezing temperature and 
measuring the percentage of frost damage after a predefined 
regrowth period (Sutka, 1981). The testing of winter wheat 
in that manner generally includes a period of cold-hardening 
(Fowler et al., 1999) for inducing the physiological mechanisms 
underlying frost tolerance like the accumulation of water-soluble 
carbohydrates (Fowler et al., 1981; Galiba et al., 1997; Vágújfalvi 
et al., 1999). Such frost tolerance tests in climate chambers are, 
however, laborious, costly, and usually limited to few genotypes 
making a genomic breeding approach an attractive alternative for 
applied breeding programs.

Hence, numerous studies have been conducted to dissect 
the genetic architecture of winter hardiness and frost tolerance 
that revealed the importance of the homologous loci Vrn-
A1, Vrn-B1, and Vrn-D1 located on the chromosome 5 group 
both for vernalization response and frost tolerance in wheat 
(Koemel et al., 2004), with the latter two loci being though 
fixed for the winter type allele at least in European winter 
wheat (Langer et al., 2014), although they can be interesting 
for breeding facultative wheat varieties (Beil et al., 2019). The 
copy number variation of Vrn-A1 has, on the other hand, been 
shown to influence both the vernalization response as well as 
frost tolerance of winter wheat (Díaz et al., 2012; Zhu et  al., 
2014; Würschum et al., 2015). Despite lines carrying 1–3 
copies of Vrn-A1, its copy number variation could though only 
explain 2.9% of the genetic variance for winter hardiness in a 
diverse panel of European winter wheat lines (Würschum et al., 

2017). Apart from pleiotropic effects of the Vrn loci, the Fr-2B 
locus on chromosome 5B has been reported as exclusively 
being associated with frost tolerance (Tóth et al., 2003). The 
reduced tolerance to low temperature stress is in this case 
caused by a loss of function due to the deletion of 11 genes at 
the locus, which is though very rare in European winter wheat 
with the frequency of the frost susceptible allele at Fr-2B being 
less than 2% (Pearce et al., 2013). Allele frequencies at the frost 
tolerance locus Fr-A2 on chromosome 5A are, on the other 
hand, more balanced and its larger effect in frost tolerance 
and winter hardiness both in durum and winter wheat (Sieber 
et al., 2016; Würschum et al., 2017) makes it a worthwhile 
target for marker-assisted selection. A map position 30–46 cM 
proximal to Vrn-A1 has been determined for Fr-A2 (Vágújfalvi 
et al., 2003; Båga et al., 2007), while the locus itself consists 
of a gene cluster encoding several C-repeat binding factors 
(CBF) (Vágújfalvi et al., 2005). The copy number variation 
of these transcriptional activator proteins plays a major role 
for regulating pathways associated with cold acclimation and 
frost tolerance (Knox et al., 2010), and specifically the copy 
number variation of CBF-A14 showed a strong association 
with frost tolerance (Soltész et al., 2013) and winter hardiness 
(Sieber et al., 2016; Würschum et al., 2017). The multi-
allelic nature of CBF-A14 can, however, not be adequately 
described by bi-allelic SNP markers that are commonly used 
for fingerprinting in applied plant breeding programs. It has 
thus been suggested to capture the copy number variation by a 
haploblock of two SNP markers associated with Fr-A2, which 
explained up to 24% of genetic variance for winter hardiness in 
bread wheat (Würschum et al., 2017).

Notwithstanding, only a part of the genetic variance can be 
explained by Fr-A2 limiting the achievable response to selection 
in a genomic breeding program, and apart from the few major 
QTL, many minor QTL have been reported to influence frost 
tolerance and winter hardiness (Case et al., 2014; Kruse et al., 
2017). These loci can be more efficiently targeted by a genomic 
prediction approach with genome-wide distributed markers 
(Meuwissen et al., 2001), where a phenotyped and genotyped 
training population is used to predict the performance of 
individuals within a validation/selection population by 
modelling the genetic relationship between both populations 
(VanRaden, 2008; Piepho, 2009). Utilizing such genomic 
predictions for selection has been routinely implemented in 
several national and international wheat breeding programs 
(Cericola et al., 2017; Jarquin et al., 2017; Belamkar et al., 2018) 
due to decreasing genotyping costs with new fingerprinting 
techniques like shallow sequencing (Gorjanc et al., 2017) or 
with sets of preselected markers in targeted genotyping-by-
sequencing (GBS) as well as on custom-made and optimized 
SNP arrays (Torkamaneh et al., 2018). These advances in 
genotyping allow thus to conduct an early generation marker-
assisted and genomic selection for multiple agronomic 
traits, which is specifically interesting for difficult, laborious, 
and costly to phenotype traits like winter hardiness or frost 
tolerance. The aims of this study were thus 1) to compare the 
merit of marker-assisted with genomic selection for winter 
hardiness and frost tolerance, and 2) to assess the potential of 

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org


Genomic Selection for Frost ToleranceMichel et al.

3 October 2019 | Volume 10 | Article 1195Frontiers in Plant Science | www.frontiersin.org

combining both traits with a genomic selection index using a high-
density marker map or a reduced set of preselected markers.

MATERIALS AND METHODS

Plant Material and Phenotypic Data
The plant material in this study comprised a total of 504 F4:6 and 
F5:7 generation or double haploid winter wheat breeding lines 
(Triticum aestivum L.) from a commercial breeding program that 
were phenotyped for frost tolerance in 2017 and for their winter 
hardiness in 2012 and 2018. The lines were derived from 311 
different crosses and came from three distinct breeding cycles of 
the breeding program. A subpopulation of 181 of these lines was 
scored for winter hardiness in two trial locations in Austria 2012 
on a 1–9 scale with 1 designating a very good winter survival, i.e., 
a dense plant stand, while 9 referred to a complete winter kill of 
the plants in a given field plot in early spring. The same scoring 
system was used for the winter hardiness assessment of another 
subpopulation of 110 lines in one Eastern Canadian location 
2018. The breeding lines were tested in yield plots at all individual 
trial locations. The F5:7 and doubled haploid lines were replicated 
twice and randomized together with the unreplicated F4:6 lines in 
a partially replicated row-column design to allow a correction for 
spatial trends in the experimental fields. The growing season in 
all trial locations with winter hardiness data was characterized by 
periods of very low temperatures with and without snow cover 
(Supplement Figure S1). Additional agronomic information 
for these 110 lines comprised grain yield (dt ha−1), protein 
content (%), flowering date (days), and plant height (cm) that 
were available both from low temperature stressed conditions in 
Eastern Canada as well as under non-stressed conditions from 
multiple trial locations in Central Europe. 

A third subpopulation of 213 lines was finally assessed for their 
frost tolerance in a climate chamber experiment at the Agricultural 
Research Institute of the Hungarian Academy of Sciences in 
Martonvásár (Hungary) following the protocol outlined by Sutka 
(1981). Briefly, germinated seeds of the 213 lines were planted in 
wooden boxes (38 × 26 × 11 cm) with a 4:1 mixture of garden soil 
and sand. The experiment was laid out as randomized complete 
block design with four replicates, in which the plants were grown 
for 7 weeks and subsequently hardened for 1 week with day/night 
temperatures varying between +3°C and −3°C, followed by 4 days 
of a constant temperature of −4°C. After hardening, the plants 
were exposed to a freezing temperature of −16°C for 24 h, after 
which they were allowed to defrost for 2 days at +1°C. The plants 
were subsequently trimmed to a height of 3 cm to remove necrotic 
leaves and ease their regrowth. Frost tolerance was finally assessed 
as percentage of frost damage after a 21 days regrowth period at a 
day temperature of 17°C and a night temperature of 16°C. 

Statistical Analysis of Phenotypic Data
The phenotypic data for frost tolerance was analyzed with a linear 
mixed model of the form:

 y g b rij i j ij= + + +µ  (1)

where yij are the phenotypic observations of the frost damage in 
percent, µ is the grand mean, and bj is the random effect of the jth 
block, while the residual effect rij followed a normal distribution 
with r 0 IN r( , )σ 2 . The effect gi of the ith line was firstly modelled 
as random to estimate the genetic variance σG

2  and subsequently 
fixed to derive the best linear unbiased estimates (BLUEs). The 
heritability was estimated by h G G

2 2 2 1
2

= +σ σ/ ( MVD) , where 

σG
2  designates the genetic variance and MVD the mean variance 

of a difference of the BLUEs (Piepho and Möhring, 2007). 
The phenotypic data for winter hardiness and other 

agronomic traits from the individual trials 2012 and 2018 were 
firstly analyzed with various models correcting for row and/or 
column effects as well as autoregressive variance–covariance 
structure of the residuals (Burgueño et al., 2000), and the model 
with the best fit was chosen by Akaike´s Information Criterion 
(AIC). BLUEs and the heritability were estimated as beforehand, 
while trials with a heritability larger than 0.3 were considered 
for further analysis. It should be noticed that a common error 
variance between the unreplicated tested F4:6 breeding lines and 
replicated F5:7 or double haploid breeding lines was assumed in 
order to estimate heritabilities for each individual trial. Given 
that a trait was assessed in more than one trial, an across-trial 
analysis was carried out in the second stage with a linear mixed 
model of the form:

 y g t eij i j ij= + + +µ  (2)

where yij are the BLUEs for the respective trait from the first stage, 
µ is the grand mean, and gi is the effect of the ith line. The effect 
of the jth trial tj was fixed, while the effect eij that incorporated 
both the trial-by-line interaction variance and the residual effect 
was assumed random and followed a normal distribution with
r 0 IN e( , )σ 2 . The heritability for the analysis of individual 
trials and across trials was determined as described for the frost 
tolerance experiment. All phenotypic analyses were conducted 
using the statistical package ASReml for the R programming 
environment (R Development CoreTeam, 2018).

Genotypic Data and Population Structure
Leaf samples from the 504 lines were collected from a minimum 
of 10 plants and used for DNA extraction with the protocol 
outlined by Saghai-Maroof et al. (1984), and each line was 
subsequently genotyped with the DarT GBS approach (Diversity 
Arrays Technology Pty Ltd). Quality control was applied by 
removing markers with a minor allele frequency smaller than 
0.10 as well as more than 10% of missing data. The pair-wise 
correlation between markers was used as an ad hoc measure 
of linkage disequilibrium, and one marker from each marker 
pair that had an r² = 1.0 was dropped at random to remove 
strongly correlated predictor variables for genomic predictions. 
Additionally, a Kompetitive Allele Specific PCR (KASP) marker 
analysis was carried out for the markers S2269949, S1077313, 
S1862541, and S1298957 that were previously reported to be 
associated with the copy number variation at the frost tolerance 
locus Fr-A2 on chromosome 5A (Sieber et al., 2016; Würschum 
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et al., 2017). The missForest algorithm Stekhoven and Bühlmann 
(2012) was used for a chromosome-wise imputation of missing 
data points for obtaining a final set of 1,413 SNP markers. 
Two haploblocks were subsequently generated to specifically 
target the copy number variation at Fr-A2 as suggested by 
Sieber et  al. (2016) and Würschum et al. (2017). For this 
purpose, the markers S2269949 and S1077313 were combined 
to a haploblock designated as CNV Fr-A2(S) (Sieber et al., 
2016), while S1862541 and S1298957 were combined to CNV 
Fr-A2(W) (Würschum et  al., 2017). Given that both flanking 
markers carried the allele for frost tolerance or susceptibility, 
the haploblock allele was coded as homozygous in the marker 
matrix, elsewise it was coded as heterozygous. The population 
structure with the corresponding membership of each line 
to its subpopulation was finally investigated by a principal 
component analysis (Supplement Figure S2).

Marker-Assisted and Genomic 
Prediction Models
The merit of genomic prediction for winter hardiness and frost 
tolerance was firstly assessed in a 100 times replicated resampling 
scheme with the field data from 2012 as well as separately with 
the measured frost tolerance in the climate chamber experiment 
2017. For this purpose, a total of 130 lines were randomly sampled 
into a training population and 30 lines in a validation population 
within each of these datasets. The kinship between these lines 
was estimated by a genomic relationship matrix, which was 
computed according to the method described by Endelman and 
Jannink (2012): 

 K WW= −T / (p )pk k2 1Σ  (3)

where W is a centered N×M marker matrix of the i lines with 
Wik = Zik + 1 – 2pk

 and pk being the allele frequency at the kth locus. 
Genomic estimated breeding values (GEBV) were afterwards 
derived by genomic best linear unbiased prediction (GBLUP) 
models that included the obtained genomic relationship matrix:

 y Z u r= + +1N µ G G  (4)

where y is an N×1 vector of BLUEs obtained in the phenotypic 
analysis, ZG is a random effect design matrix for additive 
genetic effects, and uG is an N×1 vector of additive effects with
u Kg N uG

( , )0 2σ . The residual effect r followed a normal 
distribution r 0 IN r( , )σ 2 , and µ designated the intercept with 
1N being an N×1 vector where all elements equal 1. Given the 
prior knowledge about the large influence of the Fr-A2 locus both 
on winter hardiness and frost tolerance, upweighting the effects 
of the CNV Fr-A2(S) and CNV Fr-A2(W) haploblocks was tested 
by modeling them as fixed effects in separate weighted genomic 
best linear unbiased prediction (WBLUP) models (Bernardo, 
2014; Zhao et al., 2014):

 y 1 M Z u rN G G= + + +µ βFr Fr2 2  (5)

where y is again an N×1 vector of BLUEs obtained in the 
phenotypic analysis and uG an N×1 vector of additive effects, 
while MFr2 contained the coding of the haploblock alleles and βFr2 
designated the effect of either CNV Fr-A2(S) or CNV Fr-A2(W).

Aside from testing the merit of genomic prediction and its 
enhancement by integrating the copy number variation at the 
Fr-A2 locus, it was of further interest to investigate the possibility 
to derive a reduced set of markers that would largely maintain the 
prediction accuracy of the previous models for designing custom 
SNP chips or targeted GBS. For this purpose, genome-wide 
association mapping was conducted within each of the training 
populations of 130 lines based on a linear mixed model following 
(Yu et al., 2006):

 y 1 M Z u rG G= + + +N µ α  (6)

where α is the fixed marker effect with the corresponding 
incidence matrix M of +1, -1, and 0 coding for homozygous 
major, minor, and heterozygous, respectively, while the 
designations of all the other effects were retained from the 
previous models. Firstly, the 12 markers with the highest 
significance levels on each chromosome were determined and 
subject to a chromosome-wise stepwise regression to identify 
the best fitting model with 1-6 of these markers. This resulted 
in a reduced marker set of 21-126 genome-wide distributed 
markers, which was again reduced by a stepwise regression in a 
second stage to a final set of 21 markers. Hence, the suggested 
algorithm mainly aimed to find marker-trait associations that 
covered the whole genome and putatively influence either 
winter hardiness or frost tolerance. Alternatively, a reduced set 
of 21 markers was selected by stepwise regression using the 126 
genome-wide most significant markers as the initial set. The 
marker number was chosen to generally test the feasibility of 
a marker pre-selection for the prediction of winter hardiness 
and frost tolerance, and might have to be modified for the 
prediction of other traits. It has to be mentioned though that 
their absolute number is restricted to the number of lines in 
a training population when using a stepwise regression. The 
1–21 markers with the largest effect as well as sets of randomly 
sampled markers were subsequently employed for a marker-
assisted prediction of the 30 lines in the validation population by 
a ridge-regression best linear unbiased prediction (RR-BLUP) 
model:

 y 1 Z u rM M= + +N µ  (7)

where the matrix ZM contained the marker codings of the 1–21 
markers, and the random marker effects in the vector uM were 
assumed to follow a normal distribution u IM N uM( , )0 2σ   
with variance σuM

2  and r 0 IN r( , )σ2 . The models for genomic 
prediction and genome-wide association mapping were fitted 
with the mixed model package sommer (Covarrubias-Pazaran, 
2016), the stepwise regression was conducted with the caret 
package (Kuhn, 2008), and the marker-assisted prediction was 
implemented with the rrBLUP package (Endelman, 2011) for R 
(R Development Core Team, 2018).
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Independent Validation and Genomic 
Index Selection
The prediction models for winter hardiness and frost tolerance 
were afterwards tested for their merit in an independent 
validation using the winter hardiness data collected in Eastern 
Canada 2018. The prediction models were fitted either with 130 
lines with winter hardiness data 2012 or frost tolerance data from 
the climate chamber experiment in 2017, while 90 lines evaluated 
in Eastern Canada 2018 served as the validation population. The 
lines used for model training and validation were randomly 
sampled from each dataset and the resampling scheme was 
repeated 100 times as beforehand. It was lastly of interest in this 
study to investigate the possibility of combining predictions for 
winter hardiness and frost tolerance to putatively increase the 
prediction accuracy. The respective predicted values for marker-
assisted and genomic selection were to this end combined in a 
selection index of the form:

 Index X b X bGS WINT WINT FROST FROSTi i i= +  (8)

where the index value of the ith line was calculated by using the 
respective index weights bWINT and bFROST for winter hardiness 
(X )WINTi

 and frost tolerance (XFROSTi
) . The necessary index 

weights were obtained by aiming to achieve desired gains for 
each of the two traits employing:

 b G a= −1  (9)

with b being a vector of index weights, a the vector of desired 
gains, and G–1 the inverse of the genomic variance–covariance 
matrix based on the predicted performance values from single 
trait predictions of the respective traits:

 

σ σ

σ σ
WINT

FROST

2









  (10)

with the variances of the predicted performance values 
for both traits being on the diagonal and covariance on 
the off-diagonal. The vector of desired gains was set to

a = = =






a aWINT WINT FROST FROST

T

σ σ2 2, ,  which corresponded 

to a desired gain of one standard deviation for each trait, 
respectively. The prediction accuracy for frost tolerance and 

winter hardiness within the dataset 2012 and 2017 as well as for 
the independent validation 2018 was assessed by correlating the 
genomic estimated breeding and index values with observed 
values divided by the square root of the heritability.

RESULTS

Variation and Trait Correlations for Winter 
Hardiness and Frost Tolerance
A medium to high heritability (h² = 0.65 – 0.98) could be 
achieved for all traits that were assessed in the field trials 
(Supplement Table S1). A large variation could be observed 
for winter hardiness in the two subpopulations tested in Austria 
2012 (h² = 0.71) and Eastern Canada 2018 (h² = 0.65) (Figures 
1A, B), whereas the subpopulation average in the latter was 
about 1.3 scoring points higher, though likewise slightly skewed 
towards increased winter hardiness. The distribution in both 
environments was furthermore slightly bimodal, which was 
associated with different haploblock allele at the Fr-A2 locus 
(Supplement Figure S3). A significant negative correlation was 
detected between winter hardiness and grain yield in Eastern 
Canada 2018, i.e., the grain yield of the more winter hardy lines 
was by trend higher (Table 1). Earlier flowering lines appeared 
furthermore to be more winter hardy under the low temperature 
stress conditions in Eastern Canada. The relationship with 
anthesis as well as grain yield became, however, non-significantly 
different from zero when correlating the winter hardiness of the 
line with their performance values obtained in the absence of low 
temperature stress in Central Europe 2018. Artificially induced 
low temperature stress conditions in the climate chamber 
experiment 2017 resulted also in high-quality phenotypic data 
with h² = 0.98 and covered the entire variation for frost tolerance; 
ranging from hardly any frost damage to complete frost kill 
(Figure 1C). Hence, the phenotypic data had the necessary 
high quality that was required for further studying the potential 
of genomic selection for the difficult and costly to assess frost 
tolerance and winter hardiness.

Marker-Assisted and Genomic Prediction 
for Winter Hardiness and Frost Tolerance
The merit of genomic prediction was firstly assessed by using 
a resampling scheme within the subpopulations tested for 
winter hardiness 2012 and frost tolerance 2017. The prediction 
accuracy for genomic selection was substantially higher 
than the one for marker-assisted selection with 21 randomly 

TABLE 1 | Correlation between winter hardiness scoring and other agronomic traits of the 110 lines tested under low temperature stress conditions in Eastern Canada 
and in the absence of low temperature stress in Central Europe 2018.

Grain yield Protein content Plant height Anthesis date

Non-stressed conditions −0.078 −0.322* −0.270* −0.055
Stressed conditions −0.407* −0.138 −0.348* 0.278*

Winter hardiness was rated on a 1-9 scale (1= very good winter survival, 9 = complete winter kill).
*significant at the 0.01 probability level.

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org


Genomic Selection for Frost ToleranceMichel et al.

6 October 2019 | Volume 10 | Article 1195Frontiers in Plant Science | www.frontiersin.org

chosen markers in both datasets (Figure 2). Notwithstanding, 
almost the same level of prediction accuracy could be achieved 
for winter hardiness by marker-assisted prediction with 21 
preselected (rMAS = 0.459) as by a genomic prediction that 
featured more than a thousand markers (rGS = 0.527). A similar 
observation could be made for the prediction of frost tolerance, 
where marker-assisted prediction with preselected markers 
performed merely slightly worse (rMAS = 0.563) than genomic 

prediction (rGS = 0.585). The latter could be additionally 
improved by modelling the haploblock CNV Fr-A2(S), 
associated with the copy number variation at the Fr-A2 
locus, as a fixed effect (rwGS = 0.626). Modelling a haploblock 
suggested by Sieber et al. (2016) was furthermore beneficial 
as CNV Fr-A2(S) explained a larger proportion of the genetic 
variance (ρG = 20.1%) than its component markers S2269949 
(ρG = 16.3%) and S1077313 (ρG = 13.0%). The haploblock CNV 

FIGURE 1 | Violin plots showing the distribution of the assessed line performance for winter hardiness in Austria 2012 (A) and Eastern Canada 2018 (B) as well as 
for the frost tolerance in the climate chamber experiment 2017 (C). 

FIGURE 2 | Prediction accuracy assessed by cross-validation within the two subpopulations phenotyped for winter hardiness 2012 (A) and frost tolerance 2017 
(B). The number of genome wide (I) and chromosome-wise (II) preselected and randomly chosen markers to train prediction models for marker-assisted selection 
(MAS) varied between 1 and 21, whereas the merit of genomic selection (GS) was assessed by all markers as well in weighted genomic prediction models (wGS) 
modelling either the haploblock CNV Fr-A2(S) (Sieber et al., 2016) or CNV Fr-A2(W) (Würschum et al., 2017) as additional fixed effects.
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Fr-A2(S) suggested by Würschum et al. (2017) did on the other 
hand not explain a larger proportion of genetic variance (ρG = 
12.6%) than its component marker S1862541 (ρG = 13.9%) in 
the study at hand, most likely due to ambiguous allele calls for 
the other involved marker S1298957 within the investigated 
breeding germplasm.

The effect of the haploblock CNV Fr-A2(S) could 
furthermore be validated in an independent validation using 
the winter hardiness data collected in Eastern Canada 2018 
(Figure 3). Upweighting the effect of CNV Fr-A2(S) in the 
prediction models increased the prediction accuracy merely 
marginally (rwGS = 0.592) in comparison to the basic GBLUP 
model (rGS = 0.588) when training models with frost tolerance 
data. The accuracy of predictions based on winter hardiness 
was generally lower (rGS = 0.398) but could be improved in 
a WBLUP model (rwGS = 0.410). Combining GEBVs for 
both traits by a genomic selection index of the respective 
WBLUP models resulted furthermore beneficial in the 
highest prediction accuracy among the investigated models 
(rGS = 0.596). Additionally, the coefficient of variation for the 
repeated estimates of the prediction accuracy was reduced in 
the last case, indicating that employing a genomic selection 
index might lead to more stable and robust performance 
predictions for winter hardiness. The same pattern could be 
observed for the marker-assisted prediction with a subset of 
21 preselected markers, with which the genomic selection 
index was nearly as accurate as with the entire set of 1,413 
markers available in this study (rMAS = 0.527). It has to be 
noticed though that the marker subsets mostly differed 
between the training populations phenotyped either for 
winter hardiness and frost tolerance so that the actual number 
of employed markers varied in this scenario between 39 and 
42. Nevertheless, the result gave a strong indication that it is 
feasible to drastically reduce the marker number and at the 
same time maintain a high prediction accuracy.

DISCUSSION

The frost tolerance locus Fr-A2 has been established as a major 
column in the genetic architecture of winter hardiness and 
frost tolerance in wheat (Vágújfalvi et al., 2003; Båga et  al., 
2007; Knox et al., 2010; Zhu et al., 2014; Kruse et al., 2017). 
Targeting the copy number variation at Fr-A2 for marker-
assisted selection poses, however, a challenge when using SNP-
based genotyping platforms. Hence, building haploblocks by 
combing two markers associated with the expression strength 
of the putatively causal gene CBF-14 has been suggested both 
for durum (Sieber et al., 2016) and winter wheat (Würschum 
et al., 2017). The explained genetic variance of the suggested 
haploblock CNV Fr-A2(S) was likewise larger than by their 
component markers in the study at hand, especially for the 
subpopulation assessed in the climate chamber experiment 
2017 (ρG = 20.3%). The merit of the haploblock CNV Fr-A2(S) 
was though much smaller in explaining the genetic variance for 
winter hardiness in the field trials from 2012 (ρG = 3.0%), but 
again larger in the independent validation population tested 
in Eastern Canada 2018 (ρG = 9.2%), which suggests a complex 
interaction of multiple factors determining winter survival in 
these trials aside from frost tolerance. Genomic prediction 
with genome-wide distributed markers resulted thus in higher 
prediction accuracies than marker-assisted prediction with 
few significant markers as reported beforehand (Zhao et  al., 
2013; Würschum et al., 2017). Additionally upweighting the 
effect of certain markers in genomic prediction models can be 
worthwhile if their linkage to large effect QTL is known (Rice 
and Lipka, 2019), which has, e.g., been demonstrated for the 
Fr-R2 locus associated with winter survival in rye (Erath et al., 
2017) and could be verified for Fr-A2 in winter wheat in the 
study at hand (Figure 2).

Nevertheless, the advantage of integrating the haploblock CNV 
Fr-A2(S) as fixed effects into the prediction models was rather small 

FIGURE 3 | Prediction accuracy for winter hardiness in the independent validation population (2018) using either winter hardiness data (2012) or frost tolerance 
records (2017) for model training as well as for combining the respective genomic estimated breeding values by a genomic selection index. Prediction models 
for a marker-assisted selection (MAS) were trained by using only the haploblocks CNV Fr-A2(S) (Sieber et al., 2016) and CNV Fr-A2(W) (Würschum et al., 2017) 
or a chromosome-wise preselected set of markers, while the models for genomic selection (GS) were based on all genome-wide distributed markers as well as 
modelling either the haploblock CNV Fr-A2(S) or CNV Fr-A2(W) as additional fixed effects in weighted genomic prediction models (wGS).
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in the independent validation, while the prediction accuracy was 
generally lower for this scenario (Figure 3). Independently testing 
the reliability of genomic predictions is thus advisable especially 
in practical applications for a complex trait like winter hardiness. 
A decrease in accuracy is a common problem when genomically 
predicting across subpopulations tested in different years and is 
caused among others by genotype–environment interaction as well 
as an increase in genetic distance between training and validation/
selection population (Michel et al., 2016; Schrag et al., 2019). A 
lower accuracy was thus achieved in the independent validation 
when training prediction models with the genetically more distant 
subpopulation assessed for winter hardiness 2012 in comparison 
to the genetically closer training population phenotyped for frost 
tolerance 2017 (Supplement Figure S2). Several genomic breeding 
strategies can accordingly be envisaged to select for winter hardy 
breeding lines. The primary alternative would be to regard the winter 
hardiness complex as the target trait and directly train prediction 
models with phenotypic data collected in field trials, which would 
take into account abiotic factors like freezing temperatures or the 
presence/absence of a snow cover as well as biotic factors like snow 
mold diseases (Kruse et al., 2017) that might though vary in their 
respective importance in different trials and years (Fowler et al., 
1977). Updating prediction models can furthermore be difficult in 
this scenario due to the previously mentioned problems like the 
irregular occurrence of winter damage in the field, while testing 
by subcontractors in specific locations known for a more regular 
occurrence of low temperature stress might be costly but does not 
guarantee successful experiments. The second alternative would be 
the assessment of frost tolerance in climate chamber experiments, 
which can though be laborious and might be costly, especially when 
initially phenotyping a larger panel of breeding lines to set up a 
training population. Such frost tests are though reliable in delivering 
high-quality phenotypic data once a protocol is established, and can 
be employed for a regular prediction model update with a convenient 
number of “key individuals” like important crossing parents. A third 
combined strategy could lastly be envisaged if phenotypic records 
from both the field and climate chamber are available in a breeding 
program as in this study. Given the correlation between winter 
hardiness assessed in field trials and frost tolerance in controlled 
experiments (Gusta et al., 2001; Erath et al., 2017), combining these 
traits by a selection index can cover their separate as well as common 
aspects and enables thus a selection on the total net merit. 

The benefit of this method was particularly apparent in the 
marker-assisted prediction with preselected markers (Figure 3). It 
has to be noticed though that marker-assisted prediction with few 
significant markers can suffer from low prediction accuracy, genetic 
hitchhiking, and quick fixation of favorable alleles. Larger sets of about 
20 markers can, on the other hand, already distinguish more than 1 
million different combinations, assuming loci are independent, and 
sampling them systematically from the entire wheat genome resulted 
in a similar accuracy as for genomic prediction. The chromosome-
wise sampling of the most significant markers and selecting among 
them in a second step was specifically tailored for this study, as it 
has been shown that frost tolerance in wheat is influenced by loci 
on at least 10 different chromosomes (Veisz and Sutka, 1998). 
Notwithstanding, it can be speculated that the implementation of 
targeted GBS techniques and the development of custom SNP arrays 

might generally take advantage of such marker selection methods 
(Cericola et al., 2017; Abed et al., 2018; e Sousa et al., 2019), where 
several traits have to be considered simultaneously resulting usually 
in final markers sets of a few hundred instead of thousands of markers. 
The risk of hitchhiking and allele fixation is accordingly reduced in 
such a genomic breeding strategy, while the optimal marker set has 
to be most likely customized for every breeding program. 

Considering multiple traits simultaneously can thus be 
advantageous for developing an optimal marker set, but it is 
certainly necessary for identifying breeding lines with a desired 
combination of traits, which is often challenging, e.g., in the 
presence of negative trade-offs between major agronomic traits like 
grain yield and protein content (Rapp et al., 2018; Thorwarth et al., 
2019). Regarding winter hardiness and grain yield in this context; 
it can be expected that more winter hardy cultivars will also have a 
higher grain yield at the end of the season if low temperature stress 
conditions have occurred during the winter (Bergjord Olsen et al., 
2018) as observed within the subpopulation of breeding lines tested 
in Eastern Canada 2018. However, it has been stated that winter 
hardy and frost-tolerant genotypes possess a lower yield potential 
in years without freezing conditions (Sãulescu and Braun, 2001). 
The winter 2017/2018 in Eastern Europe was characterized by 
the absence of such prolonged periods of low temperature stress; 
however, no significant correlation could be observed between the 
assessed grain yield in Eastern Europe 2018 and winter hardiness 
in Eastern Canada 2018 (Table 1). Caution must be though taken 
in the interpretation of this result as severe drought stress afflicted 
Europe in the cropping season 2017/2018, and the correlation was 
based on a relative limited number of 130 breeding lines from 
the same breeding program. Nevertheless, when assembling a 
broader population with adaptation to different environments 
,a negative correlation between winter hardiness and grain yield 
can be assumed as indicated in a diverse panel of European winter 
wheat lines that was assessed both for yield components and 
winter hardiness (Würschum et al., 2017; Würschum et al., 2018). 
Lines that originated from France and the United Kingdom had a 
much higher spike fertility than lines from Austria, Poland, and 
the Czech Republic (Würschum et al., 2018). The lines with the 
latter origins have though been reported to possess a higher winter 
hardiness than the lines from the mentioned North Western 
European countries (Würschum et al., 2017) as, e.g., lines from the 
United Kingdom are generally higher yielding though less winter 
hardy as low temperatures are not a major restriction in many 
growing areas of Great Britain. Hence, the relationship between 
winter hardiness and grain yield is most likely dependent on the 
investigated set of lines and their adaptation with regard to winter 
hardiness and photoperiod sensitivity to specific environments 
(Gorash et al., 2017). A trade-off between grain yield and frost 
tolerance was also regularly seen during routine applications of 
genomic selection in the breeding program from which the here 
presented data were derived. This trade-off expressed itself as 
a frequently observed unfavorable correlation between GEBVs 
for grain yield and frost tolerance, especially when the entire 
training population employed for the prediction of grain yield was 
genetically much broader than the populations used in the study 
at hand. Caution has accordingly to be taken when conducting 
genomic selection for winter hardiness and frost tolerance, and the 
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usage of genomic selection indices with restrictions or adjusting 
GEBVs of winter hardiness for grain yield by the residual method 
(Hänsel, 2001) are possible tools for identifying breeding lines that 
possess good winter hardiness relative to their yield potential.

CONCLUSIONS

The focus of this study laid on genomic breeding for winter hardiness 
and frost tolerance in bread wheat. Genomic prediction showed large 
potential for the selection of these difficult, costly, and laborious to 
phenotype traits especially when upweighting the effect of the copy 
number variation at the Fr-A2 locus and combining predictions in 
a genomic selection index. The prediction accuracy could moreover 
be maintained with reduced sets of preselected markers, which is 
of high relevance when employing cost-reducing fingerprinting 
techniques such as targeted GBS. A genomic selection of either 
the best performing lines or a negative selection against the least 
winter hardy can thus be routinely conducted every year, whereas 
the absence or irregular occurrence of winter damage in field trials 
impedes an efficient phenotypic selection for winter hardiness. The 
large advantage of implementing genomic selection is therefore the 
availability of information about line performance when conducting 
selection decision in early generations, which can be used either 
to maintain or improve this agronomic trait depending on the 
importance of winter hardiness in a given breeding program.

AUTHOR'S NOTE

Genomic predictions for winter hardiness and frost tolerance 
allow a yearly selection in 14 early generations for these difficult, 
laborious and costly to phenotype traits.
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