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Grasses and related commelinid monocot species synthesize cell walls distinct in 
composition from other angiosperm species. With few exceptions, the genomes of all 
angiosperms contain the genes that encode the enzymes for synthesis of all cell-wall 
polysaccharide, phenylpropanoid, and protein constituents  known in vascular plants. 
RNA-seq analysis of transcripts expressed during development of the upper and lower 
internodes of maize (Zea mays) stem captured the expression of cell-wall-related genes 
associated with primary or secondary wall formation. High levels of transcript abundances 
were not confined to genes associated with the distinct walls of grasses but also of 
those associated with xyloglucan and pectin synthesis. Combined with proteomics data 
to confirm that expressed genes are translated, we propose that the distinctive cell-wall 
composition of grasses results from sorting downstream from their sites of synthesis in 
the Golgi apparatus and hydrolysis of the uncharacteristic polysaccharides and not from 
differential expression of synthases of grass-specific polysaccharides.

Keywords: maize (Zea mays), cell-wall structure, cell-wall synthesis, type II cell walls, gene annotation, gene 
expression, stem development

INTRODUCTION

The primary walls of all angiosperms are assembled from scaffolds of cellulose microfibrils interlaced with 
hemicellulosic xyloglucans (XyGs), (glucuronoarabino)xylans (GAXs), and (gluco)mannans (Scheller 
and Ulvskov, 2010), and embedded in an independent but coextensive matrix of pectic polysaccharides 
(McCann and Roberts, 1991; Caffall and Mohnen, 2009). Primary cell walls of angiosperm species are 
classified into two types (Carpita and Gibeaut, 1993). XyGs are the major hemicellulose in the type I 
walls of dicots and noncommelinid monocots and contain an abundance of HG and RG-I pectic 
polysaccharides (Caffall and Mohnen, 2009; Scheller and Ulvskov, 2010). In contrast, type II walls of 
grasses and other commelinid monocots contain mostly hemicellulosic GAX of varying degrees of side 
branching but have little pectin (Carpita and Gibeaut, 1993). A (1→3),(1→4)-β-D-glucan (mixed-
linkage β-glucan) is found in Poales at certain stages of primary wall formation. Small amounts of XyG 
are also found with side chains terminated by galactose and no detectable Fuc (Carpita et al., 2001). 
Type I walls incorporate predominantly Hyp- and Gly-rich structural proteins at the end of growth to 
reinforce the wall into final shape, whereas this reinforcement is supplied by a phenylpropanoid network 
in the type II wall (Carpita, 1996). This distinction results in strong autofluorescence in the primary wall 
in addition to that seen in vascular tissue (Rudall and Caddick, 1994). A fraction of the phenolic material 
is saponifiable, yielding ferulic and p-coumaric acid and its dimers (Carpita, 1986), but a substantial 
amount of the aromatic material is nonsaponifiable hydroxycinnamic acids and their ethers (Scalbert 
et al., 1985). During vascular development and the formation of a thickened rind of the stem, cellulose, 
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glucuronoxylans (GXs), and GAX become embedded in lignin 
(Carpita, 1996).

The genome sequences of Arabidopsis (Arabidopsis thaliana; 
Arabidopsis Genome Initiative, 2000), rice (Oryza sativa; 
International Rice Genome Sequencing Project, 2005), and maize 
(Zea mays cv. B73; Schnable et al., 2009) enabled comparative 
genomic analyses of cell-wall-related genes of two grass species 
with a typical eudicot, Arabidopsis. About 60% of Arabidopsis 
genes are annotated with predicted functions (Swarbreck et al., 
2008). Based on sequence similarities, the Carbohydrate-Active 
enZYme database comprises families of glycosyl transferases 
(GTs), glycosyl hydrolases (GHs), and other carbohydrate-
metabolizing enzymes (Lombard et al., 2014; http://www.cazy.
org/). We annotated over 750 maize homologs of these cell-wall-
related genes and assembled them into gene families predicted to 
function in cell-wall biogenesis (Penning et al., 2009).

We used phylogenetic comparisons of maize and rice gene families 
with those of Arabidopsis to characterize potential divergences that 
might explain the differences in composition between type I and 
type II walls. A further distinction in maize compared to other 
grasses is a recent genome duplication event (Gaut and Doebley, 
1997). We find that many of these paralogous genes were retained, 
but loss of genes resulted in splitting of a single-gene function 
between paralogs (subfunctionalization), new function in a paralog 
gene (neofunctionalization), or a combination of both events 
(subneofunctionalization) to a greater extent in maize than other 
grasses (Penning et al., 2009). Copy-number and presence–absence 
variation has resulted in retention of both paralogs, only one of 
them, or neither of them (Springer et al., 2009; Swanson-Wagner 
et al., 2010). Since our previous study (Penning et al., 2009), we have 
developed a more robust annotation of nearly 1,200 maize genes 
and classified them into cell-wall-related gene families and their 
respective subgroups. In addition to families of substrate generation, 
cellulose and polysaccharide synthases, GTs, and cell-wall modifying 
enzymes, we broadened the inventory of cell-wall-related genes 
to include many new families involved in polysaccharide side-
group construction, proteases, glycosylphosphatidylinositol (GPI)-
anchored proteins, glycoprotein synthesis, and signaling. We show 
here that, with few exceptions, the composition of gene families of 
any angiosperm species and levels of expression of their members 
are not clearly correlated with wall composition.

As the gene families had almost equal representation of all genes 
associated with cell-wall synthesis, we explored whether maize 
differential expression of these genes was correlated with the type 
of wall made. We established differential expression profiles of 
rind tissues from developing maize stem internodes representative 
of primary wall versus secondary wall formation to classify highly 
expressed members of these families. From these data, we could 
establish if Arabidopsis homologs closest in sequence were expressed 
in a similar primary or secondary wall context and, thus, could be 
considered functional orthologs. The number of potential orthologs 
with Arabidopsis genes, based on common expression during 
primary or secondary wall formation of the most similar sequences, 
was limited. However, we found robust expression of maize genes not 
only encoding synthases of GAX and mixed-linkage glucans but also 
those encoding synthases of the pectic polysaccharides, RG-I and 
HG, and of XyGs—polysaccharides that are only minor constituents 

of the maize cell wall. Although one cannot infer that expression 
of a gene necessarily results in translation of their corresponding 
proteins, our recent analyses of the glycome and proteome of maize 
Golgi demonstrates unequivocally that the relevant biosynthetic 
enzymes are present and that substantial amounts of the pectins and 
XyGs accumulate in the cisternae of this organelle (Okekeogbu et al., 
2019). Thus, we propose that cell-wall composition is determined 
by mechanisms in sorting or metabolism of polysaccharides 
downstream from Golgi-based synthesis.

MATERIALS AND METHODS

Sequence Alignments and Dendrogram 
Development
Sequence alignments and phylogenetic trees were constructed as 
described by Penning et al. (2009). Dendrograms were assembled 
from protein-coding sequences by the neighbor-joining method 
in ClustalW (Saitou and Nei, 1987; Chenna et al., 2003). The trees 
were bootstrapped 1,000 times. After the initial multiple alignment, 
individual clade alignments were checked using Multalin (Corpet, 
1988; http://www-archbac.u-psud.fr/genomics/multalin.html). 
Matches to conserved regions within groups of family clades with 
suspect alignments were manually checked using InterProScan 
(Zdobnov and Apweiler, 2001; http://www.ebi.ac.uk/Tools/
InterProScan/), and nonmatching members of the families were 
removed. Dendrograms were drawn using TreeDyn (Chevenet 
et al., 2006; http://www.treedyn.org/).

Protein Motif Analyses
Sequence locations and distances were verified using the Gbrowse 
designed for rice (http://www.jcvi.org), Arabidopsis (http://www.
arabidopsis.org), and our custom maize annotation database 
comprising proteins from maize version 2 WGS (www.maizeGDB.
org), using the largest representative transcript of each gene. We also 
used the Phytozome Protein domain FAMilies/Kyoto Encyclopedia 
of Genes and Genomes descriptions (https://phytozome.jgi.doe.
gov/pz/portal.html), which were in general agreement with our 
maize cell-wall protein database at the Maize Genetics and Genome 
database, but our manual annotations based on phylogenetic trees 
constructed with the most similar Arabidopsis and rice sequences 
refined specific gene descriptions. We have augmented the public 
database at Maize Genetics and Genome for improved annotation 
of maize cell wall protein families (https://www.maizegdb.org/
gbrowse/maize_v2test?l=CellWallGenes;l=Gene_models;q= 
Chr1:2650000.2699999). This resource is also posted at http://
cellwall.genomics.purdue.edu.

Expression Analysis
Seeds of maize (Z. mays cv. B73) were obtained from the Maize 
Genetics Cooperation Center at Champaign, IL, and propagated 
and grown at the Purdue University Agricultural Center for 
Research and Education (West Lafayette, IN). Stem elongation 
began at the fifth-leaf stage and culminated with tassel formation 
10 weeks postplanting. At 49-day postplanting, rind tissues of 
internodes 4–8 from a minimum of three plants were excised 
aseptically and immediately plunged in liquid N2 and pulverized 
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by mortar and pestle under additional liquid N2. Approximately 
2 mg of ground tissue was incubated with 1 ml of ice-cold TRIzol 
reagent (Invitrogen, Life Technologies) and extracted according to 
the manufacturer’s directions. Purified RNA was dissolved in 100 
µl of diethyl pyrocarbonate-treated nanopure water, and quality and 
concentration were determined spectrophotometrically. Internode 7 
failed a quality control analysis for expression of a set of housekeeping 
genes (Sekhorn et al., 2011) and was excluded from further analysis.

Sections of each internode were frozen to −80°C in Neg 50 
section medium (Richard-Allan Scientific, Kalamazoo, MI) and 
cross-sectioned to a thickness of 100 µm using a Microm HM550 
Cryostat (Richard-Allan Scientific) at −20°C. Sections were thawed, 
rinsed with water, and stained using 2% w/v Wiesner’s solution 
(phloroglucinol) in a 1:1 mixture of methanol and 50% HCl (v/v), 
freshly diluted to 5% in water. Images were taken using a SPOT 
Insight FireWire 4 Megasample Color Mosaic Camera (SPOT 
imaging systems, www.spotimaging.com) attached to a Nikon SMZ 
1500 stereomicroscope (Nikon Corporation, Kanagawa, Japan) 
using a variable objective lens set to 10×. Images were captured using 
SPOT Advanced software version 4.1 (SPOT imaging systems).

Expression analysis was carried out as previously described 
(Penning et al., 2014). Briefly, pooled RNA samples from three 
biological replicates were sequenced using an Illumina HiSeq 2000 
to process 100 bp × 100 bp libraries of ~400-bp inserts. High-quality 
trimmed sequences were mapped to the Maize B73 sequence V2 from 
Plant GDB (http://www.plantgdb.org) using Bowtie2 (Langmead 
et al., 2009), except in instances where the reads mapped exactly to 
two genes due to the high degree of gene duplication in maize. A 
custom Perl script was used to split these reads between the two loci 
(Penning et al., 2014). A separate set of Perl scripts was used to add 
closest Arabidopsis gene by sequence with description and expect 
value to the file. One read per million (20 reads per 20 M reads) or 
greater was used as a threshold for the detection of transcript (Li 
et al., 2010; Chang et al., 2012). RNA-seq data are available at https://
www.ncbi.nlm.nih.gov/sra/PRJNA522448 (datasets: SRX5387736, 
SRX5387731, SRX5387711, SRX5387715).

RESULTS

Annotation of Gene Function
General gene functions in encoding the enzymes of nucleotide 
sugar interconversion and transport, of polysaccharide synthases 
and glycosyl transferases, and those that encode their hydrolases 
and lyases have been inferred primarily from sequence similarity 
with bacterial genes of similar functions (Lombard et al., 2014). 
Bioinformatic approaches have extended predictions of gene 
function across eukaryotic species as increasing numbers of genomes 
became available. Phytozome, the Plant Comparative Genomics 
portal of the Department of Energy’s Joint Genome Institute (https://
phytozome.jgi.doe.gosv), provides the plant science community 
with a large assembly of genomes from the JGI-sequencing initiative 
and those publicly available from other resources (Goodstein et al., 
2012). Gene sets are best annotated using the Phytozome Protein 
domain FAMilies/Kyoto Encyclopedia of Genes and Genomes 
platforms and complemented with assignments by InterPro protein 
analysis tools that more closely predict function. Nevertheless, these 

remain hypothetical in the absence of biochemical or cell biological 
characterizations. Functional annotation has been facilitated by the 
identification of mutants representative of the different subgroups 
within the large gene families of glycosyl transferases and hydrolases. 
Some of these show chemical and spectroscopic signatures resulting 
from modified polymer fine structure that does not otherwise affect 
plant growth or development (Carpita and McCann, 2015).

The three angiosperms examined, Arabidopsis, rice, and maize, 
had members represented in every family of cell-wall-related genes. 
Within large families common to grasses and dicots, subgroup 
structure indicated putative orthology based on high sequence 
similarity of genes and similar patterns of expression at elongation 
and primary wall synthesis versus secondary wall synthesis stages of 
stem development. However, in other subgroups, grasses displayed a 
marked divergence from Arabidopsis in the number of members and 
degree of sequence similarity of homologs within a family subgroup, 
or even the presence or absence of grass-specific subgroups. 
Examples of all three of these characteristics are observed in the 
subgroup structure of the cellulose synthase (CesA)/cellulose-
synthase-like (Csl) superfamily, where putative orthologs can be 
identified for the CesA and CslD subgroups, divergence of rice and 
maize CslAs from those of Arabidopsis, and grass-unique subgroups 
of CslF and CslH from Arabidopsis-only subgroup CslB (Figure S1).

Gene Expression During Stem 
Development
An estimate of potential functional orthology is obtained 
by comparative gene expression during the same stages of 
organ development. For grasses, stem elongation begins 
in basal internodes and progresses sequentially in upper 
internodes, culminating with flowering. In field-grown 
maize, internode development begins about the fifth-leaf 
stage at ~35 days postplanting and culminates with tasseling 
~10 weeks. Stem elongation rates peak ~7 weeks (49 days), 
when lower internodes 4 and 5 have ceased elongation and the 
cells of the rind are more actively engaged in secondary wall 
formation and lignification, while internodes 6 and 8 continue 
elongation and transition to secondary wall formation. The 
rind constitutes the outer rings of vascular bundles with fibers 
to form distinct bands of cells ~0.5 cm thick that peel from the 
pith core during late development (Figure 1). To evaluate gene 
expression across the internodes, we used ≥95 reads per 20 M 
from the four internodes as a minimal criterion of expression. 
Furthermore, we used ≥500 reads per 20 M as a criterion to 
evaluate expression ratios from the elongation stages versus 
secondary wall forming stages of rind development (Table 
S1). From RNA-seq analysis of rind tissues from these four 
internodes, we found an expression ratio of 2 or higher in 
transcript abundance in lower internodes compared to upper 
internodes to be a suitable indicator of expression related to 
secondary wall formation. Conversely, ratios <1 indicated 
genes more associated with primary wall formation during 
internode elongation.

Although an expression ratio of ≥2 was consistent with 
association with secondary wall formation, a large proportion 
of the transcript ratios fell between 1 and 2, indicating more 
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complicated expression patterns, which we termed “transitional” 
from primary wall formation to secondary wall formation 
(Table  S1). We also summarized the expression behaviors of 
families and subgroups of families associated with specific 
polysaccharides, denoting the genes expressed during stages 
of primary wall formation, transitional, and secondary wall 
formation (Table 1). In general, genes of nucleotide sugar 
interconversion and transport are balanced across all three stages. 
More genes of XyG, glucomannan, mixed-linked β-glucan, and 
pectin synthesis are expressed during primary wall synthesis 
stages, but those of GAX are expressed across all stages. By 

contrast, genes of monolignol and lignin biosynthesis are highly 
expressed during secondary wall synthesis (Table 1).

As similar discriminations of gene expression related to 
primary and secondary wall formation were established in 
Arabidopsis (Brown et al., 2005), putative orthology could be 
established by function in the same developmental context rather 
than the homologs most similar in sequence. Using these criteria, 
we found that only one quarter of maize cell-wall-related genes 
expressed in stems during secondary wall development were 
putatively orthologous with those of Arabidopsis. A complete 
index of over 1,200 maize cell-wall-related genes, ratio of 

FIGURE 1 | Cell wall thickness and lignin content increase in rind tissues of maize internodes with developmental age. Phloroglucinol staining intensity increases 
from faint pink to dark red in stem sections from (A) an elongation stage internode (internode 8), (B) a transitional stage internode (internode 6), and (C) a secondary 
wall stage internode (internode 4). Scale bar, 1 mm.
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secondary/primary wall expression, and putative Arabidopsis 
orthologs is presented (Table S1).

Cellulose Synthase/Cellulose-Synthase-
Like Superfamily
The CesA/Csl superfamily comprises up to 10 distinct 
subfamilies that display divergent membership between grasses 
and Arabidopsis, with the CslB group not represented in the 
rice or maize genome and the CslF and CslH groups found 
only in grasses (Figure S1). CesA gene families of rice, maize, 
and Arabidopsis show similar subgroup structure (Figure 2A), 
and association within the same subgroup is indicative of 
a role in primary or secondary wall formation (Tanaka et al., 
2003; Appenzeller et al., 2004; Brown et al., 2005). We found 
that maize CesA1 through CesA9 and their paralogs were 
associated with elongation and primary wall synthesis stages of 
development, and CesA10 through CesA12 and their paralogs 
were associated with secondary wall formation (Figure 3A; 
Table S1). From their subgroup membership, those expressed 

exhibited a ratio of relative secondary to primary wall expression 
that indicated orthology with Arabidopsis for all but one of the 
17 CesAs expressed at ≥500 reads per 20 M. Five CesAs whose 
expression was regarded as “transitional” were homologous with 
Arabidopsis genes of similar sequence that were associated with 
primary wall formation.

Members of the CslA family in Arabidopsis and poplar 
encode proteins with (gluco)mannan synthase from GDP-Man 
and GDP-Glc substrates (Dhugga et al., 2004; Liepman et al., 
2007). Apart from a few exceptions, maize and rice CslA genes 
diverged markedly in sequence similarity from Arabidopsis 
genes (Figure 2B; Figure  3B). All 10 maize CslA genes were 
expressed at ≥95 reads per 20 M, but expression was either 
constitutive or higher during primary wall formation (Figure 
3B; Table S1). However, because of the divergence from 
Arabidopsis of the genes in this family, only a single CslA2 gene 
could be considered potentially orthologous.

Among angiosperm species, the mixed-linkage β-glucans 
were found only in abundance in the cell walls of Poales species 

TABLE 1 | Expression profiles of maize genes in family subgroups of cell-wall-related functions. 

Cell Wall function Number of Genes
(Number expresssed)1

Elongation Transitional Secondary

Sucrose Synthases 8(8) 4 3 1
Nucleotide sugar interconversion 46(39) 12 8 12
Nucleotide sugar transporters 65(58) 20 15 15
Cellulose synthases (CesAs) 20(19) 6 5 6
GAX synthesis
 GT8A (GUX) 7(6) 2 2 0
 GT8C (GATL) 10(7) 3 2 1
 GT43 16(14) 0 6 6
 GT47E 11(10) 4 1 4
 GT61 33(22) 7 3 6
XyG synthesis
 CslC 8(6) 6 0 0
 GT34 (XXT) 18(6) 3 0 0
 GT37 (FUT) 17(4) 1 0 1
 GT47A 23(5) 3 1 0
(Gluco)mannan synthesis
 CslA 10(10) 8 1 0
 GT106B (MSR) 6(6) 6 0 0
Mixed-linkage β-glucan synthesis
 CslF 9(7) 4 0 1
 AGP/N-Glyc/HRGP-like
 AGP/Fasciclin 10(7) 3 0 2
 GT31 40(34) 18 6 3
 GT77 23(12) 4 1 1
ER/Golgi resident 41(37) 27 4 1
Pectin Synthesis
 GT8D (GAUT) 23(23) 16 3 2
 GT106A(RRT), GT106C(PAGR), and D 16(13) 6 3 1
 GT47B 9(8) 6 2 0
Polygalacturonases 47(19) 8 3 1
Acetyl-transferases (TBL/BAHD) 77(59) 20 13 6
GPI-anchored proteins (COB/SKU) 22(15) 9 1 1
Expansins/XTHs 87(41) 23 4 4
Monolignol Synthesis 100(71) 17 7 30
Peroxidases/Laccases 148(67) 26 7 15

1Total expression ≥95 reads per 20 M; expression ratios calculated for those with ≥500 reads per 20 M.
Ratio of transcripts from rind tissue of internodes 4–5 (secondary): internodes 6 and 8 (elongation) for genes expressed at ≥500 reads per 20 M were classified as elongation 
(≤1.04), transitional (1.05–1.94), and secondary (≥1.95) expression. A complete collection of the genes we annotated, including potential Arabidopsis orthologs is given in Table S1.
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FIGURE 2 | Genes of the cellulose synthase (CesA) and two subgroups of the cellulose-synthase-like (Csl) family for Arabidopsis, rice, and maize. (A) CesA genes. 
(B) CslA genes. (C) CslF genes.

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org


Cell Wall Genes of GrasssesPenning et al.

7 October 2019 | Volume 10 | Article 1205Frontiers in Plant Science | www.frontiersin.org

(Smith and Harris, 1999), but more recent studies reported 
immunocytochemical evidence for small amounts of these 
β-glucans in species outside the Order Poales (Trethewey et al., 
2005). The CslF and CslH genes that encode the synthases of the 
mixed-linkage β-glucans are found only in grass species (Burton 
et al., 2006; Doblin et al., 2009; Little et al., 2018). Subgroups 
CslJ and CslM have also been defined in the grasses but are 
represented outside the Poales (Little et al., 2018). Although CslF 

genes are numerous in maize and rice, CslH is not found in the 
B73 genome, and the single CslG gene cannot be distinguished as 
a separate subgroup from CslJ or CslM (Figure S1).

Seven of the nine maize CslF genes were expressed at ≥95 reads 
per 20 M, but five of them were expressed at levels to calculated 
expression ratios. Four of the five showed primary wall association, 
but a CslF5 was more strongly expressed during secondary 
wall formation (Figure 2C; Figure 3C). The mixed-linkage  

FIGURE 3 | Differential expression of key families of the maize B73 cellulose synthesis and cellulose-synthase-like superfamily. Expression ratio is calculated as the 
sum of the reads of internodes 4 and 5 divided by the sum of reads of internodes 6 and 8. The expression of maize family member genes is ordered by their ratio of 
expression in secondary cell wall forming tissue to elongating tissue (diamonds). Putative orthologs of Arabidopsis also involved in primary wall (blue) and secondary 
wall (red) synthesis. (A) Cellulose synthase (CesA) genes. (B) Cellulose synthase-like subgroup A (CslA) genes. (C) Cellulose synthase-like subgroup F (CslF) genes.
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β-glucans are synthesized during primary wall formation in 
growing coleoptiles and are largely degraded at the end of 
elongation (Carpita et al., 2001), but these glucans can continue 
to be synthesized and persist during secondary wall formation 
(Vega-Sanchez et al., 2013).

Genes of Substrate Generation
All eight sucrose synthase genes were expressed, with only one 
associated with secondary wall formation (Table 1). Ten families 
of genes encode enzymes of nucleotide sugar interconversion 
pathways responsible for synthesis de novo of the major neutral 
and acidic monosaccharides for polysaccharide synthesis (Reiter 
and Vanzin, 2001; Yin et al., 2011). Apart from duplications in 
several maize families, genes are generally orthologous based 
on close phylogenetic relationships and common constitutive 
or primary wall stage expression patterns (Figure S2; Table S1). 
However, at least one member of each family is more highly 
expressed during secondary wall formation. Although UDP-Ara 
is synthesized in the pyranose form, a substantial portion of the 
Ara in cell wall polysaccharides is in the furanose form. Konishi 
et al. (2007) characterized reversibly glycosylated proteins 
(RGPs) as UDP-Ara mutases (UAMs) that interconvert UDP-
Arap and UDP-Araf. Downregulation of UAM expression results 
in arabinose deficiencies in both rice (Konishi et al., 2011) and 
Arabidopsis (Rautengarten et al., 2011). Nine maize homologs 
show high sequence similarity with four of the five Arabidopsis 
RGP (UAM) genes; three of these were highly expressed during 
secondary wall formation (Figure S2F; Table S1).

The large multigene family of nucleotide sugar transporters 
(NSTs) of plant species comprises six subgroups (Handford 
et al., 2004; Orellana et al., 2016). GONST1 of subgroup III has 
been defined as a GDP-Man transporter (Baldwin et al., 2001), 
although GDP-Fuc and UDP-Gal/UDP-Glc are transported by 
other members of this subgroup (Rautengarten et al., 2014); 
GONST1 channels substrate to sphingolipid glycosylation and 
not glucomannan synthesis (Mortimer et al., 2013). Subgroup II 
includes several UDP-Gal/UDP-Glc transporters (Norambuena 
et al., 2002), and the UDP-Gal transporter members of subgroup 
I, or the NST-KT clade, were shown in heterologous systems to 
have UDP-Rha/UDP-Gal transport activity (Rautengarten et al., 
2014). More recently, subgroup V has been shown to contain 
UDP-GlcA/GalA transporters (Saez-Aguayo et al., 2017) and 
subgroup VI to contain UDP-Araf transporters (Rautengarten 
et al., 2017). The maize genome has several NSTs in all six 
subgroups, including 18 UDP-Gal transporters and UDP-Xyl 
transporters from subgroup I, five UTRs from subgroup II, and 
20 GONST-, NST-, and UTR-like genes in subgroup III (Figure 
S3; Table S1). The majority of these were expressed constitutively 
or predominantly during primary wall formation, but, with the 
exception of group II, at least one member was highly expressed 
during secondary wall formation (Figure S3; Table S1).

Glucuronoarabinoxylan Synthesis
GAXs are the major noncellulosic glycans in the type II primary 
walls of grasses. The GAX polysaccharides comprise (1→4)-β-D-
xylan backbones with side groups of α-GlcA and α-4-O-Me-GlcA 
linked at the xylosyl O-2 position, and Araf residues linked either 

at the O-2 or O-3 position depending on species. The grasses 
show a predominance of substitution of Araf at the O-3 xylosyl 
residue, whereas in noncommelinid species, the Araf residues 
are at the O-2 position (Carpita and Gibeaut, 1993). However, 
the GAXs of all angiosperm species are capable of adding Araf 
residues to either or both of the O-2 and O-3 xylosyl units of the 
backbone (Carpita, 1996), indicating that genes encoding these 
transferase activities are expressed in grasses and dicots.

Synthesis of xylan backbones require two distinct members 
of family GT43, which encode the irregular xylem9 (IRX9) and 
IRX14 inverting-type xylosyl transferases (Brown et al., 2007; 
Wu et al., 2009; Smith et al., 2017). Xylan chain synthesis also 
requires participation of IRX10 and IRX10-like xylan xylosyl 
transferases of family GT47 subgroup E (Brown et al., 2009; 
Wu et al., 2010; Zeng et al., 2016). Within this same subgroup is 
FRA8, which is reported to encode a putative xylan-decorating 
glucuronosyl transferase (Zhong et al., 2005). These two distinct 
activities within the same GT47 subgroup underscore the need 
for a more thorough determination of specific function of 
members of the six subgroups of the GT47 family. Thus far, all are 
inverting-type glycosyl transferases, i.e., those that convert the 
α-D- or β-L-nucleotide sugar moiety into a β-D- or α-L-linkage 
in a polysaccharide, but members of different subgroups use 
different nucleotide sugars or polymer substrates in transferase 
reactions (Penning et al., 2009). Arabinosyl and xylosyl side 
groups are attached by family GT61 inverting-type transferases 
(Anders et al., 2012; Chiniquy et al., 2012).

Of the 16 maize IRX9 and IRX14 genes, 12 were highly 
expressed during stem development, 6 of which had expression 
ratios ≥2 (Figure 4A; Table S1). Similarly, of the 11 IRX10 genes 
in maize, 9 of them were expressed during stem development, 
and 4 IRX10-1 genes more highly expressed during secondary 
wall formation (Figure 4B; Table S1). The maize family GT61 
comprises 33 genes, 6 of which are expressed during secondary 
cell wall formation (Figure 4C; Table S1). Glucuronosyl residues 
are ubiquitous side groups of xylans, the sole sugar substituent 
of secondary wall xylans. These α-linked GlcA side groups are 
attached by GT family 8 subgroup A retaining-type glucuronosyl 
transferases (GUX) by members that display selectivity with 
respect to the periodicity of GlcA attachment along the xylan 
backbone (Mortimer et al., 2010). Six of seven maize GUX 
genes were expressed at ≥95 reads per 20 M, with four of them 
expressed constitutively (Figure 4D; Table S1). Members of 
GT8 subgroup C of galacturonosyl transferase-like (GATL) genes 
function to initiate GX synthesis through participation in the 
synthesis of a tetrasaccharide primer sequence (Lee et al., 2007). 
Maize GATL2 is homologous with the Arabidopsis PARVUS gene, 
which was constitutively expressed, whereas GATL7b showed 
high secondary wall expression (Figure 4E; Table S1).

In addition to the sugar side groups, xylans can have 
high degrees of acetylation, and the large family of trichome-
birefringence-like (TBL) and TBL-like genes encode acetyl 
transferase enzymes, at least some of which are involved 
specifically in acetylation of xylans (Gille and Pauly, 2012; 
Gao et al., 2017). The maize TBL family comprises 56 genes in 
five subgroups, with 7 additional genes related to reduced wall 
O-acetylation (RWA) and two homologs to Arabidopsis xyloglucan 
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FIGURE 4 | Differential expression of key families of the maize B73 glucuronoarabinoxylan synthesis. Expression ratios and putative Arabidopsis orthologs were determined 
as described in the legend of Figure 3. (A) Xylan synthases of family GT43. (B) Xylan xylosyl transferase of family GT47 subgroup E. (C) Arabinosyl and xylosyl transferase 
of side-chain attachment of family GT61. (D) Glucuronosyl transferases (GUXs) of GT8 subgroup A. (E) Galacturonosyl transferase-like (GATL) proteins of GT8 subgroup C.
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acetyl transferase9 (AXY9); a majority of these acetyl transferases 
were expressed constitutively or higher during primary wall 
formation (Table S1), but several exhibited particularly high 
expression during secondary wall formation (Figure S4). One 
of the hallmarks of the grass cell wall is the autofluorescence of 
the primary wall from a phenylpropanoid network integrated 
with xylans. Ferulic acid and p-coumaric acid are known to be 
extended from arabinosyl residues of GAX, and the BAHD family 
contains CoA-dependent transferases thought to participate in 
addition of these hydroxycinnamic acids (Rautengarten et al., 
2012; Molinari et al., 2013). The maize BAHD family numbers 
12 genes, of which 3 are highly expressed during secondary wall 
formation (Figure S5; Table S1).

Xyloglucan Synthesis
The principal cross-linking glycans of dicots and noncommelinid 
monocots are XyGs, whose fundamental structure is a 
(1→4)-β-D-glucan backbone branched at the O-6 by α-D-Xyl 
residues (Carpita and Gibeaut, 1993). In most angiosperms, 
including Arabidopsis, three consecutive glucosyl residues of 
every four in the backbone are subtended by Xyl residues, and 
the two Xyl residues closer to the reducing end of the backbone 
can be substituted further at the O-2 of one or both positions 
with β-D-Gal residues (Scheller and Ulvskov, 2010). If a Gal 
residue subtends the Xyl residue closest to the reducing end, an 
α-L-Fuc is likely to be added to the Gal O-2 position. The glucan 
backbones of XyGs of grasses are irregularly branched with one 
or two Xyl residues, and these contain an occasional Gal residue 
(Carpita, 1996).

From heterologous expression experiments, genes of the CslC 
subgroup likely encode the XyG glucan backbone synthases 
(Cocuron et al., 2007), and genes of the GT34 family encode 
the XyG xylosyl transferases (XXTs) (Cavalier et al., 2008; 
Zabotina et al., 2012). The mur3 mutation was traced to a gene 
encoding a xyloglucan galactosyl transferase (GalT) in family 
GT47 subgroup A, whose product decorates the xylosyl residue 
closest to the reducing end of the oligomer unit (Madson et al., 
2003), and the subgroup A homolog GalT decorates the “middle” 
xylosyl residue (Kong et al., 2015). When a Gal is added to the 
first Xyl residue, it becomes a possible substrate for a family 
GT43 transferase that fucosylates it (Vanzin et al., 2002).

Despite small amounts of the truncated form of XyGs that 
accumulate in the walls of maize and other grasses, these species 
have the capacity to synthesize a fucosylated XyG. The maize 
genome contains eight CslC genes and expressed six of them 
(Figure 5A; Table S1). Expression of all six was associated with 
primary wall formation. Only one of these genes, CslC5a, had 
an expression profile and sufficient sequence similarity with 
Arabidopsis to be considered a potential ortholog. The maize 
genomes possess 17 Family GT34 XXT and XXT-like genes 
(Figure 5B; Table S1). The more highly expressed members 
of the family had expression ratios that indicated association 
with primary wall XyG synthesis. The maize genome also has 
22 members of family GT47 subgroup A that encodes the XyG-
specific Gal transferases, four of which were highly expressed at 
early stages of stem development. Three of them are putatively 
orthologous to MUR3 (Figure 5C; Table S1). Despite the lack 

of detectable fucosylation of XyGs of grasses, maize also has 17 
GT37 fucosyl transferases (FUTs); four of these were expressed 
at ≥500 reads per 20 M, one (FUT2) during primary cell wall 
growth stages and one (FUT11) with strong expression during 
secondary wall formation (Figure 5D; Table S1).

Pectin Synthesis
Although the type II cell walls of commelinid monocots generally 
have limited amounts of pectic polysaccharides, they are found 
transiently in higher abundance in some developmental contexts, 
such as endosperm development (Chateigner-Boutin et al., 
2014; Zhang et al., 2016). The pectin matrix consists primarily 
of two kinds of pectic polysaccharide backbones of (1→4)-α-D-
homogalacturonan (HG) and repeating units of the O-2-α-D-
Rha-(1→4)-α-D-Gal disaccharide in rhamnogalacturonan-I 
(RG-I) (Caffall and Mohnen, 2009). Some HGs are branched with 
Xyl residues to form Xyl-HGs or possess clusters of four complex 
oligosaccharides to form RG-II, a polysaccharide that forms 
boron di-diester crosslinks. Branched (1→5)-α-L-arabinans and 
type I (1→4)-α-D-galactans with appendant Ara residues are 
attached typically to the Rha O-4 position of RG-I.

The maize genome contains numerous genes associated with 
the synthesis of pectins. The GT8 subgroup D retaining-type 
galacturonosyl transferase (GAUT) family comprises 23 genes, 
and all of them were expressed at ≥95 reads per 20 M throughout 
stem development (Figure S6A; Table S1). The vast majority of 
them were expressed at primary wall or transitional stages, but 
two nonorthologous genes, GAUT11b and GAUT11c, displayed 
higher relative expression during secondary wall synthesis. 
Pectin RG-I synthesis requires a rhamnosyl transferase (RRT1) 
from family GT106 (Takenaka et al., 2018). From gene expression 
related to seed mucilage RG-I synthesis, the Arabidopsis GAUT11 
is the prime candidate for the GalA transferase associated with 
RG-I synthesis (Voiniciuc et al., 2018), with a close homolog 
also found in maize (Table S1). The maize genome also contains 
a large family of GT106 genes, including three of four RRTs 
that are expressed mostly constitutively, but with RRT1b more 
highly expressed during secondary wall formation (Figure S6B). 
A related subgroup of GT106 are the pectin arabinogalactan 
synthesis-related (PAGR; Stonebloom et al., 2016) genes, and 
mannan synthesis-related transferase (MSR; Wang et al., 2013) 
genes. Seven of the nine maize PAGR genes were expressed 
mostly during primary wall formation, but PAGR-L1 showed 
higher expression during transitional stages of development 
(Figure S6C). All six MSR genes were constitutively expressed 
(Table S1).

The maize genome contains a vast number of genes that 
encode enzymes of pectin depolymerization. Polygalacturonase 
(PGase) genes comprise six subgroups with high expression of 
members in all of them except subgroups E and F (Figure S7; 
Table S1). None is expressed specifically during secondary wall 
formation. Maize also has four RG-I lyases (RGILs), with only 
RGIL1 significantly expressed (Figure S7F).

AGPs and Other GPI-Anchored Proteins
GPI-anchored peptidoglycans, such as type II arabinogalactan 
proteins (AGPs), with their highly branched (1→3)-, (1→6)-, and 
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(1→3, 1→6)-β-D-galactan chains and Ara side groups, are found in 
small amounts in primary cell walls (Showalter, 1993; Borner et al., 
2003; Johnson et al., 2003). Two, FLA2c and FLA11, of seven AGP/
fasciclin genes showed relatively higher secondary wall expression 
(Figure S8A; Table S1). Family GT31 represents a large family of six 
subgroups and includes GalTs that are predicted to form the (1→3)-
β- and (1→6)-β-linked galactan chains of type II AGPs. Most of 
the GT31 genes are expressed during primary wall formation, but 
one member of GT31 subgroup A, GT31A3, and two members 
of subgroup F, GT31F4 and GT31F5, exhibited predominantly 
secondary wall expression (Figure S8B; Table S1).

Two notable families of GPI-anchored proteins discovered 
in Arabidopsis are skewed growth (SKU) proteins, mutations in 
which result in abnormal growth symmetry (Rutherford and 
Masson, 1996; Sedbrook et al., 2002), and COBRA proteins 
involved in determining the direction of wall expansion and 
patterning of cellulose in primary walls (Schindelman et al., 
2001) and cellulose content and tensile strength of the floral 
stem (Brown et al., 2005). Maize SKU genes number 13, with 
seven expressed predominantly during primary wall formation 
(Figure S9; Table S1). Nine COBRA genes comprise the maize 
family, with three expressed more or less constitutively and 

FIGURE 5 | Differential expression of key families of the maize B73 XyG synthesis. Expression ratios and putative Arabidopsis orthologs were determined as 
described in the legend of Figure 3. (A) XyG backbone synthases of family CslC. (B) Xyloglucan xylosyl transferases of family GT34. (C) Galactosyl transferases of 
family GT47 subgroup A. (D) Fucosyl transferases of family GT37.
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COBL4b expressed during secondary wall formation (Figure 
S9; Table S1).

Expansins and Endotransglucosylase/
Hydrolases
The cell wall is residence to hundreds of enzymes, such as expansins 
and transglucosylases, polysaccharide hydrolases and lyases, oxido-
reductases, and proteases, which function in wall remodeling and 
metabolism (Boudart et al., 2005; Hervé et al., 2016), and maize 
expresses many of these during both primary and secondary wall 
stages of growth (Table S1). Expansins and the GH16 family of 
xyloglucan endotransglucosylase/hydrolases (XTHs) are implicated 
in cellulose microfibril separation during growth and the rejoining 
of XyGs to maintain tensile strength, respectively (Cosgrove, 2000; 
Rose et al., 2002). The maize genome contains over 50 α-Expansin 
(α-Exp), α-Expansin-like (α-Exp-like), and β-Expansin (β-Exp) genes, 
with most expressed during early growth except for an α-Exp8a 
and an α-ExpL2c more highly expressed during secondary wall 
formation (Figure S10; Table S1). Similarly, 30 maize XTH genes 
form three subgroups, with the majority of them expressed during 
elongation and primary wall stages of growth, but three XTHB genes 
and one XTHC gene were more highly expressed during secondary 
wall formation (Figure S11; Table S1).

Monolignol and Lignin Synthesis
A major distinction of the type II primary cell walls of grasses 
is the presence of a phenylpropanoid network (Carpita, 1996). 
Several members in each family of genes that encode the enzymes 
of monolignol synthesis were expressed during primary wall 
synthesis, even though most of the genes were upregulated in older 
internodes. All but one of the phenylalanine/tyrosine ammonia lyase 
(PAL) genes were expressed in secondary cell-wall-forming tissues 
(Figure 6A; Table S1). In contrast, expression of all other genes of 
monolignol formation, such as 4-coumarate CoA ligase, cinnamyl 
alcohol dehydrogenase, hydroxycinnamoyl-CoA shikimate/quinate 
hydroxycinnamoyl transferase, cinnamyl CoA reductase (CCR), and 
caffeoyl-coenzyme A 3-O-methyltransferase (CCoAOMT), were 
expressed during primary wall formation and secondary wall 
formation in roughly equal numbers (Figures 6B–D; Table S1). 
Peroxidases are encoded by a huge family of 86 genes in seven 
subgroups and Laccases numbered 24 genes (Table S1). Although 
expression ratios showed genes with strong elongation-specific 
expression or secondary wall expression, ratios were widely clustered 
between 2 and 12, indicating more complex patterns of expression.

Other Wall-Related Proteins
Apart from extensin domains within some of the AGP proteoglycans, 
the classic Ser-Hyp4-type extensin proteins are in low abundance in 
the maize genome. Nevertheless, we identified several genes related 
to their synthesis and glycosylation. For example, all but 1 of the 
10 prolyl-4-hydroxylases that synthesize Hyp were expressed, and 
all of these during primary wall formation. Of the 23 genes that 
encode family GT77 arabinosyl transferases, which attach the 
Ara side groups of extensin, 12 were expressed at ≥95 reads per 
20 M, mostly during primary wall stages, but 1, reduced residual 
arabinose1b (RRA1b; Egelund et al., 2007), was more strongly 
expressed during secondary wall formation (Table S1).

DISCUSSION

The progenitor species of commelinid monocots diverged from 
dicotyledonous and other monocotyledonous species about 120 
million years ago (Hertweck et al., 2015) to species that made cell 
walls with mostly GAX as the cross-linking glycan, and with much 
less XyG and pectin than their common eudicot ancestors (Smith 
and Harris, 1999). The feruloylation of the Ara residues in the 
commelinid species and the initiation of phenylpropanoid networks 
in the primary walls of all commelinids gave characteristic strong 
autofluorescence in UV light (Rudall and Caddick, 1994). The Order 
Poales split from its closest commelinid relatives about 65 million 
years ago (Hertweck et al., 2015), with expansion of CslF and CslH 
subgroups that encode the synthases of the mixed-linkage β-glucans 
(Burton et al., 2006; Doblin et al., 2009).

Despite the evolution of commelinid species with cell walls 
distinct from dicots and noncommelinid monocots, we show 
here that their genomes retained the capacity to make the cell wall 
polysaccharides of all angiosperm species. In addition, families 
of genes for synthesis of polysaccharides uncharacteristic of 
the two wall types are expressed in the expected developmental 
context of primary or secondary wall. Key questions are if the 
transcripts expressed become translated into protein, and if so, 
are these uncharacteristic polysaccharides actually made? Our 
recent work in comparative glycome and proteome analysis 
indicated that Arabidopsis and maize, representative species 
with type I and type II cell walls, respectively, synthesize and 
accumulate, in the Golgi, polysaccharides that are not found in 
abundance in their cell walls (Okekeogbu et al., 2019). Maize 
Golgi had a higher proportion of XyG to GAX, and Arabidopsis 
had a higher proportion of GAX to XyG in their respective 
Golgi. Three possible explanations were considered for these 
findings: (1) that polysaccharides that accumulate to higher 
abundances in Golgi might result from lower trafficking rates 
compared to higher rates for material trafficked to the wall, 
(2) that the lower trafficking rates might reflect diversion of a 
subset of polysaccharides to lytic compartments instead of the 
cell wall, or (3) that all polysaccharides are trafficked to the wall, 
but polysaccharides uncharacteristic of wall type are digested 
extracellularly and, therefore, fail to accumulate. As the trans-
Golgi network/early endosome compartment plays a central role 
in post-Golgi synthesis, sorting, and packaging of polysaccharide 
and protein cargoes destined for the wall (Kang et al., 2011; 
Rosquete et al., 2018), we suggest that this compartment might 
be the site of discrimination.

The broader question of evolutionary significance is why a 
species would place a large metabolic investment in polymers 
that never accumulate in the wall. However, retaining the 
capacity to make alternative polysaccharides if mutations occur 
could be a selective advantage. If mutations occur in synthases of 
the characteristic polysaccharide, viability is not jeopardized if 
an alternative polysaccharide can be made. Such plasticity in wall 
composition is illustrated by the mutations that introduce severe 
alterations in polysaccharide structure or abundance yet plants 
maintain near normal growth and development. Among the 
starkest examples are the Arabidopsis xxt1/xxt2 double mutant 
that completely lacks XyG in the wall, but despite a slight lowering 
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of tensile strength, plant structure is remarkably unchanged from 
wild type (Cavalier et al., 2008; Zabotina et al., 2012), and the 
survival of cells in liquid culture in the near absence of cellulose 
induced by a potent cellulose synthesis inhibitor regardless of 
wall type (Shedletzky et al., 1990; Shedletzky et al., 1992).

CONCLUSIONS

While it was tempting to hypothesize that the evolution of a 
completely distinct type of cell wall resulted in a drastic change in 
the gene families that encode its synthesis machinery, expression 
of specific gene family members is not the basis for the difference. 

Although a few examples exist of the divergence of certain 
subgroups of families unique to grass species, the vast majority 
are populated with members in all angiosperms. Divergence 
within a subgroup gives evidence of neofunctionalization during 
speciation, but it is equally evident that grass species express large 
numbers of genes of these subfamilies that encode polysaccharides 
that accumulate in the Golgi but never traffic to or assemble 
in the wall. Thus, the type of cell wall made is established by 
post-Golgi mechanisms that remain to be determined. The 
capacity to make in any species the entire repertory of cell wall 
polysaccharides widens the spectrum of design properties for cell 
walls as materials with emergent properties.

FIGURE 6 | Differential expression of key families of the maize B73 monolignol synthesis. Expression ratios and putative Arabidopsis orthologs were determined 
as described in the legend of Figure 3. (A) Family PAL, phenylalanine ammonia lyases. (B) Family 4CL, 4-coumarate CoA ligases. (C) Families C3H (coumarate-3-
hydroxylases), C4H (cinnamate-4-hydroxylases), and F5H (ferulate-5-hydroxylases). (D) Family CAD, cinnamyl alcohol dehydrogenases.
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