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Gene expression in eukaryotes is controlled at multiple levels, including transcriptional and 
post-transcriptional levels. The transcriptional regulation of gene expression is complex and 
includes the regulation of the initiation and elongation phases of transcription. Meanwhile, 
the post-transcriptional regulation of gene expression includes precursor messenger 
RNA (pre-mRNA) splicing, 5′ capping, and 3′ polyadenylation. Among these events, pre-
mRNA splicing, conducted by the spliceosome, plays a key role in the regulation of gene 
expression, and the efficiency and precision of pre-mRNA splicing are critical for gene 
function. Ski-interacting protein (SKIP) is an evolutionarily conserved protein from yeast to 
humans. In plants, SKIP is a bifunctional regulator that works as a splicing factor as part of 
the spliceosome and as a transcriptional regulator via interactions with the transcriptional 
regulatory complex. Here, we review how the functions of SKIP as a splicing factor and a 
transcriptional regulator affect environmental fitness and development in plants.

Keywords: SKIP, alternative splicing, transcriptional regulator, splicing factor, environmental fitness, 
plant development

INTRODUCTION AND GENE EXPRESSION REGULATION

Due to their sessile nature, plants must respond to both the external environment and internal 
signals to regulate their environmental fitness and development. To respond to these signals in a 
precise manner, gene expression must be tightly controlled both temporally and spatially. Gene 
expression is regulated at multiple levels, but most regulation occurs at the transcriptional and post-
transcriptional levels (reviewed in Licatalosi and Darnell, 2010). This allows a gene to be expressed 
at the correct time, in specific cells, and with the appropriate abundance to support its function.

Transcriptional regulation is crucial for controlling the temporal and spatial expression of a 
gene, as well as the abundance of precursor messenger RNA (pre-mRNA) molecules. In eukaryotes, 
messenger RNAs (mRNAs) are transcribed by RNA polymerase II (Pol II) in a complicated process 
that includes initiation, elongation, and termination steps. The regulation of gene expression at 
the transcriptional level occurs mainly at the initiation and elongation stages (reviewed in Kwak 
and Lis, 2013; Jonkers and Lis, 2015; Sainsbury et al., 2015). In the initiation stage, Pol II with an 
unphosphorylated C-terminal domain (CTD) forms a pre-initiation complex by associating with 
transcription factors and mediators (reviewed in Hsin and Manley, 2012; Sainsbury et al., 2015; 
Hantsche and Cramer, 2017). Transcription initiation also requires interactions with cis-elements 
in the genomic DNA sequence and changes in chromatin structure and nucleosome position 
via epigenetic modifications (reviewed in Kouzarides, 2007; Matzke et al., 2009; Bonasio and 
Shiekhattar, 2014; Voss and Hager, 2014; Sainsbury et al., 2015; Lawrence et al., 2016; Jeronimo 
and Robert, 2017). The elongation phase is regulated by multiple elongation factors, including Pol 
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II-associated factor 1 complex (Paf1c), and additional factors that 
influence the epigenetic modification and higher-order structure 
of chromatin, the phosphorylation status of the Pol II CTD, and 
the eventual pause and release of Pol II (reviewed in Li et al., 
2007; Gilchrist et al., 2010; Hajheidari et al., 2013; Tessarz and 
Kouzarides, 2014; Van Lijsebettens and Grasser, 2014; Lawrence 
et al., 2016; Van Oss et al., 2017).

The products transcribed by Pol II from a DNA template 
require processing to form stable, mature mRNAs. The regulation 
of pre-mRNA processing at the post-transcriptional level affects 
the abundance of functional mature mRNAs; thus, it affects both 
gene expression and function. Post-transcriptional pre-mRNA 
processing involves 5′ capping mediated by 5′ capping enzymes 
at the 5′ end of the pre-mRNA, splicing by the spliceosome to 
remove introns from the pre-mRNA, and 3′ polyadenylation 
mediated by the 3′ polyadenylation complex at the 3′ end of the 
pre-mRNA. In addition to these events, pre-mRNA alternative 
splicing plays a key role in the post-transcriptional regulation of 
gene expression. By using different splice sites, one pre-mRNA 
can be processed to multiple transcripts, thus increasing the 
complexity of the transcriptome and proteome (reviewed in 
Reddy, 2007; Keren et al., 2010; Syed et al., 2012; Lee and Rio, 
2015). Consequently, incorrect splicing of a pre-mRNA can 
decrease the amount of functional mature mRNA or lead to the 
production of toxic proteins that may perturb normal cellular 
processes (reviewed in Reddy, 2007; Braunschweig et al., 2013). 
The incorrectly spliced variants with a premature termination 
codon may activate mRNA degradation through the nonsense-
mediated decay (NMD) pathway to prevent the formation of 
nonfunctional or aberrant proteins (reviewed in He and Jacobson, 
2015). Therefore, efficient and precise pre-mRNA splicing is 
crucial to protect gene function (reviewed in Reddy, 2007; Moore 
and Proudfoot, 2009; Syed et al., 2012; Staiger and Brown, 2013). 
Accurate splicing of an intron depends on both short consensus 
sequence elements around the intron and correct assembly of the 
components of the spliceosome around the intron’s splice sites 
(reviewed in Wahl et al., 2009; Lee and Rio, 2015).

The spliceosome, which is responsible for pre-mRNA 
splicing, is a large and highly dynamic protein complex. Specific 
splicing factors are sequentially recruited to and released from 
splice sites to mediate efficient splicing. Ski-interacting protein 
(SKIP), a component of the spliceosome-associated NineTeen 
complex (NTC), is required to catalyze the first and second 
transesterification reactions of pre-mRNA splicing in yeast 
and human cells (Albers et al., 2003; Figueroa and Hayman, 
2004; Bessonov et al., 2008; Chen et al., 2011; Schneider et al., 
2015; Zhang et al., 2017). In addition, SKIP is a transcriptional 
coregulator for the expression of some genes in human cells 
(Laduron et al., 2004; Brès et al., 2005; Brès et al., 2009; Chen 
et al., 2011). SKIP protein is conserved from yeast to humans 
including plants. It acts both as a splicing factor to regulate 
precise and efficient pre-mRNA splicing and as a transcriptional 
regulator of gene transcription in Arabidopsis. This review 
focuses on the regulatory functions of SKIP that control gene 
expression at the transcriptional and post-transcriptional levels 
to mediate the environmental fitness and development of plants.

SKIP MEDIATES PLANT ENVIRONMENTAL 
FITNESS BY REGULATING ALTERNATIVE 
SPLICING

Flowering is an important developmental phase transition 
in higher plants. To regulate flowering time, plants integrate 
endogenous and environmental signals, which are important 
for survival and crop productivity. To find new components 
of the flowering time control pathway in Arabidopsis, a genetic 
screen was performed using a T-DNA insertion library 
for altered flowering time mutants, and a mutant, eip1-1, 
that exhibits an early flowering phenotype under long- and 
short-day conditions was isolated (Wang et al., 2012). Such a 
photoperiod-insensitive flowering time defect is characteristic 
of circadian clock-defective mutants. Consistent with this, 
eip1-1 exhibits a lengthened circadian period in a temperature-
sensitive manner. Compared to the ~24-h circadian period of 
wild-type plants, the circadian period of eip1-1 is lengthened 
by ~2.4 h due to changes in the rhythmic expression of the 
core oscillator genes CIRCADIAN CLOCK-ASSOCIATED 1, 
LATE ELONGATED HYPOCOTYL, and TIMING OF CAB 
EXPRESSION 1 (Wang et al., 2012). Map-based cloning 
revealed that a mutation in At1g77180, which encodes SKIP, is 
responsible for the flowering time and circadian period defects 
observed in eip1-1 (which was therefore renamed skip-1). There 
is a 22-nucleotide deletion at the C-terminus of the SKIP locus, 
which disrupts the integrity of the SKIP protein and impairs 
SKIP function in skip-1 plants (Wang et al., 2012).

SKIP is a single-copy gene in the Arabidopsis genome encoding 
a protein of 613 amino acids with three structural domains: the 
N-terminus (amino acids 1–185), SNW domain (amino acids 
186–416), and C-terminus (amino acids 417–613) (Figure 1; Li 
et al., 2016). The plant SKIP protein sequence is highly similar to 
that of its ortholog (SKIP) in humans and pre-mRNA processing 
(Prp)45 in yeast (Wang et al., 2012). SKIP localizes to the nucleus 
using two nuclear localization signals (NLSs), which lie in the 
SNW domain and C-terminus, respectively (Figure 1; Lim et al., 
2010; Li et al., 2016).

In Arabidopsis, SKIP co-localizes with the spliceosome 
components U1 SMALL NUCLEAR RIBONUCLEOPROTEIN-
70K (U1-70K) (Golovkin and Reddy, 1996) and SERINE/
ARGININE RICH 45 (SR45) (Day et al., 2012) in nuclear bodies 
(Wang et al., 2012). SKIP associates closely with SR45 and other 
NTC components, facilitating its integration into the spliceosome 
(Wang et al., 2012; Li et al., 2016). Mutations in SKIP decrease 
the splicing efficiency of the spliceosome and can cause genome-
wide alternative splicing defects (Wang et al., 2012; Feng et al., 
2015). SKIP is required for 5′ and 3′ splice site recognition 
or cleavage; novel splicing events have been reported in skip 
mutant plants with decreased usage of the dominant GU and 
AG, respectively, at 5′ and 3′ splice sites (Wang et al., 2012; Feng 
et al., 2015). Therefore, SKIP is a splicing factor that regulates the 
efficient and precise splicing of pre-mRNAs on a genome-wide 
scale in Arabidopsis.

In addition, SKIP binds directly to the pre-mRNAs of clock 
genes, including PSEUDO-RESPONSE REGULATOR 7 (PRR7) 
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and PRR9, to regulate their accurate splicing and mRNA 
maturation (Wang et al., 2012). Compared to wild-type plants, 
skip-1 plants show increased levels of aberrantly spliced variants 
of PRR7 and PRR9 and decreased levels of functional, fully 
spliced PRR7 and PRR9 mRNAs. The reduced levels of functional 
PRR7 and PRR9 mRNAs in skip-1 contribute to its lengthened 
circadian period phenotype (Wang et al., 2012). Therefore, 
SKIP mediates the circadian clock by regulating the alternative 
splicing of clock genes. These findings demonstrate that post-
transcriptional regulation plays vital roles in controlling the 
circadian clock (Sanchez et al., 2010; Jones et al., 2012; Wang 
et al., 2012; Li et al., 2019).

SKIP also regulates plant response to abiotic stress (Hou 
et al., 2009; Zhang Y, et al., 2013; Feng et al., 2015; Li et al., 2016; 
Li et al., 2019). Mutations in SKIP have been shown to cause 
hypersensitivity to salt or osmotic stress in Arabidopsis. Compared 
to wild-type plants, skip-1 plants exhibit a significantly decreased 
germination rate, survival rate, and relative root growth under 
high-salt or drought conditions (Feng et al., 2015; Li et al., 2016). 
Meanwhile, ectopic expression of SKIP results in increased 
tolerance to salt or dehydration (Lim et al., 2010). In Arabidopsis, 
salt stress induces genome-wide alternative splicing events, 
most of which are regulated by SKIP (Feng et al., 2015). SKIP 
mediates the recognition or cleavage of 5′ alternative donor sites 
and 3′ alternative acceptor sites, and it is essential for alternative 
gene splicing under conditions of salt stress (Feng et al., 2015). 
Transcripts of several salt tolerance-related genes, including NA+/
H+ EXCHANGER 1 (NHX1), CALCINEURIN B-LIKE PROTEIN 1 
(CBL1), DELTA1-PYRROLINE-5-CARBOXYLATE SYNTHASE 1 
(P5CS1), RARE-COLD-INDUCIBLE 2A (RCI2A), and PROTEIN 
S-ACYL TRANSFERASE 10 (PAT10), are aberrantly spliced in 
skip-1 under salt stress conditions, decreasing the abundance 
of fully spliced mRNAs. Premature termination during the 
translation of these aberrantly spliced variants in skip-1 reduces 
the level of functional proteins, resulting in salt hypersensitivity 
(Feng et al., 2015; Li et al., 2016; Li et al., 2019). Therefore, 
SKIP is necessary for plants to respond to salt or drought stress, 
and alternative gene splicing is crucial for plants to respond to 
environmental cues (Hou et al., 2009; Zhang Y, et al., 2013; Feng 
et al., 2015; Li et al., 2016; Li et al., 2019; reviewed in Filichkin 
et al., 2015; Laloum et al., 2018).

In summary, SKIP is a splicing factor that is essential for the 
precise and efficient splicing of pre-mRNAs on a genome-wide 
scale, and it mediates the circadian clock and resistance to salt or 
drought stress by regulating the alternative splicing of clock and 
salt tolerance-related genes in plants.

SKIP MEDIATES THE FLORAL 
TRANSITION BY REGULATING 
TRANSCRIPTION

Initially, skip-1 was characterized as a photoperiod-insensitive 
early flowering mutant. As defects in the circadian clock may 
cause changes in the temporal expression of CONSTANS (CO), 
which regulates FLOWERING LOCUS T (FT) transcription and 
affects flowering time (reviewed in Yanovsky and Kay, 2003; 
Song et al., 2015; Shim et al., 2017), some speculate whether SKIP 
regulates flowering time by regulating the circadian expression 
of CO. However, no obvious change in the expression of CO 
was observed in skip-1 (Cao et al., 2015), suggesting that the 
early flowering phenotype of skip-1 is not caused by a circadian 
clock defect.

FLOWERING LOCUS C (FLC) is a MADS-box transcription 
factor that dose-dependently suppresses the floral transition 
(reviewed in He and Amasino, 2005; Michaels, 2009; Romera-
Branchat et al., 2014; Whittaker and Dean, 2017). Both sense and 
antisense (COOLAIR) transcripts of FLC undergo alternative 
splicing (Marquardt et al., 2014; Mahrez et al., 2016); moreover, 
temperature-dependent alternative splicing of FLOWERING 
LOCUS M (FLM), which changes the ratio of FLM-β to FLM-δ, 
plays a vital role in regulating the temperature-dependent floral 
transition (Lee et al., 2013; Posé et al., 2013). Given that SKIP is 
a splicing factor that regulates genome-wide pre-mRNA splicing 
in Arabidopsis, it was suggested that SKIP is essential for the 
alternative splicing of sense and antisense FLC transcripts, or FLM 
pre-mRNA, to regulate the level of functional, mature mRNAs in 
the control of flowering time. However, splicing defects in FLC 
sense and COOLAIR transcripts were not observed in skip-1 
(Cao et al., 2015). In addition, even though SKIP is required for 
the alternative splicing of FLM, the alternative splicing pattern of 
FLM pre-mRNA (i.e., the ratio of FLM-β to FLM-δ) in response 

FIGURE 1 | The domain structure of ski-interacting protein (SKIP) and the location of skip-1 mutant. Gray box: UTR; gray line: intron; black box: exon; colored 
boxes: domain feature of the protein; black line: the mutation site of the mutant.
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to temperature changes was not obviously affected in skip-1 (Cao 
et al., 2015). Thus, SKIP is not required for the accurate splicing 
of FLC or COOLAIR pre-mRNA. Instead, FLC transcription (i.e., 
the level of unspliced FLC mRNA) is significantly repressed in 
skip-1; this is reflected in the obvious repression of mature FLC 
transcripts and the early flowering phenotype observed in skip-1 
under different photoperiod and temperature conditions (Cao 
et al., 2015; Li et al., 2016; Li et al., 2019). Thus, SKIP activates 
FLC expression at the transcriptional level in a photoperiod- and 
temperature-independent manner, and it represses flowering 
time by promoting FLC transcription.

To determine how SKIP activates FLC transcription, thereby 
repressing flowering, a yeast two-hybrid screen was performed to 
identify factors that interact with SKIP. ELF7, a Paf1c component 
that regulates transcription elongation, was found to interact with 
SKIP (Cao et al., 2015). Paf1c represses flowering by promoting 
the trimethylation of histone H3 at lysine 4 on FLC chromatin 
and activating FLC transcription (He et al., 2004; Oh et al., 
2004; Yu and Michaels, 2010). It was verified that SKIP interacts 
physically and genetically with ELF7 to regulate flowering time 
in Arabidopsis (Cao et al., 2015; Li et al., 2016). SKIP and ELF7 
bind directly to FLC/MAFs chromatin and promote histone H2B 
monoubiquitination, increasing the trimethylation of histone 
H3 at lysine 4 and FLC/MAFs transcriptional activation, thereby 
repressing the floral transition in wild-type plants (Cao et al., 

2015). During this process, SKIP functions as a co-transcriptional 
activator, mediating plant flowering via the regulation of FLC/
MAFs transcription. Therefore, SKIP can promote the transcription 
of specific genes as a co-transcriptional activator in plants.

CONCLUSION AND PROSPECTS

Plants respond to internal and environmental signals affecting 
their development and environmental fitness by accurately 
regulating gene expression at the transcriptional and post-
transcriptional levels. SKIP has a dual function in plants: it acts 
as a splicing factor to control efficient and precise pre-mRNA 
splicing on a genome-wide scale by interacting with other 
spliceosome components (e.g., SR45) and integrating into the 
spliceosome, and it is required for 5′ and 3′ splice site recognition 
or cleavage (Wang et al., 2012; Feng et al., 2015). SKIP affects the 
circadian clock and plant responses to salt stress by regulating 
the accurate splicing of certain clock- and salt tolerance-related 
genes (Wang et al., 2012; Feng et al., 2015; Li et al., 2016; Li et al., 
2019). SKIP also functions as a transcriptional co-regulator by 
interacting with other transcriptional regulators (e.g., Paf1c), and 
it mediates the floral transition (Cao et al., 2015; Li et al., 2016; Li 
et al., 2019). Therefore, SKIP precisely regulates gene expression 
at the transcriptional and post-transcriptional levels to mediate 
plant development and environmental fitness (Figure 2).

FIGURE 2 | The dual functions of SKIP in mediating environmental fitness and development in plants. SKIP is a splicing factor that regulates the alternative splicing 
of clock and stress tolerance-related genes in order to mediate the circadian clock and stress responses. It also functions as a transcriptional coactivator by 
interacting with RNA polymerase II-associated factor 1 complex (Paf1c) to activate FLC/MAFs transcription and mediate the floral transition.
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In addition to SKIP, several other splicing factors are 
believed to have dual functions in splicing and transcription in 
Arabidopsis. For example, the RNA-binding protein SR45, first 
identified as an interacting partner of U1-70K and an essential 
splicing factor in plants (Golovkin and Reddy, 1999; Ali et al., 
2007; Carvalho et al., 2016), was reported to be recruited to FLC 
chromatin by VIVIPAROUS 1/ABI3-LIKE factor 1 (VAL1), a 
transcriptional repressor that further recruits the transcriptional 
repression complex plant homeodomain–polycomb repressive 
complex 2 (PHD-PRC2), resulting in decreased histone 
acetylation of FLC chromatin and FLC transcriptional silencing 
during vernalization (Qüesta et al., 2016). This suggests that 
SR45 is a component of the transcriptional repression complex 
that suppresses FLC expression in Arabidopsis. In addition, 
SR45 participates in a small interfering RNA-directed DNA 
methylation (RdDM) pathway that mediates gene silencing 
in Arabidopsis (Ausin et al., 2012). ZINC-FINGER AND 
OCRE DOMAIN-CONTAINING PROTEIN 1 (ZOP1), a pre-
mRNA splicing factor, associates with such typical spliceosome 
components as U1-70K, STABILIZED 1 (STA1, a PRP6-like 
splicing factor), and RNA-DIRECTED DNA METHYLATION 
16 (RDM16, pre-mRNA-splicing factor 3) and is required for 
RdDM-mediated transcriptional gene silencing (Dou et al., 2013; 
Huang et al., 2013; Zhang CJ, et al., 2013). Furthermore, PRP31, 
a conserved pre-mRNA splicing factor, associates with STA1, 
ZOP1, and RDM16 to regulate transcriptional gene silencing in 
a manner independent of the RdDM pathway (Du et al., 2015). 
Therefore, it appears that SKIP is not the only factor required 
for the regulation of gene expression at both the transcriptional 
and post-transcriptional levels. Bifunctional splicing factors 
may provide an effective way for plants to coordinate their 
responses to environmental and internal signals in order to 
adjust their development and environmental adaptation via 

accurate gene expression regulation at the transcriptional and 
post-transcriptional levels.

Resolved structures of the spliceosome from yeast and human 
cells indicate that SKIP is intrinsically highly disordered; it serves 
as a scaffold protein and interacts directly with other necessary 
components to facilitate splicing by promoting spliceosome 
assembly (Yan et al., 2015; Bai et al., 2017; Zhang et al., 2017; Zhang 
et al., 2018). It will be interesting to determine the functions of 
SKIP in transcriptional complex assembly (e.g., Paf1c-SKIP) and 
transcriptional regulation in plants. In addition, as transcription 
is usually coupled with splicing (reviewed in Naftelberg et al., 
2015; Saldi et al., 2016; Herzel et al., 2017) and given that SKIP 
is integrated into both the spliceosome and transcriptional 
complexes (Wang et al., 2012; Cao et al., 2015; Li et al., 2016; Li 
et al., 2019), it should be investigated whether SKIP mediates the 
coupling of transcription and splicing in Arabidopsis.
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