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Understanding the regulatory network controlling cell wall biosynthesis is of great interest in 
Populus trichocarpa, both because of its status as a model woody perennial and its importance 
for lignocellulosic products. We searched for genes with putatively unknown roles in regulating 
cell wall biosynthesis using an extended network-based Lines of Evidence (LOE) pipeline 
to combine multiple omics data sets in P. trichocarpa, including gene coexpression, gene 
comethylation, population level pairwise SNP correlations, and two distinct SNP-metabolite 
Genome Wide Association Study (GWAS) layers. By incorporating validation, ranking, and 
filtering approaches we produced a list of nine high priority gene candidates for involvement 
in the regulation of cell wall biosynthesis. We subsequently performed a detailed investigation 
of candidate gene GROWTH-REGULATING FACTOR 9 (PtGRF9). To investigate the role of 
PtGRF9 in regulating cell wall biosynthesis, we assessed the genome-wide connections of 
PtGRF9 and a paralog across data layers with functional enrichment analyses, predictive 
transcription factor binding site analysis, and an independent comparison to eQTN data. 
Our findings indicate that PtGRF9 likely affects the cell wall by directly repressing genes 
involved in cell wall biosynthesis, such as PtCCoAOMT and PtMYB.41, and indirectly by 
regulating homeobox genes. Furthermore, evidence suggests that PtGRF9 paralogs may 
act as transcriptional co-regulators that direct the global energy usage of the plant. Using 
our extended pipeline, we show multiple lines of evidence implicating the involvement of 
these genes in cell wall regulatory functions and demonstrate the value of this method for 
prioritizing candidate genes for experimental validation.
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INTRODUCTION

The biosynthesis and regulation of the plant cell wall has been 
the subject of a large body of research due to the industrial 
importance of lignocellulosic biomass, as well as the role of the 
cell wall in the function of other plant biological systems such as 
stress response, inter-cellular transport, and disease resistance. 
For industrially cultivated genera such as Populus, the primary 
cell wall constituents (i.e., cellulose, lignin, hemicellulose) provide 
feedstock for downstream products including biofuel, lumber, 
paper, and advanced lignin products (Sannigrahi et al., 2010; Porth 
et al., 2013). There is therefore broad interest in understanding 
the mechanisms that regulate the biosynthesis and modification 
of the cell wall, both from a yield and composition perspective.

A great variety of biopolymers are synthesized and 
incorporated into the primary and secondary cell wall, often in 
response to biotic and abiotic stress, nutrient availability, and 
developmental and temporal switches, all of which govern the 
macro-scale form of the plant. A highly complex network of 
genetic regulation has evolved to control the rate of biosynthesis 
of cell wall polymers, their intrinsic monomer composition, their 
transport to and subsequent deposition in the cell wall, and the 
expansion of the wall under changing intra-cellular conditions. 
In the model plant Arabidopsis thaliana, Bischoff et al. (2010) 
estimated that over 1,000 genes encode proteins related to the 
cell wall, while Cai et al. (2014) predicted a number closer to 
3,000 based on clustering of gene co-expression (Bischoff et al., 
2010; Cai et al., 2014). Furthermore, Taylor-Teeples et al. (2015) 
tested a library of 1,664 transcription factors in A. thaliana for 
interaction with the promoter regions of cell wall biosynthesis 
genes and found 413 such interactions in root vascular tissue 
alone (Taylor-Teeples et al., 2015). Studies such as these highlight 
the immense complexity involved in cell wall regulation, much of 
which is still to be elucidated.

Due to poplar’s status as a model woody plant and its 
importance for lignocellulosic products, many studies have 
investigated the regulatory network of the cell wall and its 
components in Populus species or in multiple genera in 
combination with Populus (Ohtani et al., 2011; Puzey et al., 2012; 
Lu et al., 2013; Porth et al., 2013; Yu et al., 2013; Ko et al., 2014; 
Wang et al., 2014; Zhong and Ye, 2014; Muchero et al., 2015; 
Lin et al., 2017; Shi et al., 2017; Xie et al., 2018a). Many of these 
studies have focused either on characterizing Populus homologs 
of genes that have been shown to have an effect on the cell wall 
chemistry or plant growth traits in mutant Arabidopsis lines, or 
perhaps were shown to be differentially expressed in comparisons 
of low and high growth genotypes. However, exploring the 
regulatory network controlling the cell wall in order to find 
new functional mechanisms is a challenging task due to the 
number of genes involved, extensive functional redundancy, and 
the multitude of transcriptional feedback loops. Such complex 
genetic architecture has contributed to the view that many 
quantitative traits are actually “omnigenic” (Boyle et al., 2017), 
such that virtually any expressed gene has a non-zero effect 
on the core biosynthetic genes at one or more transcriptional, 
post-transcriptional, post-translational, signaling or protein-
protein interaction levels. Fisher (1919) predicted that rather 

than a few core genes in biosynthetic pathways, the major 
portion of heritability is explained by a large number of loci 
across the entire genome that contribute small portions of the 
trait heritability. Under this omnigenic model, network-theory-
based methods provide an elegant approach for mining omics 
datasets for regulatory relationships. Any biological entity (SNP, 
gene, protein, metabolite, etc.) can be modeled as a node and any 
relationship between those entities (association, co-expression, 
correlation, binding) can be modeled as an edge.

The network approach has been used in several studies of cell 
wall regulation to date, often focusing on finding clusters of genes 
that co-express with each other in certain tissues, thus finding 
putative functional units or networks. For example, Cai et al. 
(2014) performed co-expression network clustering in Populus 
and found major sub-clusters enriched for primary cell wall or 
secondary cell wall genes. Taylor-Teeples et al. (2015) produced 
networks based on A. thaliana transcription factors and their 
target binding sites, providing an expanded view of the multi-
tiered regulatory system with respect to secondary cell wall 
(SCW) biosynthesis and xylem development. Yang et al. (2011) 
used 121 A. thaliana cell wall genes obtained from text mining 
followed by co-expression neighbor analysis to identify 694 A. 
thaliana genes and their 817 Populus orthologs as candidate genes 
for involvement in cell wall functions. Alejandro et al. (2012) 
identified the ABCG29 genes as transporting monolignol to the 
cell wall in A. thaliana by first analyzing co-expression networks 
followed by expression and functional analyses. These methods 
often produce an extensive list of candidate genes but with little 
more to support their involvement in cell wall regulation than 
the clustering or enrichment evidence.

Multi-omic approaches have also been performed, which 
include more data types to identify candidate genes. Porth 
et al. (2013) used a network-based multi-omic approach to find 
relationships between SNP, gene expression, and wood phenotype 
data from P. trichocarpa. They constructed six phenotypic-
centric networks to identify genes that most influenced the 
expression of their related phenotype. From this study, they 
were able to identify candidate genes potentially related to cell 
wall biogenesis. Mizrachi et al. (2017) used a network-based 
approach to integrate known gene interactions and eQTN data 
in the form of a connectivity matrix with gene expression data 
through matrix multiplication in order to identify genes involved 
in lignin-related traits.

The use of multiple layers of omics data in the identification 
of candidate genes related to a particular phenotype provides an 
increased level of confidence and context surrounding the new 
candidate genes. In this study, we use an extended lines of evidence 
(LOE) pipeline for jointly mining multiple data layers to produce 
a curated short list of new candidate genes putatively involved 
in the regulation of cell-wall-related functions (Figure  1).  
We use an extensive set of “anchor” genes with documented 
roles in cell wall biosynthetic and regulatory processes and 
anchor metabolomic phenotypes measured in a Genome Wide 
Association Study (GWAS) population of P. trichocarpa. Multi-
omic data layers (coexpression, comethylation, pairwise SNP 
correlation, and two SNP-metabolite GWAS data sets) are 
probed to find all genes in the genome with network connectivity 
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to the anchor set. A score is calculated for each gene with regards 
to the amount of evidence that the gene is involved in cell wall 
regulation and other cell-wall-related processes. The resulting 
merged LOE network of candidate genes is then subjected to 
validation, ranking, and filtering methods, as well as post-hoc 
analyses. The result is a set of 330 high-ranking candidate genes, 
which we then filter to a subset of regulatory genes not previously 
discussed in the context of the cell wall biosynthesis.

MATERIALS AND METHODS

This study makes use of various data accumulated for P. 
trichocarpa that have been used in previous investigations, 
including SNP data from a GWAS population, foliar metabolites 
measured in this GWAS population, and DNA methylation data 
across 10 different P. trichocarpa tissues (Vining et al., 2012), 
as well as the P. trichocarpa DOE Joint Genome Institute Plant 

FIGURE 1 | Overview of the method for identifying new candidate genes involved in cell wall regulation through data layering and calculation of LOE scores.
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Gene Atlas (Sreedasyam et al, unpublished data; available from 
phytozome.jgi.doe.gov). Each data set was considered as a 
separate layer for this study, and integrated though the use of 
LOE scores. Below, the various layers are described as well as 
the network analysis methods used to merge layers and identify 
genes with high connectivity to cell wall systems.

Phenotypes
We made use of metabolite data previously obtained from leaf 
tissue and analyzed using GC-MS. Details can be found in 
(Tschaplinski et al., 2012; Li et al., 2012b; Weighill et al., 2018). 
To prevent spurious associations, we examined each phenotype 
for the presence of outliers using Median Absolute Deviation 
(MAD). If a sample’s phenotype was more than six MADs from 
the population median it was removed from the GWAS for that 
phenotype.

Genotypes
SNP-based variant data (see DOI 10.13139/OLCF/1411410) were 
obtained from https://bioenergycenter.org/besc/gwas/ and SNPs 
were filtered to the top 90% tranche (PASS SNPs) and call rate ≥ 
0.5 using Plink (Purcell et al., 2007) and VCFtools (Danecek 
et al., 2011).

Genome Wide Association Layer
GWAS was performed using a linear mixed model (LMM), 
implemented in EMMAX (Kang et al., 2010) and leveraging 
ADIOS v1.13 (Lofstead et al., 2008) for scaling, to estimate the 
additive effect of each SNP while accounting for population 
structure and cryptic relatedness between samples. The tested 
SNPs excluded those with minor allele frequency (MAF) < 0.01, 
and those with a population call rate above 0.75. In addition, we 
used linkage disequilibrium (LD) pruning on the main set of 
SNPs to produce a set of independent SNPs for estimating the 
genomic relationship matrix, used in the LMM. The resulting 
p-values were corrected for multi-hypotheses bias by applying 
the Benjamini-Hochberg approach (Benjamini and Hochberg, 
1995) with a false-discovery rate (FDR) cutoff of 0.1.

Rare Variant GWAS Layer
While the GWAS Linear Mixed Model (LMM) tested common 
and less common SNPs (MAF ≥0.01) individually for significance, 
rarer SNPs were tested regionally in a joint fashion. Rare SNPs 
(MAF <0.01) located within a given gene, or in the gene’s 2-kb 
upstream and downstream flanking regions, were grouped as a 
region defined by that gene. RVtest (Zhan et al., 2016) was then 
used to apply the Sequence Kernel Association Test (SKAT) 
to each of the 41,335 regions defined from P. trichocarpa v3.0 
annotations. SKAT tests each SNP in the region individually with 
an LMM and then forms a combined region score where each 
component SNP is weighted according to its MAF. Weights were 
drawn from a beta distribution with default shape parameters 
(1, 25), which produced a single P-value for the significance of 
association of each region, which were corrected for multiple 
testing with an FDR of 0.1.

Co-Expression Layer
A P. trichocarpa gene co-expression network was constructed 
as described in Weighill et al. (2018). RNA-seq reads from the 
P. trichocarpa DOE Joint Genome Institute Plant Gene Atlas 
(Sreedasyam et al., unpublished data; available from phytozome.
jgi.doe.gov; see Supplementary Table S1 for sample information) 
were trimmed using Skewer (Jiang et al., 2014), aligned to the 
version 3.0 P. trichocarpa reference (Tuskan et al., 2006) using 
Star (Dobin et al., 2013), and TPM (transcripts per million) 
values calculated for each gene and each sample. Star mapping 
was performed using the “–quantMode GeneCounts” option, 
which directs the program to count the number of reads per gene 
while performing the mapping. A read is counted if it overlaps 
one and only one gene. Both ends of the paired-end read are 
checked for overlaps. The counts coincide with those produced 
by htseq-count with default parameters. We then calculated the 
Spearman correlation coefficient between the expression profiles 
of all pairs of genes using the mcxarray package (Van Dongen, 
2008) available from https://micans.org/mcl/index.html. An 
absolute threshold of 0.85 was applied in order to keep only those 
gene-gene pairs with strong co-expression.

Co-Methylation Layer
A P. trichocarpa gene co-methylation network was constructed 
as described in Weighill et al. (2018). MEDIP-Seq reads from the 
study by Vining et al. (2012) mapped to the P. trichocarpa V3 
genome assembly, were obtained from Phytozome (Goodstein 
et al., 2011; Vining et al., 2012). The number of reads that mapped 
to each gene for each sample was determined using htseq-
count (Anders et al., 2015). These counts were then converted 
to TPM values for each gene and each sample. Spearman 
correlation coefficients between the co-methylation profiles of all 
pairs of genes were then calculated in a manner similar to the 
co-expression layer, followed by an absolute threshold of 0.95.

Custom Correlation Coefficient Layer
After filtering the SNP set to remove those with MAF <0.01, 
the custom correlation coefficient (CCC) (Climer et al., 2014) 
between all pairs of remaining SNPs were calculated using a 
Parallel GPU implementation of the CCC (Joubert et al., 2017). 
In order to minimize correlation among SNPs due to linkage 
disequilibrium, only correlations from SNP pairs greater than 
10 kb apart and with a CCC ≥0.7 were retained. SNPs were then 
mapped to the genes in which they were located, resulting in 
gene-gene correlations. Significantly correlated SNPs represent 
co-segregating and interacting cellular components.

Lines of Evidence Scoring and Network 
Analysis
The LOE method calculates a score for every gene in the genome 
by quantifying the connectivity of a given gene to anchor 
genes/phenotypes from the system of interest. Each data layer 
described above provides one possible line of evidence. For 
example, if Gene A co-expresses with one or more cell wall 
anchor genes, then this is counted as one line of evidence for 
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Gene A’s involvement in the cell wall. A list of 295 anchor genes 
was compiled from the literature (Hao and Mohnen, 2014; Zhong 
and Ye, 2014; Nakano et al., 2015; Liu et al., 2017; Rao and Dixon, 
2018) (Supplementary Table S2). Metabolites that affect cell wall 
development and composition, such as sugar substrates, lignin 
precursors, and lignin competitors, were also selected for use as 
cell wall anchor phenotypes (Supplementary Table S3).

To calculate LOE scores for each gene in the P. trichocarpa 
genome, each data layer was represented as a network. Each 
layer consisted of a list of source entities (cell wall anchor genes 
and phenotypes, or “anchor nodes”), target entities (potential 
candidate genes, or “target nodes”), and interactions between them 
(correlations/associations, or “edges”). From each layer’s network, 
a breadth-first search was used to extract the neighbors of anchor 
nodes, resulting in a “one-hop” (“1-hop”) network for each layer. 
LOE scores were calculated as per Weighill et al. (2018). Briefly, 
the LOE breadth score for a gene is the count of the different 
layers in which that gene has connections to anchor genes/
phenotypes. An LOE depth score—the count of all connections 
to anchor genes/phenotypes across all data layers—was also 
calculated for each gene. After scoring, the 1-hop networks from 
all layers were thresholded based on the distribution of LOE 
breadth scores, then merged to form the LOE network containing 
cell wall anchor genes and phenotypes and all genes connected to 
them via one or more layers (“high LOE genes”). All genes in the 
merged LOE network were ranked based upon breadth and depth 
scores and genes with previously documented cell-wall-related 
roles were removed. Networks were visualized and manipulated 
with Cytoscape 3.6.1 (Shannon et al., 2003).

Gene Annotation, Functional Enrichment, 
and Expression Analyses
Functional annotations for P. trichocarpa genes were obtained 
from JGI Phytozome 12 (Goodstein et al., 2011) and MapMan 
using the Mercator tool (Lohse et al., 2014). A number of high 
LOE genes were not annotated in MapMan or Phytozome. 
To better understand the potential functions of those genes, 
protein sequences were extracted from the P. trichocarpa v3.1 
primary transcript sequence (Tuskan et al., 2006) available from 
Phytozome and analyzed using HMMER v3.1b2 (Eddy, 1998) 
to annotate both Pfam v31.0 (Punta et al., 2011) and TIGRfam 
v15.0 (Haft et al., 2001) domains. Domains were thresholded 
using an independent E-value of 0.001. GO-term enrichment was 
performed on selected sets of genes using the BinGO Cytoscape 
app (Maere et al., 2005) using the Hypergeometric Test as well 
as Benjamini & Hochberg False Discovery Rate Correction at a 
significance level of 0.1.

A clustered heatmap of gene expression data was created 
using the Python (v3.6.2) package seaborn (v0.8.0; https://
seaborn.pydata.org/index.html). Prior to analysis, six samples 
were removed from the data set that were outliers relative to 
their tissue type and treatment subgroups. Gene expression 
was normalized across tissues and genes were clustered using a 
Euclidean distance metric and Ward clustering method.

To assess orthology for a subset of genes during post-hoc 
analyses in Section 4.4.1, amino acid sequences containing 

characteristic PFAM domains (http://pfam.xfam.org/) were 
obtained from UniProt (www.uniprot.org; KNOXI: PF03790 per 
Mukherjee et al., 2009; POX/BELL: PF07526 per Bellaoui et al., 
2001) and reciprocal BLASTp searches were performed against 
P. trichocarpa and A. thaliana genomes using NCBI’s BLAST 
(https://blast.ncbi.nlm.nih.gov) with default settings.

Network Validation
Randomizations of Expression and Methylation Data
We assessed whether our coexpression and comethylation 
networks contain greater biological signal than random networks 
by performing analyses on multiple randomized expression and 
methylation datasets. First we generated 100 randomized gene 
expression data sets by shuffling TPM values within genes across 
tissues, thereby preserving the observed range of expression for 
each gene but destroying the associations with tissue samples. 
We then generated a Spearman coexpression matrix for each 
random dataset and randomly subsampled 100,000 correlation 
values from each, resulting in a total pool of 10,000,000 random 
coexpression samples. We then collected 10,000,000 random 
subsamples from our observed coexpression data set and 
compared the distributions of our observed values to those of 
the shuffled data sets using the Wilcoxon rank-sum test using 
the Python package SciPy stats module (docs.scipy.org/doc/
scipy/reference/generated/scipy.stats.ranksums.html). We also 
performed this method with the comethylation data layer.

Functional Validation of LOE Network
To assess whether our observed LOE network captured a 
greater amount of biological function than random networks, 
we intersected the observed network as well as 100 randomized 
LOE networks with a GO-term functional network. We first 
constructed a functional network from GO Biological Process 
terms whereby genes that share GO terms are connected and are 
more likely to share biological function than unconnected genes. 
GO annotations for P. trichocarpa genes were obtained from 
PlantRegMap (Jin et al., 2017) and we removed any term present 
in over 1000 genes to avoid generating an overly dense network 
from highly generic functions. Furthermore, we weighted edges 
with a score inversely proportional to the number of genes with 
that GO term, such that between genes due to rarer GO terms 
were considered more functionally valuable than edges due to 
broader GO terms. If two genes shared multiple GO terms then 
we retained only the higher scoring edge. We then generated 100 
randomized networks for each input data layer by holding anchor 
nodes and edges constant and replacing their 1-hop neighbors 
with gene labels randomly drawn from the genome, thereby 
ensuring that the size and structure of the randomized networks 
were comparable to the LOE input networks. For each set of 
random networks (consisting of one randomized network of each 
type: comethylation, coexpression, SNP correlation, traditional 
metabolite-GWAS, and rare variant metabolite-GWAS), LOE 
scoring and thresholding was performed. Each merged LOE 
network was then intersected with a GO-term functional 
network and an intersect score was recorded. The intersect score 
is calculated by summing the values of the GO-term network 
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edges that are also present in the LOE scored network. We then 
compared the intersect score of our observed LOE network to the 
distribution of randomized network intersect scores.

Expression Quantitative Trait Networks
We utilized eQTN data as an independent line of evidence for 
investigating the putative regulatory roles of the PtGRF9 paralogs. 
RNAseq sequencing data from (Zhang et al., 2018) were obtained 
from the NCBI SRA database (SRA numbers: SRP097016–
SRP097036; www.ncbi.nlm.nih.gov/sra). Reads were aligned to 
the Populus trichocarpa v.3.0 reference (Tuskan et al., 2006), using 
STAR (Dobin et al., 2013). Transcript per million (TPM) counts 
were then obtained for each genotype, resulting in a genotype-
transcript matrix. For each gene transcript we determined outlier 
values, masking TPM values that exceeded a median absolute 
deviation from the non-zero median threshold of 5.0. Transcripts 
that had a non-outlier observed TPM value in more than 20% of 
the population were retained for further analysis. These expression 
profiles were then used as phenotypes in a GWAS, using EMMAX 
(Kang et al., 2010). Single nucleotide polymorphisms (SNPs) 
data, for the same population of P. trichocarpa genotypes, was 
obtained from (DOI 10.13139/OLCF/1411410). The SNPs were 
processed using VCFTOOLS (Danecek et al., 2011) and PLINK 
(Purcell et al., 2007), selecting for the 90% tranche and a minor 
allele frequency of 0.01. A hierarchical approach (Peterson et al., 
2016) was used to correct for multiple hypotheses bias associated 
with the number of phenotypes. The procedure involved two 
rounds of false discovery rate (FDR) corrections, the initial 
using the Benjamini-Hochberg (Benjamini and Hochberg, 1995) 
procedure (q1 < 0.1), followed by the Gavrilov-Benjamini-Sarkar 
stepdown approach (Gavrilov et al., 2009) (q2 < 5.1e-4). SNP to 
phenotype association that passed the respective thresholds were 
determined to be statistically significant. 1-hop eQTN networks 
were then created around the PtGRF9 paralogs.

RESULTS AND DISCUSSION

Evaluation of Expression and Methylation 
Data
The Wilcoxon rank-sum test was used to determine whether the 
distribution of correlation values differed between our observed 
data set and values from randomized datasets (Supplementary 
Figure S1). For both the expression and methylation data sets, 
the observed distributions were significantly different to random 
(p < 0.01 for both data types). Our coexpression data layer was 
thresholded to exclude correlation values below 0.85, resulting 
in 16,122 values (0.19%) being retained. In our shuffled data set, 
only 45 values (or 5.25e-04%) were above the 0.85 threshold. Our 
comethylation data layer was thresholded to exclude correlation 
values below 0.95, resulting in 87,458 values (0.88%) being 
retained. In our shuffled data set, only 1,090 values (0.01%) were 
above the 0.95 threshold.

Construction of LOE Network
The LOE method was used to identify new candidate genes 
involved in regulating the cell wall in P. trichocarpa by jointly 
probing five different omics data layers. LOE depth scores 

were calculated for each gene, indicating the number of lines 
of evidence within each layer connecting that gene to an input 
set of cell wall anchor genes and metabolites. An LOE breadth 
score was also calculated for each gene, indicating the number 
of types of lines of evidence that connected the gene to input 
cell-wall-related targets. A merged LOE network was created 
after determining an appropriate LOE breadth score threshold 
and taking the union of all thresholded input networks. 
Threshold criteria dictated that candidate genes have a significant 
association with one or more metabolites in either the traditional 
or rare variant data layers as well as a total breadth score of three. 
We required a minimum of one GWAS association for retention 
in the merged network because metabolite-GWAS associations 
represent a measurable cell wall phenotype. A breadth score of 
three was selected in order to prioritize a small set of genes having 
strong evidence for involvement in cell-wall-related processes, 
and the distribution of breadth scores exhibits an inflection 
point at three (Supplementary Figure S2A). These criteria 
identified a list of 315 “high LOE genes” as potential candidates 
for involvement in cell-wall-related functions. Seven high LOE 
genes had a breadth score of four and 308 had a breadth score 
of three (Supplementary Figure S2B). Overall, high LOE genes 
were from a variety of functional categories (Supplementary 
Figure S3) and 80 of these genes were annotated with potential 
regulatory functions (Supplementary Table S4).

Candidate Gene Ranking
To prioritize candidates, we created three ranked tiers to which 
high LOE genes were assigned (Tier 1 is the highest priority, Tier 
3 is the lowest priority). Genes were ranked by 1) breadth score 
and 2) total depth score minus co-methylation depth score. While 
our co-expression data vectors contain 64 data points per gene 
(64 tissues and experimental conditions), our co-methylation 
data vectors contain only 10 data points per gene (10 tissues and 
experimental conditions), resulting in an increased probability 
for spurious correlations in the co-methylation data layer. 
While the distribution of comethylation correlation values 
(Supplementary Figure S1) was significantly different than 
random, the shape of the distribution suggests a conservative 
approach is warranted. In order to avoid upwardly biasing gene 
rankings, co-methylation data was included in the first stage of 
the ranking process (overall rank by breadth score) but excluded 
from the second stage of the ranking process (ranking within 
breadth score bins by depth score). Genes with an LOE Breadth 
score of four were included in Tier 1 by default (seven genes). 
In addition, genes with an LOE Breadth score of three and total 
depth minus comethylation depth scores of five or greater were 
included in Tier 1, resulting assignment of 45 genes. Thirty-
two genes were assigned to Tier 2 based on a total depth minus 
comethylation depth score of four. The remaining 238 high LOE 
genes had total depth minus comethylation depth scores of three 
or less and were assigned to Tier 3.

Functional Validation of LOE Network
Intersection of the observed thresholded LOE network with the 
global GO-term functional network resulted in an intersect score 
of 0.4953, whereas intersect scores for the 100 randomized LOE 
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networks (also thresholded) ranged from 0 to 0.3701 (Figure 
2A). Intersection of the observed LOE network with the cell 
wall-specific GO-term network resulted in a score of 0.4806; 
intersect scores for the 100 randomized networks ranged from 0 
to 0.3470 (Figure 2B). These results imply that our observed LOE 
network captures a greater amount of biological signal than the 
randomized LOE networks.

Literature Evidence
Recovering genes for which cell-wall-related functions have 
been previously reported is an important internal validation 
for the LOE method. We performed an extensive literature 
review to find evidence of previously validated genes in our 

results set. Forty-four genes were recovered with previous 
validation regarding cell-wall-related functions in P. trichocarpa, 
Arabidopsis, or other plant species and for which there is 
evidence of orthology in P. trichocarpa (see Supplementary 
Table S5). Fifteen of these high LOE genes were also in our 
anchor gene list. Genes with prior evidence of cell-wall-related 
functions were removed from our merged LOE network in order 
to present researchers with “new” candidate genes: 14 from Tier 
1, four from Tier 2, and 11 from Tier 3; 17 of these genes are 
represented in Figure 3. However, the literature review process 
was not as thorough for Tiers 2 or 3, thus it is possible that some 
of the remaining genes in these tiers have prior connections to 
cell wall processes. The full ranked and filtered high LOE gene 

FIGURE 2 | Histograms of network intersect scores calculated by intersecting the observed and randomized LOE networks with GO-term functional networks.  
(A) Intersection with the global GO-term functional network resulted in a score of 0.4953 for the observed LOE network; intersect scores for randomized networks 
were ≤0.3701. (B) Intersection with the cell wall-specific GO-term functional network resulted in a score of 0.4806 for the observed LOE network; intersect scores 
for randomized networks were ≤0.3470.

FIGURE 3 | Tier 1 high LOE genes with regulatory annotations in the context of the LOE network arranged to highlight each gene’s connection to lignin/cell wall biosynthesis 
pathways. Orange and green circles represent cell wall anchor genes and high LOE genes, respectively. Numbers within high LOE genes (green circles) indicate an entry 
within Table 1. Green circles that do not contain numbers represent a subset of the high LOE genes that were filtered from the final results set due to having prior evidence 
of cell-wall-related functions in the literature. The size of circles corresponds to their LOE breadth score. Gene symbols are Arabidopsis Best-hit matches.

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org


New Cell Wall Regulatory GenesFurches et al.

8 October 2019 | Volume 10 | Article 1249Frontiers in Plant Science | www.frontiersin.org

list can be found in Supplementary Table 6. For the remainder 
of the manuscript, we focus on Tier 1 genes.

A notable example of a high LOE gene with prior evidence of 
a cell wall regulatory role is IQ-domain 10 calcium-signaling gene 
PtIQD10 (Potri.011G096500). PtIQD10 has a breadth score of 
three and a depth score of 48, including rare variant metabolite-
GWAS associations with syringin, coniferin, and xylulose, and 
significant coexpression and comethylation with 41 cell wall 
anchor genes (Supplementary Table S5, Supplementary Figure 
S4, and Supplementary Table S6). The Arabidopsis ortholog 
AtIQD10 (AT3G15050; orthology with PtIQD10 and P. deltoides 
PdIQD10 supported by phylogenetic analysis in Badmi et al., 2018) 
is differentially expressed in Arabidopsis lines overexpressing the 
transcription factor SECONDARY WALL-ASSOCIATED NAC 
DOMAIN PROTEIN 2 (AtSND2) (Hussey et al., 2011). Hussey et al. 
(2011) hypothesize AtIQD10 activates AtSND1 NAC, followed by 
activation of SND2, MYBs, and cell wall polymerization functions. 
Consistent with this model, orthologs of these genes are present in 
the PtIQD10 one-hop neighborhood (Supplementary Figure S4). 
Additional evidence has recently been observed in P. trichocarpa 
congeners. An ortholog of PtIQD10 in the P. alba x P. glandulosa 
hybrid “84k” is differentially expressed during the transition 
between primary and secondary growth phases in stems (Li et al., 
2017). In addition, P. deltoides ortholog PdIQD10 has higher 
expression levels in tension-stressed xylem tissues and secondary 
walled cells, and RNAi repression of PdIQD10 results in altered 
phenotypes such as increased cellulose, wall glucose content, plant 
height, stem count, and stem density (Badmi et al., 2018; Macaya-
Sanz et al., 2017). PdIQD10 is coexpressed with secondary cell 
wall related genes such as SUSY, CESAs, and KOR (Badmi et al., 
2018), orthologs of which are present in our PtIQD10 subnetwork 
(Potri.018G103900 cellulose synthase/PdCesA7-B/AtCESA7 
and Potri.004G059600 PtCESA.2/PdCESA8-B/AtCESA8; see 
Supplementary Table S7 for the PtIQD10 one-hop subnetwork 
node information for Supplementary Figure S4).

In another example of a high LOE gene with prior evidence 
of a cell-wall-related role, Porth et al. (2013) found that a SNP 
in an exostosin family protein gene (Potri.019G044600) involved 
in xylogalacturonan biosynthesis was correlated with xylose 
(hemicellulose) content. In yet another example, Pomiès et al. 
(2017) found a berberine bridge enzyme gene (Potri.011G161500) 
with orthology to AtEDA28/MEE23 (AT2G34790, shown to play 
a role in lignin monolignol metabolism) was highly up-regulated 
72 h after mechanical perturbation of stems as plants modified 
cell wall properties in response. Another example with growing 
evidence of cell-wall-related regulatory functions is MADS-box 
transcription factor PtAGL12 (Du et al., 2009; Du et al., 2011; 
Weighill et al., 2018; see Supplementary Text S1, Supplementary 
Figure S5, Supplementary Table S8, and Supplementary Figure 
S6 for additional evidence regarding the putative role of PtAGL12 
in regulating cell wall biosynthesis).

Tier 1: Highest Priority Candidates for Cell 
Wall Regulation
Tier 1 genes have the strongest evidence of involvement in 
cell wall related processes (Table 1). Of these, nine genes had 

regulatory annotations (via MapMan, www.arabidopsis.org, or 
PFAM; see Supplementary Table S4 for categories considered 
regulatory). While the remaining 21 genes did not have 
regulatory annotations, our results suggest they play a role in cell 
wall biosynthesis.

Among Tier 1 regulatory genes, there were a total of 18 
metabolite-GWAS associations, 8 of which were rare variant 
hits (Figure 3). Potri.013G093800 (Arabidopsis homolog 
AT1G71350, a eukaryotic translation initiation factor SUI1 
family protein) has the highest number of rare variant 
metabolite-GWAS associations (six) of any high LOE gene 
as well as the highest number of total combined GWAS edges 
(seven). Most Tier 1 regulatory genes share edges with cell wall 
anchor genes from multiple process categories (in Figure 3, gray 
boxes indicating functional groupings of cell wall anchor genes). 
On average, Tier 1 genes were connected by multiple edges to 
four different functional groups, suggesting that Tier 1 genes 
influence multiple aspects of cell wall biosynthesis. Furthermore, 
eight Tier 1 regulatory genes shared edges with anchor cell wall 
transcriptional regulation genes (Figure 3).

Notably, coexpression edges for Tier 1 regulatory genes were 
either strictly negative for a given gene, or strictly positive, 
perhaps hinting at the regulatory mechanism of each gene. 
Two Tier 1 regulatory genes (Potri.015G006200: GROWTH-
REGULATING FACTOR 9/PtGRF9 and Potri.018G105600: 
NUCLEOID-ASSOCIATED PROTEIN YBAB) were negatively 
coexpressed with cell wall genes and six were positively 
co-expressed with cell wall genes. The negatively coexpressed 
genes (Potri.015G006200, Potri.018G105600) did not share any 
neighbor nodes, however they are both connected to lignin and 
xylan biosynthesis genes. In contrast, positively coexpressed 
Tier 1 regulatory genes had a large overlap in neighbor cell wall 
anchor genes. The overlap was even more pronounced among 
Potri.008G112300, Potri.001G216000, Potri.013G060500, and 
Potri.013G156300 despite a complete lack of overlap among 
metabolite-GWAS edges or MAPMAN functional annotations 
(Supplementary Table S9).

We conducted an in-depth investigation into the Tier 1 
regulatory gene PtGRF9 (Potri.015G006200) to assess support 
for PtGRF9 playing a regulatory role in cell wall biosynthesis.

GROWTH-REGULATING FACTOR 9: 
Putative Master Regulator
The transcription factor gene GROWTH-REGULATING 
FACTOR 9 (PtGRF9/Potri.015G006200) had a breadth score of 
three and depth score of 17, including 13 negative coexpression 
edges (the highest negative coexpression depth score in our 
analysis). PtGRF9 shared nine edges with lignin biosynthesis 
genes, four edges with xylan biosynthesis genes, two edges with 
transcriptional regulation genes, and one edge with a secondary 
cell wall deposition gene.

The P. trichocarpa genome annotation (v3.0; available on 
https://phytozome.jgi.doe.gov; Tuskan et al., 2006) indicates the 
best-hit Arabidopsis match for PtGRF9 is AT5G53660 (growth-
regulating factor 7, AtGRF7). To assess support for orthology, we 
performed reciprocal BLASTp searches of amino acid sequences 
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containing the WRC (PF08879) and QLQ (PF08880) domains 
from A. thaliana and P. trichocarpa (obtained from UniProt; www.
uniprot.org) and a phylogenetic analysis (see Supplementary 
Figure S7). Our results support an orthologous relationship 
between PtGRF9 and AtGRF7, which is consistent with the 
phylogenetic analysis of Cao et al. (2016). While investigating 
support for orthology between PtGRF9 and AtGRF7, we 
discovered a second AtGRF7 ortholog in the P. trichocarpa 
genome (Potri.012G022600; hereafter, Potri.015G006200 is 
referred to as “PtGRF9a” and Potri.012G022600 as “PtGRF9b”; 
Supplementary Figure S7). PtGRF9b was not present in our set 
of high LOE genes because it has a breadth score of 2 and was 
not associated with any cell wall phenotypes through GWAS 
analyses. Because PtGRF9b had strong positive coexpression 
with PtGRF9a and shared edges with many cell wall genes, we 
included PtGRF9b in further analyses.

We constructed genome-wide 1-hop networks around each 
PtGRF9 paralog across all data layers to assess the functional 
annotations of nearest neighbors (Figure 4; see Supplementary 

Table S10 for detailed information about nodes). PtIQD10 is 
present in the 1-hop network, along with many other genes with 
documented roles in cell wall processes. PtGRF9a and PtGRF9b 
are jointly positively co-expressed with 14 genes (one of which 
is a high LOE gene related to cell wall processes) and are jointly 
negatively co-expressed with 27 genes (including 7 cell wall 
anchor genes and 2 high LOE genes), implying an overlap in 
function. However, the bulk of neighbor genes are unique to each 
paralog, indicating divergence and perhaps specialization for 
specific tissues and conditions. GO-term functional enrichment 
analysis of the negative co-expression nodes in the 1-hop 
network showed significant enrichment for cell wall biological 
processes, including lignin biosynthesis, xylan biosynthesis and 
cell wall organization or biogenesis (Supplementary Table S11). 
In addition, the metabolite-GWAS association between PtGRF9a 
and syringin (a monolignol glucoside) indicated this SNP 
is associated with an allelic effect on syringin concentration 
(Supplementary Figure S8), further implicating PtGRF9a and 
PtGRF9b as repressors of secondary cell wall formation.

TABLE 1 | Tier 1 high LOE genes. See Supplementary Table S9 for additional score and annotation information.

Node # Gene ID Arabidopsis gene/domain 
symbol

Description Arabidopsis ortholog

Regulatory genes
1 Potri.008G112300 DNA glycosylase superfamily protein AT1G13635.2
2 Potri.001G216000 EAR1 ENHANCER OF ABA CO-RECEPTOR 1 AT5G22090.1
3 Potri.013G060500 ATCRT1 RING/U-box superfamily protein AT5G56340.1
4 Potri.013G156300 Shisa Wnt and FGF inhibitory regulator
5 Potri.015G006200 AtGRF7, GRF7 growth-regulating factor 7 AT5G53660.1
6 Potri.017G053000 AMC1, ATMC1, ATMCPB1 metacaspase 1 AT1G02170.1
7 Potri.018G105600 YbaB_DNA_bd YbaB/EbfC DNA-binding family AT2G24020.1
8 Potri.013G093800 eukaryotic translation initiation factor SUI1 family 

protein
AT1G71350.1

9 Potri.010G072700 RING/U-box superfamily protein AT5G43420.1
Other genes

Potri.004G085400 ATGLN1;1, ATGSR1, GLN1;1, 
GSR 1

glutamine synthase clone R1 AT5G37600.1

Potri.006G256000 Phox (PX) domain-containing protein AT4G32160.1
Potri.012G093800 ATNDPK2, NDPK1A, NDPK2 nucleoside diphosphate kinase 2 AT5G63310.1
Potri.010G155600 Leucine-rich repeat transmembrane protein 

kinase
AT1G53440.1

Potri.001G340400 SEO_N SEO_N–Sieve element occlusion N-terminus
Potri.006G153300 N-acetylated-alpha-linked acidic dipeptidase 

(NAALAD)
AT5G19740.1

Potri.008G156600 AST12, SULTR3;1 sulfate transporter 3;1 AT3G51895.1
Potri.003G079900 AW: HRGP hydroxyproline-rich glycoprotein family protein AT4G16790.1
Potri.T135500 CYCP4;1 cyclin p4;1 AT2G44740.1
Potri.018G090300 AHA1, HA1, OST2, PMA H(+)-ATPase 1 AT2G18960.1
Potri.017G059300 SHM4 serine hydroxymethyltransferase 4 AT4G13930.1
Potri.004G059900 Protein of unknown function DUF1685 AT2G42760.1
Potri.016G115200 LHCB4.2 light harvesting complex photosystem II AT3G08940.2
Potri.015G063400 ATATH2, ATH2 ABC2 homolog 2 AT3G47740.1
Potri.019G087700 ATSERK1, SERK1 somatic embryogenesis receptor-like kinase 1 AT1G71830.1
Potri.007G027400 anti-muellerian hormone type-2 receptor AT3G50685.1
Potri.005G067000 Protein kinase protein with adenine nucleotide 

alpha hydrolases-like domain
AT1G77280.1

Potri.001G352200 ATPUP10, PUP10 purine permease 10 AT4G18210.1
Potri.011G142200 PSBR photosystem II subunit R AT1G79040.1
Potri.006G060100 CRR6 chlororespiratory reduction 6 AT2G47910.1
Potri.010G113700 FAB1C FORMS APLOID AND BINUCLEATE CELLS 1C AT1G71010.1
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In Arabidopsis, AtGRF7 is one of nine members of the GRF 
family of transcription factors (there are 20 GRF homologs 
in P. trichocarpa) that affect growth via multiple mechanisms 
(Omidbakhshfard et al., 2015). AtGRF7 has specifically been 
shown to modulate drought response by repressing DREB2A 
(Joshi et  al., 2016) which ensures that drought response genes 
normally activated by DREB2A are not expressed under non-
drought conditions, thus avoiding reduced growth. In addition 
to stress response, GRF genes are involved in regulating cell 
proliferation and differentiation in the shoot apical meristem 
(SAM). GRF genes therefore impact the elongation of stems, new 
leaf initiation, and the size and shape of leaves (Gonzalez et al., 
2012). The phenotypic penetrance may occur as part of a complex 
formed with GRF Interacting Factor (GIF1/AN3) proteins (Hoe 
Kim and Tsukaya, 2015), where the GRF-GIF complex serves 
as a transcriptional activator, recruits chromatin remodeling 
complexes, and regulates the meristematic state of a tissue.

GO-term enrichment analysis of the positive coexpression 
nodes in the PtGRF9 1-hop network was consistent with roles 

reported in the literature for GRF genes (Supplementary 
Table S12). The most significantly enriched Biological Process 
GO terms include specification of axis polarity, shoot system 
development, shoot system morphogenesis and negative 
regulation of cell proliferation. Numerous osmotic-stress 
related genes are also found in the PtGRF9 network (e.g., 
AHA1/OST2, ERL1, PIP2;2, TIP4;1, and AREB3), reflecting the 
well-documented relationship between AtGRF7 and drought 
response. Significant connections between the PtGRF9 paralogs 
and PtGIF1 or PtDREB2A are not present in our LOE network. 
On closer inspection of co-expression values across tissues we 
see that PtGRF9a and PtGIF1 do coexpress strongly in bud and 
immature leaf, but expression diverges in mature leaf and roots 
which causes the strength of coexpression to fall just below our 
0.85 threshold (Supplementary Figure S9). The case is less clear 
for PtDREB2A as it shows little expression in most tissues.

Evidence that the PtGRF9 paralogs play roles in regulating 
growth, defense, stress response, secondary growth, and cell 
wall biosynthesis suggest that PtGRF9a and PtGRF9b could be 

FIGURE 4 | Genome-wide neighborhood of PtGRF9 paralogs in the global input layer networks. Gene symbols are Arabidopsis Best-hit matches. See 
Supplementary Table S10 for detailed node information; for functional enrichment details, see Supplementary Tables S11 (negatively co-expressed genes) and 
S12 (positively co-expressed genes).
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transcriptional co-regulators as described by Xie et al. (2018b), 
acting as master regulators that direct the global allocation of 
energy within a plant.

Evidence for Regulation of the Cell Wall by PtGRF9
To date, a role for the GRF family in cell wall regulation has not 
been reported, though it has been noted that cell proliferation 
and timing of differentiation must require control or delay of 
secondary cell wall deposition (Mele et al., 2003). Barros et al. 
(2015) noted that lignin cannot be removed once deposited, 
thus, specific regulatory mechanisms are required to control 
lignin biosynthesis and deposition at specific stages during cell 
differentiation. The contrasting patterns of coexpression between 
cell wall biosynthesis and meristematic control in our PtGRF9 
1-hop network (Figure 4) suggest that it could be involved in such 
a mechanism. Furthermore, the GWAS association with syringin 
suggests that allelic variation in PtGRF9a in this population may 
have an additive effect on the amount of sinapyl alcohol stored or 
released for cell wall lignification.

Knowledge regarding downstream targets of GRF 
genes is incomplete (see Omidbakhshfard et al., 2015 for a 
comprehensive review). AtGRF7 has been shown to repress 
AtDREB2A by binding to the motif TGTCAGG (Kim et al., 
2012). Additionally, the central CAG sub-motif is enriched in 
the promoter of KNOX genes that are targeted by GRFs (Kuijt 
et al., 2014). We searched for the complete TGTCAGG motif 
in the promoter regions of Arabidopsis homologs of the genes 
that coexpress with PtGRF9a using the online athamap.de tool, 
revealing two potential AtGRF7 targets in our 1-hop network: 
caffeoyl coenzyme A O-methyltransferase 1 (AT4G34050/
AtCCoAOMT1) and MADS-box transcription factor AtAGL12 
(AT1G71692). Both genes are relevant to the cell wall, and P. 
trichocarpa homologs of these genes are negatively co-expressed 
with PtGRF9a. To further investigate these genes as potential 
PtGRF9a targets, we used Analysis of Motif Enrichment 
(AME) (McLeay and Bailey, 2010), but found no evidence 
for enrichment of the TGTCAGG motif in the 2-kb upstream 
or CDS regions of PtCCoAOMT (Potri.001G304800 and 
Potri.009G099800) or PtAGL12 (Potri.013G102600). Manual 
examination revealed that the TGTCAGG motif appears 
inexactly in the upstream regions of PtCCoAOMT1 and 
PtAGL12 (TGTTCAGG in CCoAOMT1 Potri.009G099800; 
TGTCAGC in PtCCoAOMT Potri.001G304800 and PtAGL12). 
Consistent with the findings of Franco-Zorrilla et al. (2014), who 
show that repressor TFs such as PtGRF9a are more likely than 
activator TFs to bind downstream of a target gene, we found 27 
Populus genes significantly enriched for TGTCAGG in the 1-kb 
downstream region, including PtMYB41 (Potri.012G039400, a 
homolog of AtMYB52), which is negatively coexpressed with 
PtGRF9a. AtMYB52 is a TF known to induce secondary cell wall 
biosynthesis genes and its repression reduces secondary wall 
thickening in fibers (Zhong et al., 2008). Furthermore, AtMYB52 
overexpression has been linked with drought tolerance (Park 
et al., 2011). Given the established role of AtGRF7 in drought 
response, repression of PtMYB41 is a potential avenue for 
PtGRF9a to regulate both lignification and drought tolerance, 
although further experimental evidence is required.

Analysis of our 1-hop network suggests that PtGRF9 also 
affects cell wall biosynthesis by regulating a host of homeobox 
genes. Twenty homeobox genes were present in the PtGRF9 
network, including PtATHB.12 (Potri.001G188800; homolog 
of AtHB15/AT1G52150), which has been shown to influence 
secondary wall formation and cambial production of xylem 
(Schrader, 2004; Cassan-Wang et al., 2013), and PtAGL12 (Du 
et al., 2009; Du et al., 2011; Weighill et al., 2018) (Supplementary 
Figure S5). There was also indirect evidence in the PtGRF9 
network suggesting PtGRF9 interacts with PtKNOX genes. 
KNOX genes are involved in meristem maintenance and are 
downregulated to facilitate lateral primordia development 
and the differentiation of cambium into xylem and phloem 
(Hertzberg et al., 2001; Schrader, 2004; Hay and Tsiantis, 2010). 
GRF genes are involved in specification of primordia cells and 
have been shown to repress KNOX genes by forming hairpins 
in targeted regions (Kuijt et al., 2014; Hoe Kim and Tsukaya, 
2015). Interactions between AtGRF7 and KNOX genes have yet 
to be investigated, but the primary motif of the target sequence 
by which AtGRF7 binds AtDREB2A was shown to be enriched 
in several KNOX genes, and experiments in rice, barley, and 
Arabidopsis have confirmed that multiple GRF genes bind these 
motifs in KNOX genes (Kim et al., 2012; Kuijt et al., 2014). The 
presence of several genes that exclusively or directly interact with 
KNOX genes in the 1-hop network strongly implies that PtGRF9 
proteins influence the cell wall via interactions with the PtKNOX1 
genes PtSTM and PtBP, and likely other PtKNOX genes as well 
(Supplementary Table S13 and Figure 5). Although KNOX 
family genes were not present in the PtGRF9 network, this was 
likely due to highly tissue-specific expression patterns which our 
coexpression analysis methods were not designed to detect (see 
Supplementary Figure S10).

The PtKNOX-associated genes in the PtGRF9 network 
have documented roles in cell wall and secondary growth 
phenotypes (Figure 5). SHOOT-MERISTEMLESS (PtSTM) 
downregulates gibberellic acid levels by repressing gibberellin 
20-oxidase (PtGA20ox) biosynthesis genes and upregulating 
catabolism genes such as PtGA2ox4 (positively co-methylated 
with PtGRF9a), which inhibits xylem production (Eriksson 
et al., 2000; Jasinski et al., 2005). Overexpression of PtSTM/
ARBORKNOX1 (PtSTM/PtARK1) in P. tremula × P. alba 
has been shown to inhibit differentiation of leaf primordia, 
elongation of internodes, and differentiation of secondary 
vascular cells (Groover et al., 2006). Counterintuitively, 
overexpression of PtSTM/PtARK1 in secondary meristems 
also results in upregulation of some lignin biosynthesis genes 
and increased lignin content. Long-term transcriptional 
repression of BREVIPEDICELLUS (AtBP), KNOTTED-
like 2 from A. thaliana (AtKNAT2) and AtKNAT6 outside 
the meristem is facilitated by chromatin remodeling carried 
out by the protein encoded by ASYMMETRIC LEAVES 1 
(AtAS1; PtAS1 is positively co-expressed with PtGRF9a and 
PtGRF9b), which dimerizes with AtAS2 and recruits the 
histone chaperone protein encoded by AtHIRA (PtHIRA is 
negatively co-methylated with PtGRF9a) (Guo et al., 2008; Hay 
and Tsiantis, 2010). AS2 is involved in controlling seasonal 
lignification in spruce, likely through its role in repressing BP 
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(Jokipii-Lukkari et al., 2018). BP decreases lignin deposition 
and regulates the localization of lignification by binding 
the promoters of AtCOMT1, AtCCoAOMT1, laccases, and 
peroxidases (putative orthologs of which are all negatively 
co-expressed with PtGRF9a and PtGRF9b) (Mele et al., 
2003). The PtGRF9 network includes many of the cell wall 
biosynthesis-related genes that Mele et al. (2003) found to be 
differentially expressed in bp mutants, including five putative 
orthologs (PAL1, OMT1, two CCoAOMT1 paralogs, PME3, and 
GH9B5; see Supplementary Table S13) and an additional 23 
genes belonging to the same families as differentially expressed 
genes in bp mutants (4CL2, five PMEs, KCS19, four peroxidases, 
four laccases, ERD4, GAUT4, PUB24, MEE23, ERF1-3, and 
three R2R3 MYBs: MYB52, MYB93, MYB111). Consistent 
with these observations in Arabidopsis, overexpression of 
AtBP/ARBORKNOX2 (AtBP/AtARK2) in P. alba x P. tremula 
results in downregulation of ABNORMAL FLORAL ORGANS 
(PtAFO/PtYAB1), PIN-FORMED 1 (PtPIN1), PtAGL12 (all 
negatively co-expressed with PtGRF9a) and PtGA20ox genes, 
leading to inhibition of cellular differentiation and division 
and decreases in biomass (Du et al., 2009). Furthermore, 
overexpression of PtBP/PtARK2 results in downregulation of 
cell wall biosynthesis genes, decreased lignin content, reduced 
phloem fibers, and reduced secondary xylem in stems.

We did not find a connection between the PtGRF9 genes 
and cell wall anchor genes KNAT7 (Potri.001G112200, a 
PtKNOX2 gene) and BEL1-like homeodomain 6 genes (PtBLH6, 
Potri.004G159300 and Potri.009G120800). These genes have 
well-documented roles in cell wall regulation (Li et al., 2012a; 
Cassan-Wang et al., 2013). However, the PtGRF9 genes do 
not appear to be involved in their regulation, perhaps because 
PtKNOX2 genes are generally more functionally diverse and 
broadly expressed than PtKNOX1 genes (consistent with 
expression data in Supplementary Figure S10) (Furumizu 
et al., 2015). In addition, they are not involved in meristematic 
maintenance, and in some cases seem to overlap in function 
with genes that promote differentiation (consistent with what we 
recovered in our LOE analysis).

PtGRF9 eQTN Network: An Independent Line of 
Evidence
As a means of independently evaluating support for the 
hypothesis that PtGRF9 paralogs regulate cell wall biosynthesis, 
we constructed 1-hop eQTN networks around PtGRF9a and 
PtGRF9b (Figure 6; detailed node information available in 
Supplementary Table S14). SNPs in both the PtGRF9a and 
PtGRF9b 1-hop networks were associated with cell wall expression 
phenotypes in leaf and xylem tissues, as well as expression 

FIGURE 5 | Literature evidence linking AtGRF7 genes to AtKNOX genes and the cell wall, overlaid on LOE edges from the PtGRF9 subnetwork. See 
Supplementary Table S13 for P. trichocarpa orthologs.
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phenotypes consistent with the previously documented roles of 
AtGRF7 and other GRF orthologs in regulating functions such 
as growth, defense, and stress response. In agreement with the 
multi-omic 1-hop network described in the section GROWTH-
REGULATING FACTOR 9: Putative Master Regulator (Figure 
4), the eQTN network indicated each paralog has connectivity 
with cell-wall-related genes affecting multiple facets of cell wall 
biosynthesis, including transcriptional regulation, cellulose 
biosynthesis, lignin biosynthesis, xylan biosynthesis, and 
secondary cell wall deposition. Also consistent with the multi-
omic 1-hop network, the eQTN analysis indicated that despite 
a low degree of topological overlap between the PtGRF9a and 
PtGRF9b neighborhoods, the paralogs still largely overlap in 
function.

To gain an understanding of how the PtGRF9 paralogs 
potentially affect cell wall metabolites, the 1-hop eQTN 
network was merged with 1-hop anchor metabolite networks 
generated from traditional and rare variant metabolite-GWAS 
data layers. Beyond the direct GWAS association of PtGRF9a 
with syringin, 14 additional anchor metabolites are present in 
the 2-hop eQTN to metabolite-GWAS network (Figure 6), 6 
of which are indirectly associated with both paralogs through 
various intermediate genes. There appears to be a pattern of 
segregation regarding metabolite associations between tissue 

types and PtGRF9 paralogs, perhaps indicating that these genes 
are diverging to fulfill different tissue-specific regulatory roles.

Future Directions
Our extended network analysis pipeline has provided a short list of 
putative cell wall regulatory genes to the scientific community for 
experimental validation. We performed an in-depth investigation 
of the PtGRF9 paralogs, which are particularly promising 
candidates for regulation of cell wall biosynthesis and secondary 
growth. Furthermore, we show the PtGRF9 paralogs are potential 
transcriptional co-regulators that coordinate the flow of energy 
among growth, defense, stress response, and lignification, in a 
manner consistent with the hypothesis of Xie et al. (2018b). The 
ability to manipulate transcriptional co-regulators such as these 
via genetic engineering and breeding programs would provide a 
powerful tool for shaping bioenergy crops.

Incorporating a rare variant metabolite-GWAS data layer 
in the LOE analysis has proven to be a valuable asset in the 
identification of new candidate genes. Incorporating a genome-
wide eQTN (SNP-to-expression-phenotype GWAS) data layer 
in future analyses would provide greater clarity regarding the 
mechanisms through which these genes regulate cell-wall-related 
functions. Furthermore, DNA affinity purification sequencing 

FIGURE 6 | Two-hop network created by merging a 1-hop eQTN network around the PtGRF9 paralogs and 1-hop metabolite-GWAS networks around anchor 
metabolites. See Supplementary Table S14 for node information.
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(DAP-seq) could provide further support for hypothesized 
transcription factor binding sites, and thus help elucidate 
relevant transcription factor regulatory networks. Tissue-specific 
expression analysis across a GWAS population would allow for 
increased “tissue level resolution” of the regulatory networks. 
The extended network analysis pipeline will be a valuable tool to 
integrate these new layers with the previous networks to produce 
a holistic model of cell wall regulation.
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