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Structural Plasticity of Intrinsically 
Disordered LEA Proteins from 
Xerophyta schlechteri Provides 
Protection In Vitro and In Vivo
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Wilco Ligterink 1 and Henk Hilhorst 1
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Late embryogenesis abundant (LEA) proteins are essential to the ability of resurrection 
plants and orthodox seeds to protect the subcellular milieu against irreversible damage 
associated with desiccation. In this work, we investigated the structure and function 
of six LEA proteins expressed during desiccation in the monocot resurrection species 
Xerophyta schlechteri (XsLEAs). In silico analyses suggested that XsLEAs are hydrophilic 
proteins with variable intrinsically disordered protein (IDP) properties. Circular dichroism 
(CD) analysis indicated that these proteins are mostly unstructured in water but acquire 
secondary structure in hydrophobic solution, suggesting that structural dynamics may 
play a role in their function in the subcellular environment. The protective property of 
XsLEAs was demonstrated by their ability to preserve the activity of the enzyme lactate 
dehydrogenase (LDH) against desiccation, heat and oxidative stress, as well as growth 
of Escherichia coli upon exposure to osmotic and salt stress. Subcellular localization 
analysis indicated that XsLEA recombinant proteins are differentially distributed in the 
cytoplasm, membranes and nucleus of Nicotiana benthamiana leaves. Interestingly, a 
LEA_1 family protein (XsLEA1-8), showing the highest disorder-to-order propensity 
and protective ability in vitro and in vivo, was also able to enhance salt and drought 
stress tolerance in Arabidopsis thaliana. Together, our results suggest that the structural 
plasticity of XsLEAs is essential for their protective activity to avoid damage of various 
subcellular components caused by water deficit stress. XsLEA1-8 constitutes a potential 
model protein for engineering structural stability in vitro and improvement of water-deficit 
stress tolerance in plants.

Keywords: intrinsic disorder, late embryogenesis abundant proteins, plant desiccation tolerance, resurrection 
plants, Xerophyta

INTRODUCTION

Water availability is one of the major environmental factors that affect plant growth, development 
and productivity. During their life cycle, plants may endure periods of environmental drought and, 
depending on the duration of such periods, it may lead to irreversible structural damages affecting 
plant development and survival. Most higher plants undergo programmed water loss during their 
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life cycle, which may occur in organs such as pollen, spores 
and seeds (Bewley, 1995; Scott, 2000). A group of about 135 
angiosperm plant species have been described as “resurrection 
plants” for their ability to tolerate the loss of 80% to 95% of 
cellular water and resume photosynthetic activity and growth 
within hours after rehydration (Oliver et al., 2000; Scott, 2000; 
Porembski, 2011; Farrant et al., 2015). It is likely that desiccation 
tolerance (DT) appeared in the plant lineage during the transition 
from water to land, became confined to reproductive structures 
as plants evolved, and reappeared in vegetative structures of 
angiosperm resurrection plants by redirecting pre-existing genes 
and pathways to survive in the dry state (Ingram and Bartels, 
1996; Oliver et al., 2000; Rensing et al., 2008; Farrant and Moore, 
2011; Wodniok et al., 2011; Gaff and Oliver, 2013).

Recently, the genome of the resurrection species Xerophyta 
schlechteri1 (Behnke et al., 2013) has been sequenced (Costa 
et  al., 2017). X. schlechteri is a monocot species belonging to 
the Velloziaceae family, and it is distributed mainly in southern 
African regions and inhabits rocky terrain or inselbergs in 
exposed grasslands (Porembski and Barthlott, 2000; Mello-Silva 
et al., 2011; Farrant et al., 2015). X. schlechteri is a resurrection 
monocot species, phylogenetically related to most important 
grass crops from the Poaceae family, and understanding its DT 
opens opportunities to apply this knowledge to improve drought 
tolerance in crops (Farrant et al., 2015; Costa et al., 2017).

Several mechanisms of responses to desiccation in X. schlechteri 
leaves have been correlated with its resurrection phenotype 
(Farrant et al., 2015). Among the essential adaptive mechanisms 
to survive loss of water, the accumulation of protective molecules 
has been shown to be an essential component of DT at the 
subcellular level. These molecules include sucrose, raffinose 
family oligosaccharides (RFOs) and LEA proteins which are 
thought to act, inter alia, as osmoprotectants in the formation 
and stability of the so-called cytoplasmic glassy state (Leprince 
et  al., 1993; Hoekstra et al., 2001; Buitink and Leprince, 2004; 
Vicré et al., 2004; Farrant et al., 2012).

LEA proteins were first discovered due to their accumulation 
during late stages of embryo development of cotton seeds, 
coinciding with their acquisition of DT (Dure et al., 1981; Galau 
et  al., 1986; Dure et al., 1989), and their characteristic stress-
induced expression has led to the hypothesis that these proteins 
are involved in stress responses mediated by abscisic acid (ABA) 
(Galau et al., 1986). LEA transcription appears to be inducible by 
ABA and osmotic stress and is evident upon drying below 60% 
to 40% RWC, a common pattern observed in both seeds and 
resurrection plants (Illing et al., 2005; Leprince and Buitink, 2010; 
Costa et al., 2017). Interestingly, the translation of some LEA 
proteins has been shown to occur a few hours or even days after 
their transcription, suggesting regulation at the transcriptional and 
translational levels (Galau et al., 1987; Hughes and Galau, 1991; 
Espelund et al., 1992; Chatelain et al., 2012; Verdier et al., 2013). In 
addition to transcriptional and translational regulation, some LEA 
proteins were shown to undergo posttranslational modifications 

1 The Xerophyta viscosa (Baker) plants used by Costa et al. (2017) have been 
classified as Xerophyta schlechteri (Baker) N.L. Meneses (Behnke et al., 2013).

(PTMs), reflecting the complexity of the regulation of these 
proteins at various levels (Riera et al., 2004; Boudet et al., 2006).

Several LEA proteins are assumed to be intrinsically disordered 
proteins (IDPs) considering their ability to undergo order to 
disorder transitions in different in vitro environments (Soulages 
et al., 2002; Mouillon et al., 2006; Shih et al., 2010; Popova et al., 
2011; Hincha and Thalhammer, 2012; Hundertmark et al., 2012; 
Shih et al., 2012; Rivera-Najera et al., 2014; Cuevas-Velazquez 
et al., 2016; Bremer et al., 2017; Cuevas-Velazquez et al., 2017). 
This interesting physicochemical characteristic allows LEA 
proteins to form homo- and heterodimers and to interact with 
multiple targets (Tolleter et al., 2007; Popova et al., 2015; Cuevas-
Velazquez et al., 2016; Hernandez-Sanchez et al., 2017). The 
ubiquitous distribution of LEA-like proteins in bacteria and 
invertebrates suggests that similar protective mechanisms of DT 
involving LEA proteins have evolved across different life forms 
(Tunnacliffe and Wise, 2007; Costa et al., 2016).

The myriad of secondary structures enables LEA proteins 
to play multiple roles in abiotic stress tolerance, constituting 
an essential footprint of DT in seeds and resurrection plants 
(Maia et al., 2011; Costa et al., 2017). To further characterize and 
explore the biochemical, structural, and functional properties 
of LEA proteins, we cloned the coding sequences of six LEA 
genes expressed in X. schlechteri leaves upon desiccation: 
XsDHN12, XsLEA1-8, XsLEA4-8, XsLEA4-12, XsLEA6-2, 
and XsSMP4. We examined the secondary structure of these 
LEA proteins by circular dichroism (CD) and monitored their 
folding dynamics in hydrophobic solution. In vitro and in vivo 
experiments demonstrated that these XsLEAs perform protective 
roles under desiccation, heat, oxidative, salt, and osmotic stress. 
The protective activity of XsLEAs seems protein type-specific, 
with a strong correlation between the ability to form defined 
secondary structures in vitro and the extent of protection both 
in vitro and in vivo. XsLEAs are localized in multiple subcellular 
compartments, such as nucleus, membrane, and cytoplasm, 
supporting the idea of universal cell protection by LEA proteins. 
Heterologous expression of XsLEA1-8 in Arabidopsis thaliana 
leads to higher tolerance to salt and osmotic stress in seedlings 
and drought in adult plants. Our work sheds new light on the 
biochemical properties of these stress-responsive proteins and 
highlights characteristics of LEA proteins that can be useful for 
bioengineering protein stability in vitro and improving abiotic 
stress tolerance in crops.

MATERIALS AND METHODS

In Silico Analysis
Protein Grand Average Hydropathy was calculated using the 
GRAVY calculator (http://www.gravy-calculator.de/). Molecular 
mass and isoelectric point (pI) were calculated with the 
isoelectric point calculator (IPC) (Kozlowski, 2016). Protparam 
(http://web.expasy.org/protparam/) was used to analyse amino 
acid composition and predict protein stability. The percentage of 
polar residues was calculated with EMBOSS PEPSTATS (https://
www.ebi.ac.uk/Tools/seqstats/emboss_pepstats/). Prediction 
of the degree of protein disorder was performed using IUpred 
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(Dosztányi et al., 2005) and PONDR (http://www.pondr.com/) 
with default parameters (VLXT predictor). Sequence-specific 
parameters and prediction of structural qualities of the proteins 
were predicted with CIDER (http://pappulab.wustl.edu/CIDER/
analysis/) (Holehouse et al., 2017). ANCHOR web server 
(http://anchor.enzim.hu/) was used to predict the number of 
disordered binding regions (DBRs), i.e. regions with propensity 
to undergo folding upon partner-binding with a probability 
higher than 50%, and MoRFpred (http://biomine.cs.vcu.edu/
servers/MoRFpred/) was used to predict the number of residues 
of molecular recognition features (MoRFs). Disorder enhanced 
phosphorylation predictor (DEPP), also known as DisPhos and 
available from http://www.pondr.com/cgi-bin/depp.cgi was used 
to predict phosphorylation sites within the protein sequences 
(Iakoucheva et al., 2004). Subcellular localization was predicted 
with PSI (http://bis.zju.edu.cn/psi/), CELLO2GO (http://cello.
life.nctu.edu.tw/) and Plant-mPLoc (http://www.csbio.sjtu.
edu.cn/bioinf/plant-multi/). Signal peptide predictions were 
performed with SignalP v. 4.1 Server (http://www.cbs.dtu.dk/
services/SignalP/), PrediSi (http://www.predisi.de/), and TargetP 
1.1 Server (http://www.cbs.dtu.dk/services/TargetP/).

Plant Materials and Growth Conditions
Seeds obtained from mature X. schlechteri plants, collected from 
Buffelskloof Private Nature Reserve in the Mpumulanga province 
of South Africa, were sown on potting soil and maintained in 
greenhouse at the Wageningen University under conditions of 
16 h at 27°C during the day and 8 h at 18°C during the night. 
Dehydration was achieved by withholding water from the pots. 
Young green leaf tissue was harvested from four individual plants 
on a daily basis, frozen in liquid nitrogen, and stored at −80°C. 
Nicotiana benthamiana plants used for agro infiltration and A. 
thaliana plants ecotype Columbia-0 used for floral dipping and 
drought treatments were grown on a mix of 50% vermiculite 
and 50% soil watered three times a week with Hyponex solution 
(Hyponex Japan, Osaka, Japan http://www.hyponex.co.jp), in 
a greenhouse with long-day photoperiod cycles (16 h light/8 h 
dark) at 22°C ± 2°C for 3 weeks. A. thaliana plants used for 
seed collection were grown on Rockwool blocks (Grodan, the 
Netherlands) in Hyponex solution under greenhouse conditions 
(16 h light/8 h dark).

RNA Extraction, cDNA Synthesis and 
Cloning of XsLEAs
Total RNA was extracted from leaves of adult X. schlechteri plants 
9 days after dehydration using the hot borate protocol (Wan and 
Wilkins, 1994). cDNA was synthesized using the iScript™ cDNA 
Synthesis Kit (Bio‐Rad, Laboratories B.V., The Netherlands) 
according to the manufacturer’s protocol. Primers were designed 
to include flanking restriction sites, which were in turn flanked 
with Gateway AttB1 and AttB2 sites (Supplementary table 1). 
PCR was performed on X. schlechteri cDNA with Q5 high-fidelity 
DNA polymerase (New England Biolabs) and PCR products 
were purified from gel using Nucleospin Gel and PCR clean-up 
(Macherey-Nagel). The purified amplicons were cloned into the 
entry vector pDONr201 using BP Clonase II according to the 

manufacturer’s instructions (Thermo Fisher Scientific) to create 
pENTr201-LEA and sequenced to confirm the gene sequence.

Construction of Plant Expression Vectors
For N. benthamiana transient gene expression, subcloning from 
pENTr201-LEA into pGWB606 (Nakamura et al., 2010) was 
performed with a Gateway LR reaction to produce recombinant 
p35S::GFP-XsLEAs. Correct reading frame was confirmed by 
sequencing. For A. thaliana heterologous expression, subcloning 
of the XsLEAs CDS from pENTr201-LEA into the expression 
vector pB7WG2RS was also performed with a Gateway LR 
reaction. The expression vector pB7WG2RS was made by 
cloning the RedSeed selection marker (pNAP::DsRed) from 
pKGW-RedSeed between the left T-DNA border and the Bar 
resistance gene of pB7WG2 (Karimi et al., 2002) using XbaI and 
KpnI. Correct insertion of the RedSeed marker was confirmed 
by sequencing.

Construction of Bacterial Expression 
Vectors
For protein expression and purification, XsLEA CDSs were 
cloned from pENTr201-LEA into bacterial expression vector 
pDEST17 with a Gateway LR reaction to produce recombinant 
N-terminal His-tagged proteins (pEXPR17-LEA). The correct 
reading frame was checked by sequencing. For E. coli stress 
assays, the XsLEAs were subcloned from pENTr201-LEA to 
the bacterial expression vector pCDF-Duet (Novagen), which 
contains two multiple cloning sites (MCSs), using traditional 
cloning. XsLEA6-2 and XsDHN12 were subcloned to MCS1 
using NcoI and EcoRI, while XsSMP4, XsLEA4-8, XsLEA4-
12, and XsLEA1-8 were subcloned to MSC2 using NdeI and 
AvrII (New England Biolabs; Supplementary Table 1). In all 
cases, both pENTr201-LEA and pCDF-Duet were digested 
with the corresponding enzymes. The fragment containing the 
XsLEA CDS from the digested pENTr201-LEA was purified 
by gel extraction (Macherey-Nagel). The digested pCDF-Duet 
vector was subjected to dephosphorylation (shrimp alkaline 
phosphatase [rSAP] from New England Biolabs) and purified 
with a silica column (Macherey-Nagel). The XsLEA fragments 
were ligated into pCDF-Duet using T4 DNA Ligase (Promega) 
to create pCDF-LEA. Correct orientation was confirmed by PCR.

Expression and Purification of the 
Recombinant XsLEAs
BL21 (DE3) pLysS (Novagen) E. coli expression strain carrying 
the different pDEST17-LEA vectors were grown overnight in 
5-cm3 sterile LB medium at 37°C (200 rpm). The cultures were 
inoculated in 1 dm3 of sterile LB medium in a 5-dm3 Erlenmeyer 
flask and incubated at 37°C with shaking (200 rpm). When an 
optical density at 600 nm (OD600) of 0.6 was reached (± 3 h), 
isopropyl β-d-thiogalactopyranoside (IPTG) was added to a 
final concentration of 1 mM and incubation continued for 2 
h at 37°C (100 rpm) to induce protein expression. The cells 
were then harvested by centrifugation at 4°C, 10,000g for 10 
min and the cell pellets were frozen overnight at −20°C. The 
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cell pellets were then thawed an resuspended in 15 cm3 Lysis-
Equilibration-Wash Buffer (LEW; Macherey-Nagel) containing 
50 mM NaH2PO4 and 300 mM NaCl with a pH of 8.0 using 
NaOH. A 1-mg/cm3 lysozyme (Sigma-Aldrich) was added, 
followed by incubation on ice for 30 min. The cells were lysed 
by sonication and the lysate was centrifuged for 30 min at 
4°C, 10,000g. For purification of the His-tagged recombinant 
LEA proteins from the crude lysate, the Protino® Nickel TED 
(Ni-TED) Histidine Tag Affinity Purification Kit (Macherey-
Nagel, Germany) was used with standard protocol. The purified 
His-tagged XsLEAs were subjected to concentration and buffer 
exchange into dH2O using the Amicon Ultra Centrifugal Filters 
(3K for XsLEA4-8, XsLEA1-8, XsLEA6-2 and XsDHN12, and 
30K for XsSMP4 and XsLEA4-12, MWCO, Merck Millipore). 
Centrifugation was performed at 8,000g for 1 h or 14,000g 
for 15 min for the 3K and 30K filters, respectively, at 4°C to 
concentrate the proteins, followed by three washing steps with 
12 cm3 of dH2O (the same centrifugation parameters were used). 
Total protein concentration was quantified using the Bradford 
BioRad Microassay (BioRad USA) according to manufacturer’s 
instructions with bovine serum albumin (BSA; Sigma Aldrich, 
USA) as a standard. As an additional purification step, making 
use of the heat stability of most LEA proteins (Boudet et al., 
2006), 10 to 15 µg of the recombinant proteins were submitted 
to a 97°C treatment for 10 min, centrifuged, and the supernatant 
was analyzed on a 12% SDS-PAGE at 90 V for 2 h with a Colour 
Prestained Protein Standard Ladder (New England Biolabs, 
USA). After electrophoresis, gels were stained with a Coomassie 
Blue solution (2.5 g/dm3 Coomassie Blue (Sigma-Aldrich), 50% 
v/v methanol, 10% v/v acetic acid) for 1 h at room temperature 
and destained overnight in a solution of 45% v/v methanol and 
10% v/v acetic acid prior to visualization.

In-Solution Circular Dichroism Analysis for 
Secondary Structure
Circular dichroism (CD) spectra of the six recombinant His-
tagged LEA proteins were obtained using a JASCO J-810 
Spectropolarimeter (JASCO Analytical Instruments, Japan) in 
1 mm path-length quartz cuvettes. Spectral data were recorded 
from 240 to 190 nm, with 10 accumulations per run using a 0.2-
nm data pitch, 100 nm/min scanning speed, 1 s response time 
and 1 nm of band width. To simulate changes in secondary 
structure, we used 80% acetonitrile (ACN), 20 mM NaCl, and 
MiliQ water adjusted with HCl to pH 2.3 or pH 4.0 as protein 
solvents. BSA (Sigma-Aldrich, USA) was used as a control for the 
spectra of an alpha-helical structure, at a concentration of 0.075 
mg/cm3. Measurements of millidegrees obtained from the results 
were subsequently converted into mean residue (θ) and plotted 
against the wavelength range (nm). CD data were fitted using 
Dichroweb (http://dichroweb.cryst.bbk.ac.uk/html/home.shtml) 
(Contin, data set 7) (Whitmore and Wallace, 2004) to estimate 
the secondary structure content.

In Vitro Lactate Dehydrogenase Assays
Lactate dehydrogenase (LDH) assays were adapted from Reyes 
et al. (2008). In short, LDH from rabbit muscle (Sigma-Aldrich) 

was diluted to a final concentration of 200 nM in 25 mM Tris 
pH 7.5. The purified XsLEAs or BSA were also diluted to a 
final concentration of 200 nM in 25 mM Tris-HCl pH 7.5. The 
mixture of LDH and XsLEA at a molar ratio of 1:1 was submitted 
to desiccation, heat or oxidative stress. After each treatment, 
the enzyme and protein mixture was added to a reaction buffer 
containing 25 mM Tris-HCl pH 7.5, 2 mM of pyruvate (Sigma-
Aldrich) and 0.15 mM NADH (Roche) to a final volume of 1 
cm3 in 2 cm3 plastic cuvettes and the initial absorbance was 
measured at 340 nm. The rate of the decrease in absorbance 
due to the conversion of NADH to NAD+ was determined 
every 5 s for 1.5 min at 25°C. For the desiccation-induced 
aggregation assay, LDH in the presence of each of the purified 
XsLEAs or BSA were submitted to dehydration in a centrifugal 
evaporator (Savant™ SpeedVac™ Plus SC210A) for 1 h at room 
temperature. After dehydration, the initial volume was restored 
by adding 25 mM Tris-HCl pH 7.5, and enzyme activity was 
measured as mentioned above. For the thermal inactivation 
assays, the samples containing each of the six purified XsLEAs 
or BSA together with LDH were heated at 42°C for 20 min and 
cooled down at room temperature for 10 min. Oxidative stress 
was imposed by incubating the LDH enzyme and XsLEAs or 
BSA mixtures in 200 mM of H2O2 (Sigma-Aldrich) at room 
temperature for 1 h. Each assay was repeated three times with 
three technical replicates each and statistically significant 
differences were analyzed with Excel (Microsoft, United States) 
using Student’s t-test.

Abiotic Stress Tolerance Assays of  
E. coli Transformants
E. coli strain BL21(DE3)RIL (Agilent) was transformed with the 
pCDF-Duet-LEA vectors. LEA expression was induced with 1 
mM IPTG for 2 h. Cells were diluted to OD600 = 1.0 and a serial 
dilution of 5 mm3 was spotted onto LB media containing 350 mM 
of NaCl or mannitol. To assess in vivo heat protective function 
1 cm3 of LB containing IPTG-induced E. coli cells (OD600 = 1.0) 
was incubated in a water bath at 50°C for 30 min, cooled for 10 
min at room temperature and then spotted onto LB control plates 
supplemented with 1.5% Daishin agar (Duchefa). Serial dilutions 
at 10, 50, 100, 500, and 1000 times were used for salt and osmotic 
stresses, and 0, 10, 100 and 1000 times for heat stress assays. 
The plates were incubated at 37°C for 16 h. For the liquid media 
growth assay, 1 cm3 of cells at OD600 = 1.0 was diluted 10 times 
with LB liquid media supplemented with 250 mM NaCl. The cells 
were kept at 37°C and 100 mm3 aliquots were taken every hour 
for measuring the OD600. Due to the possibility of leaky vector 
activation, resulting in expression of proteins before induction 
with IPTG (Grossman et al., 1998; Zhang et al., 2015; Briand 
et al., 2016), we analyzed and compared the relative growth 
percentage of the XsLEA strains with the empty vector-carrying 
strain. The difference in OD600 at time point x (tx) between 
treated and non-treated (control) cultures were used to calculate 
the relative growth, expressed as [ODtreatment(tx)/ODcontrol(tx)] × 100. 
Each experiment was repeated twice and statistical differences 
were determined by using the Student’s t-test in Excel (Microsoft, 
United States).

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org
http://dichroweb.cryst.bbk.ac.uk/html/home.shtml


Structural Plasticity of X. schlechteri LEAsArtur et al.

5 October 2019 | Volume 10 | Article 1272Frontiers in Plant Science | www.frontiersin.org

In Vivo Localization of XsLEAs In  
N. benthamiana Leaves
Agrobacterium tumefaciens strain AGL0, carrying constructs of 
pGWB606 p35S::GFP-LEAs, was grown in LB medium containing 
antibiotics and harvested by centrifugation at 4,000g for 5 min 
at room temperature. The bacteria culture was resuspended in 
infiltration buffer (10 mM MgCl2, 10 mM MES, pH 5.6, and 200 
μM acetosyringone) and adjusted to OD600 = 0.6. The bacterial 
suspension was incubated at room temperature on a rocking 
platform for 1 h. Leaves of 3- to 4-week-old N. benthamiana 
plants were infiltrated with A. tumefaciens suspension using a 
needleless syringe and a minimum of three independent agro 
infiltrations was performed (n ≥ 3). Three days after infiltration, 
two leaves from three independently transformed plants were 
analyzed for GFP fluorescence under a Leica TCS SP8 HyD 
confocal microscope (Leica) with an excitation wavelength of 
488 nm, and the spectral detection was set between 500 and 557 
nm for GFP, and 642 and 747 nm for chlorophyll fluorescence. 
The objective used was 40× in water immersion.

A. thaliana Transformation and RT-qPCR 
Gene Expression Confirmation
The pB7WG2RS p35S::LEA1-8 construct was introduced into 
A. tumefaciens strain AGL0 and transformed into A. thaliana 
Colombia-0 (Col-0) using the floral dip method (Clough and 
Bent, 1998). Using the RedSeed marker, transgenic T1 plants were 
selected and single T-DNA inserts were identified in the T2. RNA 
of T3 dry seeds was extracted and 700 ng of RNA was reverse 
transcribed as described above. RT‐qPCR reactions were run on 
a CFX machine (Bio‐Rad). Three technical replicates were used 
per sample. The reference genes used for data normalization were 
At4g12590 and At4g34270 (Dekkers et al., 2012). The primers 
used for RT-qPCR and the obtained Ct values are presented in 
Supplementary Table 2. After confirmation of the expression of 
XsLEA1-8 in T3 seeds, plants were grown in a complete randomized 
design containing three biological replicates of at least four plants. 
Seeds were harvested and used for further experiments.

Seed, Seedling, And Plant  
Stress Phenotyping
Germination experiments were performed 10 days after harvest. 
For control conditions, seeds were sown in square trays on two 
layers of filter papers saturated with dH2O, in accordance with 

Joosen et al. (2010). For salt and osmotic stress, the filter papers 
were saturated with −0.3 MPa NaCl or −0.6 MPa mannitol, 
respectively. After sowing, the seeds were stratified at 4°C in the 
dark for 48 h and the trays were subsequently moved to 22°C 
under continuous light. To investigate tolerance to deterioration 
conditions, dry seeds were incubated at 40°C at approximately 85% 
relative humidity for 3 days, and then transferred to germination 
conditions at 22°C under continuous light. Germination was 
scored twice a day for 5 days using the Germinator program 
(Joosen et  al., 2010). For seedling stress assays, seeds were 
stratified at 4°C in the dark for 72 h on square 14-cm Petri dishes 
on ½ Murashige-Skoog (MS) medium supplemented with 0.5% 
sucrose, 0.1% MES monohydrate and 1% Daishin agar, pH 5.8 
(KOH). After 4 days, seedlings were transferred to the same 
medium supplemented with 100 mM NaCl or 200 mM Mannitol. 
Each plate contained four seedlings of three genotypes, and three 
biological replicates per genotype were used following a complete 
randomized design. The plates were vertically placed at 21°C under 
continuous light. The primary root length was scored after 10 days. 
Drought stress was assessed by withholding water from 3-week-
old A. thaliana plants grown on soil in the greenhouse. After 12 
days, the percentage water content from the leaves was measured, 
and plants were rewatered. Final survival was analyzed 7 days after 
rewatering. Three biological replicates with three plants were used 
per time point. Leaves and soil fresh weight (FW) were measured 
immediately after harvest, and the dry weight (DW) was measured 
after 48 h at 60°C. Percentage water content (%) from the plants 
and soil was calculated as (FW − DW)/FW × 100.

RESULTS

XsLEAs Are Predicted To Be  
Intrinsically Disordered
The expression of the six XsLEAs used in our analysis has been 
reported by Costa et al. (2017) to be increased in X. schlechteri 
leaves upon desiccation between 60% RWC (1.5 gH2O g−1 dwt) 
and 40% RWC (1.0 gH2O g−1 dwt) (Supplementary Figure 1), 
coinciding with the activation of the molecular signature of the 
resurrection physiology. In parallel, genes related to protein 
folding, protection and translational control were also enriched.

The cDNAs of the XsLEAs contained an open reading frame 
(CDS) ranging from 309 to 1149 nucleotides encoding proteins 
with 102 to 382 amino acids with molecular weights between 
10.73 and 38.92 kDa (Table 1). The theoretical pI ranged from 

TABLE 1 | Characteristics of Xerophyta schlechteri late embryogenesis abundant (LEA) proteins.

Gene ID* PFAM Name CDS size Number of amino 
acids

Molecular weight 
(kDA)

Theoretical pI GRAVY

Xvis02_06457 pf04927 XsSMP4 918 305 31.68 4.3 −0.437
Xvis02_11331 pf02987 XsLEA4-8 441 146 15.55 6.6 −1.316
Xvis02_12059 pf02987 XsLEA4-12 1149 382 38.92 5.9 −0.872
Xvis02_20008 pf03760 XsLEA1-8 321 106 10.73 8.6 −0.916
Xvis02_08790 pf10714 XsLEA6-2 309 102 11.11 5.0 −1.095
Xvis02_23545 pf00257 XsDHN12 372 123 13.44 7.2 −1.389

*Gene IDs were retrieved from (Costa et al., 2017).
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4.3 to 8.6, indicating that XsLEAs expressed upon desiccation 
constitute acidic, neutral, and basic proteins. All six XsLEAs had 
a negative GRAVY index, a common characteristic of hydrophilic 
LEA proteins (Battaglia et al., 2008).

The percentage of polar residues was relatively higher 
compared with non-polar residues in all XsLEAs, with 
the exception of XsSMP4 with 52.79% non-polar residues 
(Supplementary Table 3). The disorder promoting amino acids 
alanine (A), lysine (K), glycine (G), glutamine (Q), and glutamic 
acid (E) were enriched in at least four of the six sequences. These 
characteristics indicate that the majority of the studied XsLEAs 
are likely to be IDPs (Dunker et al., 2001; Tompa, 2002). To verify 
the IDP properties of the XsLEAs, several in silico analyses were 
performed. All XsLEAs were predicted to belong to the category 
of proteins with extended disorderedness (Supplementary 
Figure 2A). With the exception of XsSMP4, all XsLEA protein 
sequences displayed high disorder tendency (Supplementary 
Figure 2B). XsSMP4 appeared to be the least disordered from 
the proteins herein investigated, because it displayed higher 
hydropathy and GRAVY (Table 1), as well as higher percentage 
of non-polar residues (Supplementary Table 3).

In silico structural analysis indicated that four proteins 
(XsLEA1-8, XsLEA4-8, XsLEA6-2, and XsDHN12) are predicted 
as Janus sequences, which are proteins that undergo environment-
dependent conformational transitions (Supplementary Table 4). 
XsSMP4 is predicted to form tadpole and globular structures, 
in agreement with the less disordered nature of this protein. 
XsLEA4-12 is predicted to form coils, hairpins, and chimeras, 
representing a structurally more heterogeneous protein type. It 
is important to highlight that despite in silico analysis that allows 
the prediction of structural propensities in IDPs, these proteins 
exist as ensembles of conformations in natural conditions, which 
can be a balance between more ordered and disordered structures 
(Das et al., 2015).

DBRs are common among IDPs and may contain short 
fragments of about 5 to 25 residues named MoRFs that are 
prone to undergo disorder-to-order transitions in the presence 
of binding partners (Mohan et al., 2006). We found that the 
number of DBRs as well as the number of MoRFs was variable 
among the six XsLEAs and that the position of MoRFs not 
always correlated with those of DBRs (Supplementary Table 4, 
Supplementary Figure 3). XsDHN12 and XsLEA1-8 presented 
longer MoRFs within DBRs in the C-terminus, and XsLEA6-2 
presented two longer MoRFs within DBRs located in the N- 
and C-terminus. Interestingly, the three proteins presenting 
larger number of smaller DBRs (XsLEA4-8, XsLEA4-12, and 
XsSMP4), also presented no or smaller MoRFs within DBRs 
(Supplementary Figure 3). These observations indicate that 
there is a high variability regarding the number, size, and 
locations of DBRs and MoRFs between the different XsLEA 
proteins and suggest that XsDHN12, XsLEA1-8, and XsLEA6-2 
may undergo higher conformational changes in the presence of 
binding partners.

The binding affinity of MoRFs is believed to be modulated 
by phosphorylation of MoRF residues (Mohan et al., 2006). We 
investigated the percentage and location of phosphorylation 
residues (Ser, Thr, and Tyr) of the six XsLEAs (Supplementary 

Figure 3, Supplementary Table 4). The percentage of predicted 
phosphorylation sites was variable between the six LEA 
proteins, with XsLEA4-12 showing the highest percentage 
(20.7%) followed by XsLEA4-8 (13.2%). Interestingly, in most 
of the proteins analyzed, the predicted phosphorylation sites 
were located outside the MoRF regions (Supplementary Figure 
3) suggesting that phosphorylation may not be the major 
modulator of binding affinity in XsLEAs via MoRF recognition, 
although further experimental data are still needed to confirm 
this in silico observation.

XsLEAs Are Intrinsically Disordered 
in Aqueous Solution and Display 
Conformational Plasticity
His-tagged recombinant XsLEAs were produced to investigate 
their structure in solution. Similar to other LEA proteins (Kovacs 
et al., 2008; Hundertmark et al., 2011), all the XsLEAs showed 
slightly higher molecular masses in an SDS gel than the predicted 
mass (Table 1, Supplementary Figure 4). This lower gel mobility 
might be due to the 6xHis-tag or due to the hydrophilic character 
of IDPs (Tompa, 2002; Kovacs et al., 2008). All XsLEAs used 
in our analysis were confirmed to be heat stable, a common 
characteristic of LEA proteins, which are known to be a part of 
the heat-stable proteome associated with DT in seeds (Boudet 
et al., 2006; Kovacs et al., 2008; Chatelain et al., 2012).

We investigated the disordered nature and folding behavior 
of the six XsLEAs in aqueous solution by CD spectroscopy. BSA 
was used as a positive control protein due to its predominantly 
α-helical conformation (Reed et al., 1975). This is reflected in 
the BSA spectra, which characterized by a positive maximum 
at ~190 nm and negative minimum at 208 nm and 220 nm 
(Supplementary Figure 5A). In general, the spectra of the six 
analyzed XsLEAs were characterized by a negative minimum 
between 198 and 201 nm in water (Supplementary Figures 
5B–G), which is characteristic of natively unfolded proteins 
(Uversky, 2009; Lopes et al., 2014). A residual alpha-helix content 
was commonly observed in all XsLEAs in aqueous solution, 
and the presence of turns or strands was variable between the 
six proteins (Supplementary Figure 5H). Taken together, these 
results confirm that the six investigated XsLEAs are proteins with 
intrinsically disordered regions (IDRs).

To test the effect of changes in the pH and composition 
of the solvent we analyzed the spectra of the six XsLEAs in 
aqueous solutions adjusted with HCl to pH 4.0 or pH 2.3, and 
in the presence of 20 mM NaCl or 80% ACN. The decrease 
in the pH or addition of 20 mM of NaCl did not significantly 
affect the spectra of BSA when compared to aqueous solution 
and had little effect on the secondary structure content of 
XsLEAs (Supplementary Figures 5A–H). The most noticeable 
secondary structure variations in these conditions were 
observed for XsLEA1-8, with an increase in helix content at 
pH 2.3, and for XsLEA4-8, with an increased strand formation 
in NaCl solution (Supplementary Figure 5H). On the other 
hand, high concentrations of the organic solvent ACN 
resulted in considerable changes in the secondary structure 
of XsLEAs (Figures 1A–F). ACN is an organic water miscible 
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solvent that can increase protein chemical potential leading 
to conformational changes, acting as a denaturant, as well as 
an alpha-helix-promoting agent (Gekko et al., 1998). With the 
exception of XsLEA4-12, a decrease of the negative minima 
(between 197 and 200 nm) converting it to a positive signal 
and an increased negative signal between 210 and 240 nm 
was commonly observed in the spectra of all XsLEAs in 80% 
ACN solution, resulting in a reduction of unordered regions 
(Figure 1H).

The protein XsLEA4-12 showed atypical behavior in 80% 
ACN, with increased negative signal around 195 and 200 nm, 
and a positive signal near 230 nm. The spectrum of this protein 
between 195 and 220 nm resembles that of a denatured or 
aggregated protein (Venyaminov et al., 1993; Greenfield, 2006). 
Different from what was observed for XsLEAs, BSA showed a 
decrease in helix content and appearance of disordered, turns 
and strand conformations in 80% ACN (Figures 1G, H). 
Interestingly, XsLEA1-8 underwent a conformational change 
from about 92% disordered in aqueous solution up to 100% 
alpha-helix in 80% ACN (Figure 1H). In summary, our results 
suggest that XsDHN12, XsLEA1-8, XsLEA4-8, XsLEA6-2, and 
XsSMP4 display conformational plasticity and underscore the 
plasticity of XsLEA1-8 to acquire high degrees of secondary 
structure in a highly hydrophobic environment.

XsLEAs Stabilize Enzyme Activity Upon 
Stress in a Protein-Specific Manner
We investigated the in vitro protective functions of the different 
XsLEAs on the activity of the enzyme LDH during desiccation, 
heat and oxidative stress (Figure 2).

Under desiccation, we observed a reduction of LDH activity 
to about 15% of control levels. With the exception of XsLEA4-12, 
all XsLEAs showed protective functionality against desiccation 
on the activity of LDH, with a protection of enzymatic activity 
up to 63% with XsLEA1-8. We found that heat stress reduced 
LDH activity to about 27% in the absence of XsLEAs, and 
XsLEA4-12 was unable to protect LDH activity. However, all 
other XsLEA proteins were able to protect LDH activity against 
heat, and again XsLEA1-8 showed the highest protective ability. 
The heat-protection activity of isolated LEA proteins has already 
been demonstrated in in vitro assays before (Goyal et al., 2005b; 
Kovacs et al., 2008; Halder et al., 2017), indicating that thermal 
anti-aggregation is a common feature of several LEA proteins.

The oxidative treatment imposed by H2O2 was less stressful 
as compared to desiccation and heat treatments. LDH activity 
dropped to 56% when treated with H2O2 and, with the 
exception of XsLEA4-12, all proteins tested were able to protect 
enzyme activity. Taken together, these results suggest that 
XsDHN12, XsLEA1-8, XsLEA4-8, XsLEA6-2, and XsSMP4 have 

FIGURE 1 | Normalized CD spectra of Xerophyta schlechteri late embryogenesis abundant (LEA) proteins and bovine serum albumin (BSA). The CD spectra were 
obtained in water and 80% acetonitrile (ACN). All the spectra were analyzed at room temperature (A-G). The graphs show the spectra obtained after subtracting the 
reads of a blank sample containing water only. (H) Secondary structure content of X. schlechteri LEAs (XsLEAs). Analyses of the CD data to obtain an estimation of 
the content of helix, strand, turns and unordered conformations were performed with Dichroweb.
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chaperone-like activities for LDH activity upon desiccation, heat 
and oxidative stress, and that XsLEA4-12 is ineffective in the 
conditions herein tested.

In Vivo Expression Of XsLEAs Enhances E. 
coli Viability Under Salt, Osmotic And Heat 
Stress
To investigate effects of XsLEA expression on E. coli survival, we 
analyzed colony growth on plates with high concentrations of NaCl 
and mannitol, or when subjected to a heat shock (Figure 3A).

Under control conditions, the strain expressing XsLEA6-2 
displayed decreased growth than the empty vector-carrying 
strain, while the strain expressing XsLEA1-8 displayed 
significant better growth than all other strains (data not shown). 
Interestingly, the XsLEA1-8 strain also displayed better growth in 
all stressful conditions, suggesting that this protein has a higher 
protective function in E. coli when compared to the other tested 
XsLEAs. The strain with XsLEA6-2 and XsDHN12 presented 
a slower colony growth in all tested stresses, and, after heat 
treatment, the strain expressing XsSMP4 also presented slower 
growth compared with the empty vector. These results show that 
not all XsLEAs have a protective function during E. coli growth 
under the tested conditions.

When analyzing relative growth of the strains in liquid 
media with a lower concentration of NaCl, we observed that 
after 6 h, all strains expressing XsLEAs displayed better growth 
than the empty vector (Figure 3B). Once more, the bacterial 
cells expressing XsLEA1-8 showed a remarkable better growth 
recovery at the end of the experiment, indicating that this protein 
may perform a better protective function of E. coli upon salt 
stress as compared to the other tested XsLEAs. Interestingly, in 
the first 4 h of stress, a few strains displayed slower growth when 

compared to the empty vector. This observation might be due to 
leakiness of the expression vector, because the activation of the 
T7 promoter during bacterial growth prior induction will lead 
to production of recombinant protein which may limit bacterial 
growth (Grossman et al., 1998; Zhang et al., 2015; Briand et al., 
2016). It is possible that the production of some XsLEAs during 
bacterial growth prior to the stress treatments might have 
detrimental effects on growth, likely due to unspecific binding 
to other molecules, furthermore, variations in the time and levels 
of protein produced in the different strains may interfere with 
the results observed. Taken together, our results point toward a 
potential protective role of XsLEA1-8 in vivo.

Multiple Localizations of XsLEAs in 
Plant Cells
LEA proteins can be localized in various cell compartments, 
including the nucleus, cytosol, plasma membrane, mitochondria, 
plastids, endoplasmic reticulum (ER), and vacuoles 
(Hundertmark and Hincha, 2008; Candat et al., 2014). Prediction 
of subcellular localization indicates that XsDHN12, XsLEA1-8, 
XsLEA6-2, and XsSMP4 localize mainly in the nucleus and 
cytoplasm (Supplementary Table 5). The nuclear and cytoplasmic 
localization of proteins from families DHN, LEA_1, LEA_6, and 
SMP have been shown in vivo for A. thaliana (Candat et al., 2014), 
indicating that in silico analysis may have a strong correlation with 
in vivo analysis for these LEA families. XsLEA4-8 was predicted to 
be localized in the cytoplasm, nucleus, cell wall and plastids, and 
XsLEA4-12 in the nucleus, cytoplasm, and cell wall, corroborating 
the experimental data of multilocalization of A. thaliana LEA_4 
proteins (Candat et al., 2014). Despite limitations of in silico 
predictions, these tools seem to be useful to design experiments 
for studying in vivo subcellular localization of LEA proteins.

FIGURE 2 | Protective function of X. schlechteri LEAs (XsLEAs) on lactate dehydrogenase (LDH) activity under stressful conditions. LDH by itself (negative control) or 
in the presence of one of the six purified XsLEAs or bovine serum albumin (BSA) (positive control) at a molar ratio of 1:1 were used to assess effects of desiccation, 
heat and oxidative stress. The experiments were repeated three times with three technical replicates in each experiment. Statistically significant differences as 
compared to control were analyzed using Student’s t-test (*p < 0.05 or **p < 0.01). The error-bars represent SD from nine replicates (n = 9).
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To verify the in vivo subcellular localization of XsLEAs and to 
compare in vivo and in silico analysis, we expressed GFP fusions 
of XsLEA proteins in tobacco leaf epidermal cells under control 
of a 35S promotor (Supplementary Figure 6). The GFP-XsLEA 
proteins were localized throughout the cell compartments, 
especially in the cytoplasm, nucleus and membranes. GFP-
XsLEA1-8, GFP-XsLEA4-8, and GFP-XsLEA6-2 accumulated 
mainly in the cytoplasm, membranes and nucleus, in the same 
way as the GFP empty vector. GFP-XsLEA4-12 showed a signal 
around the cells and in aggregate-like structures inside the cells 
which suggest that this protein may be secreted. GFP-XsSMP4 
and GFP-XsDHN12 accumulated mainly in the membranes, 
and GFP-XsDHN12 also in the nucleus. In summary, our 
results indicate that the six X. schlechteri LEA proteins involved 
in DT in leaves are heterogeneously localized throughout 
various subcellular compartments. Further analyses combining 
C-terminal fusions and organelle specific markers are necessary 
to draw stronger conclusions on the specific localization of each 
of these proteins and further hypothesize about their cellular role.

Heterologous Expression of XsLEA1-8 
Enhances A. thaliana Stress Tolerance
A. thaliana ecotype Columbia-0 plants were transformed with a 
35S::XsLEA1-8 construct, which led to a constitutive expression 
of the XsLEA1-8 gene, including in the dry seed (Supplementary 

Figure 7). The phenotypic analysis of seeds expressing the 
35S::XsLEA1-8 indicated that the germination percentages 
of WT and five independent lines did not differ significantly 
under control conditions (Supplementary Figure 8). During 
germination under salt, osmotic, and heat shock stress, a mild 
protective response was observed in two independent lines, 
indicating that XsLEA1-8 may not play a significant role in seed 
germination under the conditions tested here.

We also investigated the growth ability of seedlings of 
35S::XsLEA1-8 in media containing salt and mannitol (Figure 4). 
Under salt stress, the independent lines XsLEA1-8.4 and 
XsLEA1-8.8 displayed longer primary roots. Under osmotic 
stress imposed by mannitol, three independent lines (4, 6, and 
7) displayed longer primary roots when compared with the wild-
type. The phenotypic analysis of transgenic A. thaliana adult 
plants under drought stress showed that three independent lines 
(3, 7, and 8) displayed significantly higher relative water content 
at 12 days after withholding water (Supplementary Figure 9A); 
however, at this time point, no significant difference was observed 
in the DW of the transgenic lines when compared to the wild-
type (Supplementary Figure 9B). These results suggest that 
the transgenic lines expressing XsLEA1-8 may display a better 
control of water loss during drying, which may enhance their 
survival (Supplementary Figure 9C). Together, these findings 
point toward a potential role of XsLEA1-8 in enhancing osmotic 
stress tolerance in plants.

FIGURE 3 | In vivo protective role of XsLEAs. (A) Response to salt, osmotic and heat stresses. (B) Relative growth of E. coli in liquid media with 250 mM NaCl. The 
experiments were repeated twice with three replicates per construct. Statistically significant differences were analyzed using Student’s t-test, and the bars indicates 
SD (*p < 0.05 or **p < 0.01).
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DISCUSSION

Since their discovery as accumulating during the later stages of 
seed embryogenesis, increasing evidence suggests a protective 
function of LEA proteins against desiccation and other stresses, 
leading to great interest in the structural dynamics of these 
proteins in the subcellular environment. As in seeds, LEA proteins 
have been shown to be an essential footprint of vegetative DT 
in resurrection plants. X. schlechteri is a monocot resurrection 
species whose genome has recently become available, enabling 
comparative genomic analysis with other monocots and 
resurrection species, as well as the understanding of the evolution 
and functional diversification of LEA proteins and their role in 
these organisms (Costa et al., 2017; Artur et al., 2018). LEA gene 
expression is upregulated in leaves of X. schlechteri between 60% 
and 40% RWC (1.5–1.0 gW/gDW) (Supplementary Figure 1), 
concomitant with the activation of the molecular signature of DT 
in seeds and resurrection plants (Illing et al., 2005; Leprince and 
Buitink, 2010; Costa et al., 2017).

In silico analysis of six X. schlechteri LEA proteins upregulated 
during desiccation indicated that these are typical IDPs, as they 

have IDRs in water, and properties, such as a high percentage 
of polar residues, low GRAVY scores, and extended disordered 
regions (Artur, 2019; Dunker et al., 2001; Tompa, 2002; Battaglia 
et al., 2008). Predictions of biochemical properties may give 
insight into the lack of structure of a protein. However, it is 
important to highlight that isolated parameters, such as length of 
polypeptide, net charge, or pI, cannot be used as a signature of 
unfolded or disordered structure (Uversky et al., 2000), revealing 
the necessity for more extensive in silico analysis to better predict 
the structural nature of such proteins. Using a specific predictor 
for Classification of Intrinsically Disordered Ensemble Regions 
(CIDER) (Holehouse et al., 2017), we found that XsLEAs belong 
to different IDP categories, such as environmentally determined 
disordered, globular, coiled, and chimeras of globular and coiled 
proteins. Two XsLEAs (XsSMP4 and XsLEA4-12) were predicted 
to contain structured regions, which is also a common feature of 
some IDPs able to form globules or chimeras of globules and coils 
and are able to undergo folding upon binding (Dyson and Wright, 
2002; Dyson and Wright, 2005; Das et al., 2015). In fact, IDPs are 
able to interact with other molecules via Molecular Recognition 
Features (MoRFs) that undergo disorder-to-order transitions 

FIGURE 4 | Phenotypic analysis of A. thaliana seedlings expressing XsLEA1-8. Seedlings grown on plates under control conditions (A), 100 mM NaCl (B), and 200 mM 
mannitol (C) are shown at the left. Data of one representative experiment are shown. Bars showing average root length ± SD (n = 3) are shown at the right. Statistically 
significant differences between the transgenic lines and the wild type (WT) were tested using Student’s t-test (*p < 0.05 or **p < 0.01). Scale bars = 0.5 cm.

https://www.frontiersin.org/journals/plant-science#articles
https://www.frontiersin.org/journals/plant-science/
www.frontiersin.org


Structural Plasticity of X. schlechteri LEAsArtur et al.

11 October 2019 | Volume 10 | Article 1272Frontiers in Plant Science | www.frontiersin.org

in the presence of binding partners (Mohan et al., 2006). We 
found that MoRFs are present in a low number within XsLEA 
sequences and, in general, they localize within predicted DBRs 
of the XsLEAs. MoRFs are thought to play important functions in 
protein–protein interactions related to signaling (Oldfield et al., 
2005; Mohan et al., 2006; Disfani et al., 2012). In this way, the 
investigation of mutations of specific amino acids contributing to 
MoRFs will provide further insights into the specific role of these 
regions as well as interactions of LEA proteins with other proteins.

Reversible phosphorylation of IDPs is one of the major PTMs 
responsible for functional regulation of binding affinity of MoRFs 
(Iakoucheva et al., 2004; Mohan et al., 2006) and has already been 
shown to affect the function of LEA proteins in plants (Heyen 
et  al., 2002; Alsheikh et al., 2003; Alsheikh et al., 2005; Brini 
et al., 2007; Liu et al., 2017). In silico analysis indicated that all 
the six XsLEAs have phosphorylation sites, with a remarkable 
high number in XsLEA4-12. However, in general, we found that 
the phosphorylation residues did not coincide with the predicted 
MoRF contributing residues, what suggests that phosphorylation 
may not play an important role in regulating binding affinity of 
MoRFs in the studied proteins.

In this study, we also investigated the in vitro folding dynamics 
of the six XsLEAs using circular dichroism (CD). Conformational 
changes of IDPs in vitro can be induced by changes in their 
environment such as pH, temperature, and presence of osmolytes 
or binding targets (Uversky, 2002; Uversky, 2009). Several 
studies have shown that LEA proteins are mainly disordered in 
aqueous solutions and are able to acquire secondary structures, 
mainly alpha-helices, upon desiccation and solute perturbations 
(Mouillon et al., 2006; Shih et al., 2010; Popova et al., 2011; 
Hundertmark et al., 2012; Shih et al., 2012; Cuevas-Velazquez 
et al., 2016). Our CD spectra corroborate the in silico predictions of 
the disordered (or unstructured) nature of the XsLEAs in aqueous 
solution (Figure 1). XsLEAs also possess residual structured 
regions which is also commonly found in IDPs (Tompa, 2012). 
Similar characteristics can be found in polypeptides containing 
local order, such as helix and beta-sheet like structures, and, in 
these proteins, secondary structure can be induced by variations 
in temperature, pH, presence of binding targets, osmolytes, 
and variable solvent concentrations (Shi et al., 2002; Soulages 
et al., 2002; Uversky, 2009; Rivera-Najera et al., 2014; Cuevas-
Velazquez et al., 2016; Bremer et al., 2017). In fact, we observed 
that XsLEAs are able to acquire higher degrees of secondary 
structure in a hydrophobic solution of ACN. A highlight was the 
protein XsLEA1-8, which became fully alpha-helical in a solution 
of 80% ACN. ACN-mediated folding is triggered by significant 
reduction of hydration layers in direct contact with the protein 
surface, leading to conformational changes, such as formation of 
helices and sheets (Nelson et al., 1997; Gekko et al., 1998; Simon 
et al., 2001). This finding indicates that, under highly hydrophobic 
conditions, XsLEA proteins may acquire secondary structure, 
which may also be a factor regulating their functional activity.

It has already been shown that IDPs are able to preserve 
enzyme activity and avoid protein aggregation upon cellular stress 
by the ability to vitrify and trap cellular macromolecules into an 
amorphous matrix avoiding aggregation (Chakrabortee et al., 
2007; Boothby et al., 2017). Several LEA proteins have been shown 

to protect enzymes from thermal and chemical inactivation and 
aggregation in vitro (Goyal et al., 2005a; Nakayama et al., 2007; 
Kovacs et al., 2008; Furuki and Sakurai, 2016; Liu et al., 2016; 
Agarwal et al., 2017; Halder et al., 2017). We investigated the ability 
to undergo conformational changes and acquire higher secondary 
structure under stress and the protective ability of XsLEAs. With 
the exception of XsLEA4-12, all studied proteins were able to 
preserve enzymatic activity upon desiccation, heat and oxidative 
stress in vitro, which supports the hypothesis that the high 
conformational changing ability correlates with protective abilities 
against aggregation and denaturation. It is important to highlight 
that since we undertook these experiments, new information on 
more reliable methods for IDPs quantification became available 
(Contreras Martos et al., 2018). As IDPs may show extreme 
variations in amino acid composition and physical properties, the 
use of more accurate quantification methods, such as ninhydrin and 
Qubit in combination with an absolute method, is recommended to 
draw more reliable conclusions about their structure. In vivo assays 
using E. coli have successfully demonstrated the protective role of 
LEA proteins upon stress (Zhang et al., 2014; Drira et  al., 2015; 
Gao and Lan, 2016; Hu et al., 2016; Ling et al., 2016; Liu et al., 2016; 
Shi et al., 2016; Boothby et al., 2017; Jiang et al., 2017; Rakhra et al., 
2017; Saucedo et al., 2017; Wang et al., 2017; Zhou et al., 2017). We 
found that several XsLEAs are able to improve bacterial growth 
under salt and osmotic stress, and the strains expressing XsLEA1-8 
presented a faster stress recovery. Combined, these results indicate 
a correlation between in vitro and in vivo protective functions and 
point toward a potential application of the properties of XsLEA1-8 
for engineering stability in vitro and in vivo.

Subcellular localization analysis assists in inferring function of 
proteins in plants. A. thaliana members of DHN, LEA_1, LEA_6, 
and SMP were shown to localize predominantly in the nucleus 
and cytoplasm, while LEA_4 members were multilocalized across 
chloroplasts, mitochondria, ER and pexophagosomes (Candat 
et al., 2014). In silico analysis of the six XsLEAs investigated in this 
study confirms the expected nucleo-cytoplasmic localization of 
XsDHN12, XsLEA1-8, XsLEA6-2, and XsSMP4, while XsLEA4-8 
and XsLEA4-12 were predicted to also localize to the plastids and 
cell wall. In some cases, in silico and in vivo analysis may result in 
different results, as the example of an AdLEA protein from wild 
peanut, of which in silico analysis indicated localization mainly in 
the cytoplasm, while the GFP-fused protein was localized in the 
nucleus and cytoplasm (Sharma et al., 2016). In our in vivo analysis 
using GFP-fusions, subcellular locations of most XsLEAs were 
similar to the in silico predictions, showing that the latter can be 
useful for preliminary characterization of subcellular localization. 
To investigate the transferability of the protective properties shown 
by in vitro and in vivo assays in bacteria into enhancing plant stress 
tolerance, we developed transgenic A. thaliana plants constitutively 
expressing the XsLEA1-8 gene. The expression of XsLEA1-8 did 
not enhance stress tolerance during seed germination, but was able 
to enhance primary root growth under salt and osmotic stress in 
seedlings. Transgenic adult plants expressing XsLEA1-8 displayed 
a higher absolute water content after 12 days of drought, indicating 
that this gene may play a role in plant drought tolerance.

Our study provides evidence for the structure–function 
relationship of LEA proteins expressed during desiccation in 
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X.  schlechteri plants. Our data reveal that in silico and in vitro 
analysis can provide useful information about LEA protein 
functions. We hypothesize that XsLEAs have been evolutionarily 
selected to be able to adopt diversified conformations driven by 
variations in their cellular environment. The conformational 
plasticity and multilocalization of XsLEAs may enable binding to 
essential cellular components (such as enzymes) and regulation 
of loss of water from cells, resulting in enhanced osmotic stress 
tolerance in X. schlechteri leaf cells. Furthermore, we believe 
that the high conformational plasticity and protective abilities 
of XsLEA1-8 make it a potential candidate for engineering 
biostability in vitro by serving as a model for synthetic chaperons, 
as well as for enhancing drought tolerance in crop species.
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