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Wetland biomass is an important indicator of wetland ecosystem health. In this study, four 
dominant vegetation communities (Carex cinerascens, Phalaris arundinacea, Artemisia 
selengensis, and Miscanthus sacchariflorus) in the Poyang Lake wetland from 2010 to 
2016 were classified from Landsat images using spectral information divergence (SID). 
We combined aboveground biomass (AGB) field measurements and remote sensing data 
to establish a suitable model for estimating wetland AGB in Poyang Lake, which is on the 
Ramsar Convention’s list of Wetlands of International Importance. The results showed 
that (1) overall, the classification accuracy for vegetation pixels across 5 years ranged 
from 59.1% to 73.7% and (2) the inter-annual and spatial variations in the AGB of the 
four vegetation types were clear. C. cinerascens had an average AGB density value of 
1.28 kg m−2 in Poyang Lake from 2010 to 2016; M. sacchariflorus had the highest AGB 
density with an average value of 1.39 kg m−2; A. selengensis had almost the same level 
at 1.26 kg m−2; and P. arundinacea had the lowest AGB density at 0.64 kg m−2. This 
study provides useful experience for estimating carbon sequestration of vegetation in 
freshwater wetlands.

Keywords: aboveground biomass, wetland vegetation, random forest, Landsat image, Ramsar wetland, 
Poyang Lake

INTRODUCTION

Wetland vegetation, as an important component of wetland ecosystems, plays an important role 
in maintaining ecosystem structure and function (Nilsson and Keddy, 1988; Pinay et al., 2002). 
The biomass of wetland vegetation is an important indicator to measure the health of wetland 
ecosystems and represents the relevant stage of wetland succession (Adam et al., 2010). Systematic 
studies on the wetland vegetation biomass of typical wetland ecosystems at different spatial and 
temporal scales not only can timely control the dynamic changes of wetland ecosystems but also 
can provide important parameters for the quantitative estimation of wetland ecosystem ecological 
assets and provide a scientific basis for the restoration, reconstruction, and management of wetland 
ecosystems (Parresol, 1999; Ursino, 2010; Klemas, 2013). Therefore, research on wetland biomass, 
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especially aboveground biomass (AGB), is a hot research topic 
for researchers (Adam and Mutanga, 2012; Wan et al., 2018b).

In view of the diversity of wetland vegetation types, the 
dynamic changes in wetland biomass, and the inaccessibility of 
wetlands, the traditional biomass survey methods have obvious 
limitations in terms of labor costs, spatial comprehensiveness, 
and timeliness (Klemas, 2013). With the help of remote sensing 
technology, combined with field investigations in typical areas, it 
is possible to conduct research on long-term, dynamic, and fine 
spatial-scale observations of the vegetation biomass of typical 
wetland ecosystems (Shen et al., 2015; Zhu et al., 2015). Compared 
with the obvious stratification and zoning phenomena of dry land 
ecosystems, the plant unit of the wetland ecosystem environment 
usually presents a transient land–water interface, which makes 
the plant’s spectral characteristics and spatial distribution 
characteristics highly different, thus increasing the difficulty of 
large-scale AGB assessment of freshwater wetland vegetation 
(Adam and Mutanga, 2009; Zomer et al., 2009). Assessment 
of AGB for large wetlands is often challenging (Houlahan and 
Findlay, 2003). Studies of wetland biomass have focused mainly 
on AGB. Optical remote sensing, synthetic aperture radar (SAR), 
and light detection and ranging (LiDAR) are the three main 
methods for mapping wetland AGB. SAR and LiDAR are more 
suitable for the inversion of vegetation parameters with obvious 
structural characteristics, such as tall trees in a forest (Lefsky et al., 
2002; Kasischke et al., 2003; Bortolot and Wynne, 2005; Englhart 
et al., 2011; Nie et al., 2017). For optical remote sensing, Landsat 
provides a trade-off of spatial, temporal, and spectral resolutions, 
which make it a good option for large-scale AGB modelling 
(Gasparri et al., 2010; Cutler et al., 2012; Main-Knorn et al., 2013; 
Zhu and Liu, 2015). Many vegetation indices have also been 
used widely in biomass estimation, resource surveys, vegetation 
dynamic monitoring, assessment of landscape structure and 
function, and global change research in recent years.

Poyang Lake is the largest freshwater lake in China. Its exposed 
floodplain in the dry seasons is one of the most important 
wetlands in the world, as recognized by the International Union 
for the Conservation of Nature (Ramsar Convention Secretariat, 
2010). Accompanied by the fluctuating water level, the plant 
distribution in the Poyang Lake wetland is characterized by a 
typical concentric pattern along the elevation gradient from the 
lake to the shore (Wan et al., 2018a). Four main plant species are 
plentiful in the wetlands: Carex cinerascens, Phalaris arundinacea, 
Miscanthus sacchariflorus, and Artemisia selengensis. These species 
form three belts—bulrushes (M. sacchariflorus communities), 
sedges (C. cinerascens or A. selengensis communities), and 
sparse emergent vegetation (P. arundinacea communities)—
that occur naturally along a moisture gradient from the higher 
lands to the lake shoreline (You et al., 2015; Wan et al., 2018a). 
Several researchers have attempted to estimate AGB in Poyang 
Lake wetlands using remote sensing approaches. Optical image 
data such as moderate-resolution imaging spectroradiometer 
(MODIS), Enhanced Thematic Mapper (ETM), and microwave 
remote sensing image data Envisat advanced SAR (ASAR) 
were used to fetch the estimations of the total AGB of Poyang 
Lake in spring (Li and Liu, 2002; Wang and Liao, 2010; Shen 
et al., 2015). Radar remote sensing is considered to have better 

accuracy in AGB prediction of M. sacchariflorus in the Poyang 
Lake wetlands, while the prediction accuracy of C. cinerascens 
is worse (Sang et al., 2014). Additionally, the long time series 
for estimation of AGB are mostly based on MODIS data applied 
to the power model of the enhanced vegetation index (EVI) to 
estimate the spatial distribution of vegetation AGB in the Poyang 
Lake National Nature Reserve (PLNNR) from 2000 to 2011 
(Wu et al., 2015). Unlike other machine learning algorithms, 
random forests (RFs) (Breiman, 2001; Pal, 2005) can be used to 
predict target variables based on high-dimensional data without 
feature selection. Some studies have also shown that RF has a 
high accuracy in predicting AGB (Mutanga et al., 2012; Byrd 
et al., 2018). Thus, in this study, the ensemble method RF was 
used to estimate AGB in the Poyang Lake wetlands from 2010 
to 2016, aimed at quantitatively estimating the AGB of the four 
main vegetation communities and their distribution and various 
characteristics.

MATERIALS AND METHODS

Study Area
Poyang Lake is located at 115°47ʹ–116°45ʹE and 28°22ʹ–29°45ʹN 
of Jiangxi Province and on the south bank of the middle and 
lower reaches of the Yangtze River. Its north–south length is 
approximately 170 km, its east–west average width is 16.9 km, 
and its maximum width is 74 km. Poyang Lake mainly collects 
incoming water from the Ganjiang, Fuhe, Xinjiang, Raohe, 
and Xiushui rivers. After regulation and storage, it flows into 
and interacts with the Yangtze River from Hukou. Poyang 
Lake is in the subtropical humid monsoon climate, with an 
annual average temperature of approximately 17°C. Rainfall is 
abundant, averaging approximately 1,600 mm annually. From 
July to August, the water level of the lake reaches the maximum 
for the year, and the area of the lake can reach 4,070 km2. During 
the dry season from December to January of the next year, the 
water level of the lake decreases greatly, and the area of the lake 
can reach a minimum of 146 km2. In this special hydrological 
and topographic environment, it has evolved into a unique water 
area and wetland ecosystem. The Poyang Lake wetland, in the 
littoral zone of Poyang Lake, was one of the first to be included 
in the Ramsar Convention’s list of Wetlands of International 
Importance (Ramsar Convention Secretariat, 2010).

Field Surveying and Data Collection
To carry out the inversion of AGBs in the Poyang Lake wetland, 
three types of basic data were collected, including remote sensing 
image data, topographic data digital elevation model (DEM), 
and field survey data. In terms of remote sensing image data, we 
collected four Landsat 8 and three Landsat 7 scenes covering the 
whole area of Poyang Lake from 2010 to 2016 with the imaging 
time of October to December. The remote sensing images from 
October to December were selected because A. selengensis and 
C. cinerascens were still in the peak growing season during this 
period, while M. sacchariflorus had entered the wilting period, 
which could maximize the spectral characteristics of different 
vegetation communities. The data are from the United States 
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Geological Survey (USGS) (http://earthexplorer.usgs.gov/), and 
the specific image time is shown in Table 1. The cloud content 
of all images is less than 10%, which reduces the impact of other 
environmental factors on the remote sensing interpretation 
of vegetation. The DEM data are a 1:10,000 topographic map 
provided by the Jiangxi Provincial Hydrological Bureau. For field 
survey data, we conducted field sampling and actual positioning 
surveys in Poyang Lake in December 2016. Five typical beaches 
of Poyang Lake wetland ((A) Xingzi littoral land, (B) Ganjiang 
River delta, (C) Sidu Island, (D) Dachahu sub-lake, and (E) 
Dahuchi sub-lake; Figure 1, Table 2) were selected with 123 
sample sites covering the four main vegetation types of Poyang 
Lake. The elevation of these points increased from water to shore, 
and the sample size is 1 m * 1 m. The geographical coordinates, 
main vegetation types, and the percentage and average height of 
vegetation cover at each sample site were recorded. Vegetation 
above the surface in the sample box was harvested, and the fresh 
weight was measured. To validate the accuracy of classification 
and AGB inversion in different years, we collected vegetation 
type and AGB data from 142 field points sampled by our work 
team in autumn 2010, 2011, 2012, 2014, and 2015 (Figure 2).

Data Preprocessing and Preparation
Landsat 8 OLI_TIRS features 11 bands: band 1 (0.43–0.45 μm), 
band 2 (0.45–0.51 μm), band 3 (0.53–0.59 μm), band 4 (0.64–
0.67 μm), band 5 (0.85–0.88 μm), band 6 (1.57–1.65 μm), band 
7 (2.11–2.29 μm), and band 9 (1.36–1.38 μm) with spatial 
resolutions of 30 m; band 8 (0.50–0.68 μm) with a spatial 
resolution of 15 m; and band 10 (10.6–11.19 μm) and band 11 
(11.5–12.51 μm) with spatial resolutions of 100 m. Landsat 7 
ETM+ SLC-off has eight bands: band 1 (0.45–0.52 μm), band 2 
(0.52–0.60 μm), band 3 (0.63–0.69 μm), band 4 (0.77–0.90 μm), 
and band 5 (1.55–1.75 μm) with spatial resolutions of 30 m; band 
6 (10.40–12.50 μm) with a spatial resolution of 60 m; and band 
8 (0.52–0.90 μm) with a spatial resolution of 15 m. It must be 
noted that Landsat 7 ETM+ encountered a malfunction on May 
31, 2003, that led to some images overlapping and the loss of 
approximately 25% of our data; therefore, the images obtained 
after this date were restored by the neighborhood similar pixel 
interpolator (NSPI) proposed by Chen et al. (2011). Image 
preprocessing, including geometric correction, radiometric 
correction, atmospheric correction, and spatial subset selection, 
was finished in ENVI 5.2. We also utilized a panchromatic band 
(0.500–0.680 μm) with a spatial resolution of 15 m to create an 
image fusion with multispectral bands and a spatial resolution of 
30 m to produce a multispectral image with a spatial resolution 
of 15 m by employing a method called wavelet fusion (Fanelli 
et al., 2001), which was aimed at improving the classification 
accuracy for all four vegetation types in Poyang Lake wetland. 
Six bands from the Kauth–Thomas transformation (Kauth and 
Thomas, 1976) and normal difference vegetation index (NDVI), 

FIGURE 1 | Location of Poyang Lake and the distribution of field sampling sits in 2016. (A) Xingzi littoral land; (B) Ganjang river delta; (C) Sidu Island; (D) Dachahu 
sub-lake; (E) Dahuchi sub-lake.

TABLE 1 | The timing of remote sensing of images used in this study.

Time Data Source Time Data Source

Nov 6, 2010 Landsat 7 Oct 21, 2013 Landsat 8
Oct 8, 2011 Landsat 7 Oct 24, 2014 Landsat 8
Oct 26, 2012 Landsat 7 Oct 11, 2015 Landsat 8

Dec 16, 2016 Landsat 8
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soil-adjusted vegetation index (SAVI), and EVI were added to the 
fused images to generate layer-stacked images. Then, the layer-
stacked image from December 16, 2016, was chosen for extraction 
of all 123 spectral sampling sites, according to the geographical 
coordinates recorded by Global Positioning System (GPS), in 

preparation for classification of the four Landsat 8 images. For 
the three Landsat 7 images, 82 sampling points covered the four 
dominant vegetation types in the Poyang Lake wetlands that were 
generated from the vegetation map of PLNNR in the autumn of 
2010 compiled by Nanchang University (Jin et al., 2016). Then, 

TABLE 2 | The number of sample sites in every sample field in 2016.

Sample field C. cinerascen P. arundinace A. selengensis M. saccharifloruss Total

(A) Xingzi littoral land 16 2 3 3 24
(B) Ganjiang River delta 5 4 6 2 17
(C) Sidu Island 5 2 3 2 12
(D) Dachahu sub-lake 27 7 2 7 43
(E) Dahuchi sub-lake 11 6 3 7 27
Total 64 21 17 21 123

The locations of sample fields are shown in Figure 1. 

FIGURE 2 | Spatial distribution of sample points for model validation in 2010, 2011, 2012, 2014, and 2015.
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the spectra of these 82 sampling points were used to classify the 
three layer-stacked 15-band Landsat 7 images. The proposed 
methods are briefly explained in the flowchart (Figure 3).

Methods
Mapping Dominant Vegetation Types
All image classification was undertaken using the spectral 
information divergence (SID) classifier (Chang, 1999) in 
conjunction with the spectral library created from sampling 
points. Constrained by the band number and the spatial resolution 
of the layer-stacked images, only seven types of objects, including 
four vegetation communities (C. cinerascens, P. arundinacea,  
A. selengensis, and M. sacchariflorus) and three land types (water 
body, mudflat, and bare land), were plotted on the maps. We 
carried out many classification trials to determine an appropriate 
parameter—the maximum divergence threshold—with which to 
distinguish all vegetation classes. Finally, we found that 0.06 was 
the most effective threshold value.

AGB Modelling Methods
In this study, we evaluated the effectiveness of the RF model 
in estimating AGB in Poyang Lake. Then, we utilized the 
classification images and RF model to map the four dominant 
vegetation communities in autumn from 2010 to 2016. 
Researchers have proposed modified vegetation indices (VIs), 
including SAVI (Huete, 1988), modified SAVI (MSAVI) (Qi 
et al., 1994), and EVI (Liu and Huete, 1995), to overcome 
the weaknesses of NDVI; namely, that it is easily affected by 

the atmosphere, soil composition, and heavy saturation in 
dense vegetation. We selected nine variables as predictors of 
the RF model, including NDVI, SAVI, EVI, B3 (red band), 
B4 (near infrared (NIR) band), greenness (the second band 
of the Kauth–Thomas transformation), B6 (SWIR1, short-
wave infrared band 1), B7 (SWIR2, short-wave infrared band 
2), and elevation. The reasons for selecting these predictors 
to train the RF are as follows: NDVI is the most commonly 
used vegetation index for identifying vegetation (Defries and 
Townshend, 1994; Jia et al., 2014). In wetland areas, SAVI, 
Greenness, and EVI can effectively remove the influence of 
soil background and enhance the response of the vegetation 
index to wetland vegetation (Jiang et al., 2008; Ren et al., 2018). 
The red band and NIR band for Landsat images have a better 
optical response to chlorophyll in vegetation (Clevers et  al., 
2008). The spectral absorption rate of vegetation in the red 
band is higher, but the reflectivity of the NIR band is higher; 
these two bands have a good response to vegetation biomass. 
The thermodynamic properties of vegetation and water in 
wetland areas are different, so including SWIR1 and SWIR2 
is helpful to identify vegetation and water, and the contrast 
between different vegetation types is also stronger (Mayer 
and Scribner, 2002). Four main dominated wetland vegetation 
communities in the Poyang Lake wetland are distributed along 
elevation gradient from the lake to the shore. Taking elevation 
(representing moisture condition) as a predicting factor may 
increase the accuracy of the RF model. All the variables’ values 
for all 123 sampling sites were extracted according to their 
geographic coordinates.

FIGURE 3 | Flowchart used to map AGB in Poyang Lake using Landsat images.
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RF is an important ensemble learning method based on 
bagging that can be used for classification, regression, and other 
techniques. The structure of the RF model for estimating the 
AGB of Poyang Lake is shown in Figure 4. On the basis of root 
mean square error (RMSE), R2 (determination coefficient), and 
mean absolute error (MAE), we evaluated the accuracy of the RF 
model in predicting AGB on the training set and test set. RMSE 
(Equation 1) is a standard metric for measuring the discrepancies 
between the simulated AGB value and the actual AGB value; 
however, it is easily influenced by outliers (Chai and Draxler, 
2014). Therefore, MAE (Equation 2) is suggested for use with 
RMSE to determine the variation of errors in the model (Bui et al., 
2016). R2 (Equation 3) is a measure of the proportion of variance 
of a predicted outcome. RMSE and MAE values close to 0 and R2 

values close to 1 indicate that the model is an accurate predictor. 
Refer to Equations 1, 2, and 3 for the calculation of RMSE, MAE, 
and R2, respectively. Three parameters must be optimized in this 
model: (1) N, the number of regression trees grown based on a 
bootstrap sample of the observations; (2) mtry, the number of 
predictors tested at each node; and (3) node size, the minimum 
size of the terminal nodes of the trees. For the parameter node 
size, the accuracy of the RF models on the training dataset was 
compared based on RMSE when node size was set from 1 to 4, so 
that the best node size can be obtained. For the determination of 
the number of trees (N) for RF, we increase the number by two 
trees in turn from N = 60 until the number of trees is 800, so 371 
models with different N are tried. At the same time, the values of 
RMSE, R2, and MAE of AGB for these models with different tree 

FIGURE 4 | Distribution of the main four vegetation types (A) and area statistics (B) from 2010 to 2016.
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numbers are calculated using five-fold cross-validation. Thus, 
the performance of RF in predicting the AGB of Poyang Lake 
was evaluated comprehensively, and the best N was obtained. In 
this study, we implemented the RF modelling method through 
packages in Python: scikit-learn (http://scikit-learn.org/stable/) 
(Pedregosa et al., 2011).
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where yis is the ith simulated AGB value, yit is the ith real 
AGB value among the tested sample points, yis  is the average 
simulated AGB for all the tested sample points, and n is the size 
of the tested samples.

RESULTS

Image Classification
To explore the classification accuracy, we used data from 142 
field sampling points in autumn 2010, 2011, 2012, 2014, and 
2015 for validation. The specific results are shown in Table 3. 
The classification accuracy over the 5 years ranged from 59.1% 
to 73.7%. The 5-year average classification accuracy for the four 
kinds of vegetation is 72.14% for Carex cinerascens, 64.26% 
for Phalaris arundinacea, 49.38% for Artemisia selengensis, 
and 71.68% for Miscanthus sacchariflorus. We found that C. 
cinerascens and M. sacchariflorus have higher classification 
accuracy (approximately 70%), while A. selengensis had relatively 

low classification accuracy (approximately 50%). According 
to a field survey, we found that in bottomlands, A. selengensis 
tended to grow together with P. arundinacea, which led to 
lower classification accuracy. C. cinerascens is the most widely 
distributed vegetation in the wetlands of Poyang Lake. It has 
the characteristics of concentrated and patchy distribution. 
In autumn, many M. sacchariflorus plants have withered, and 
the spectral characteristics are quite different from those of 
other vegetation. Therefore, these two vegetation communities 
are easy to identify. Although the amount of sample points is 
relatively small, the results are acceptable given that complicated 
environmental conditions such as changeable water level and 
variable atmospheric conditions.

Figure 4 shows the distribution and statistical results of all 
four vegetation classes from 2010 to 2016. From 2010 to 2016, 
C.  cinerascens had the largest distribution, with an average 
area of 569 km2. The distributions of P. arundinacea and A. 
selengensis were 226 and 200 km2, respectively. The smallest was 
M. sacchariflorus with a distribution area of only 120 km2. In 2011 
and 2010, Poyang Lake had the largest and smallest vegetation 
coverages of 1,522 and 861 km2, respectively. Generally, the 
coverage of each of the vegetation types is always changing as a 
result of water level fluctuations. The complicated hydrological 
and ecological processes of the Poyang Lake wetlands greatly 
influence the development of vegetation in the bottomlands of 
the lake.

Accuracy of the RF Model for Estimating 
AGB in the Poyang Lake Wetland
The average and standard deviation values of AGB of four 
vegetation types were obtained by statistical analysis of 
sample points (Table 4). The AGB of four vegetation types 
was ranked from low to high as P. arundinacea, C. cinerascens, 
A. selengensis, and M. sacchariflorus. The change in AGB in 
M. sacchariflorus communities was obvious, which might be 
related to the different wilting degree of M. sacchariflorus in 
some sample sites. We found that the AGB prediction accuracy 
of RF on training set mainly used for calibration of model 
parameters is higher and more robust when the node size is 2. 
Figure 5 shows that when node size is 2, the accuracy of the RF 
model after five-fold cross-validation varies along with mtry. 
It can be found that when mtry is 3, the model has the highest 
accuracy on the training set. Figure 6A shows the values of 

TABLE 3 | Summary of producer’s accuracy for the four dominant vegetation communities of classification results based on field survey data in 2010, 2011, 2012, 2014 
and 2015.

Land cover 
type 

2010 2011 2012 2014 2015

NOSP PA(%) NOSP PA(%) NOSP PA(%) NOSP PA(%) NOSP PA(%)

C. cinerascens 7 71.4 3 100 7 57.1 10 60 18 72.2
P. arundinacea 5 60 4 75 5 80 2 50 16 56.3
A. selengensis 3 33.3 8 50 4 50 6 50 11 63.6
M. sacchariflorus 4 75 9 66.7 4 75 4 75 12 66.7
Total 19 73.7 24 66.7 20 65 22 59.1 57 64.9

NOSP refer to number of sampling points, PA refer to producer’s accuracy.
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RMSE, R2, and MAE for RF models with different numbers 
of trees after five-fold cross-validation in the training dataset 
(mtry = 3, node size = 2). RMSE ranged from 0.20 to 0.28 kg 
m−2, R2 ranged from 0.80 to 0.85, and MAE ranged from 0.13 
to 0.18 kg m−2. Figure 6B shows the values of RMSE, R2, and 
MAE for RF models with different numbers of trees after five-
fold cross-validation in the testing dataset. RMSE ranged from 
0.23 to 0.30 kg m−2, R2 ranged from 0.63 to 0.72, and MAE 
ranged from 0.23 to 0.28 kg m−2. When the number of trees is 
250, the values of the three indicators in the training dataset 
and testing dataset tend to be relatively stable, indicating that 
the comprehensive performance of the model has not been 
significantly improved with the change in the number of N. The 
average value for the three criteria of RF algorithms is shown 
in Table 5. Compared with the performance of RF on training 
datasets, the prediction accuracy of AGB on the test datasets 

is lower. We think the average RMSE value of 0.26 kg m−2 is 
satisfactory given that the sampling points are not sufficient. 
When N = 390, the model has the lowest RMSE value (0.23 kg 
m−2) and the highest R2 (0.72) in the test set, so the model has 
the best prediction accuracy for AGB (Figure 6). And then 20% 
of the samples were randomly selected as validating points, and 
the AGB values of these 20 percentage points were predicted 
based on five models calibrated by five-fold cross-validation 
(N  = 390, mtry = 3, node size = 2). The results are shown in 
Figure 7. In summary, we concluded that RF was a satisfactory 
model for use in predicting AGB in the Poyang Lake wetlands.

Predicting the AGB of Various Vegetation 
Communities
We utilized the trained RF (N = 390) to explore the AGB 
distribution in Poyang Lake from 2010 to 2016 (Figure 8). 

TABLE 4 | Statistical characteristics of AGB of four vegetation communities of field sampling in 2016 December.

C. cinerascens P. arundinacea A. selengensis M. sacchariflorus

Average 1.09 0.88 1.42 1.70
SD 0.54 0.38 0.56 0.95

FIGURE 5 | Prediction accuracy of the RF model on training data set when mtry varies from 1 to 9.
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The average annual total AGB in the Poyang Lake wetland 
in the past 7 years is approximately 1.28 × 109 kg. To validate 
the accuracy of AGB inversion in different years, we used 
the measured AGB of the 142 field sample points in autumn 
2010, 2011, 2012, 2014, and 2015 to calculate RMSEs (Table 
6). We found that the RMSEs of 5 years ranged from 0.41 to 

0.52  kg m−2. We found that the AGB distribution was abundant 
in 2011, 2012, 2013, and 2015, especially in 2011 and 2015, all 
over the lake; however, 2010, 2014, and 2016 were relatively 
deficient (Figure 8). Generally, a higher-than-average AGB 
value of more than 1.2 kg m−2 occurred in the northwest 
and southeast parts of Poyang Lake, while the southwest and 

FIGURE 6 | Average accuracy of five-fold cross-validation of RF Model in training samples (A) and testing samples (B).

TABLE 5 | The average RMSE (kg m-2), R2 and MAE (kg m-2) values for RF models with different trees to estimating AGB in the training and testing datasets.

Model Training dataset Testing dataset

RMSE R2 MAE RMSE R2 MAE

RF 0.23 0.84 0.15 0.26 0.68 0.25

FIGURE 7 | Comparison of predicted with error bar in (A) and without error bar in (B) and actual values of AGB on RF Model validation sample set when N=390.
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northeast experienced lower AGB values, except in 2011 and 
2015. Figure 8 showed the total AGB statistics from 2010 
to 2016 for the most common vegetation communities. C. 
cinerascens had the highest total value of 1.28 kg m−2 (Table 7) 
because it had the largest distribution area in Poyang Lake; 
A. selengensis and M. sacchariflorus had the second- and 

third-largest biomass, respectively; and P. arundinacea had the 
lowest biomass value. M. sacchariflorus had the highest AGB 
density, with an average value of 1.39 kg m−2; C. cinerascens 
and A. selengensis were almost at the same level, with 1.26 and 
1.28 kg m−2, respectively; and P. arundinacea had the lowest at 
0.64 kg m−2 (Table 7).

FIGURE 8 | AGB density distribution (A) and total AGB statistics (B) in Poyang Lake wetland in autumn from 2010 to 2016. 

TABLE 6 | Validation accuracy for AGB inversion in 2010,2011,2012,2014 and 2015.

2010 2011 2012 2014 2015

Numbers of sampling points 19 24 20 22 57
RMSE(kg m-2) 0.52 0.47 0.52 0.49 0.41
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DISCUSSION

Distribution of AGB in Poyang Lake 
Wetlands and Its Causes
The change in the inter-annual and intra-annual hydrological 
variations of Poyang Lake are the main factors leading to the 
inter-annual change in wetland AGB. The annual water level 
fluctuations are relatively large, with the difference between the 
highest and lowest water levels of Poyang Lake exceeding 10 m 
(Dai et al., 2015; Wan et al., 2018c). The imaging time for the 
selected remote sensing images is not entirely the same. The 
fluctuation of the water level leads to a change in the bare beach 
area that then affects the AGB in the Poyang Lake wetland. The 
difference in spatial distribution of AGB in the same period may 
be related to the tolerance of different vegetation communities 
to hydrological conditions. Undoubtedly, fluctuations in 
water conditions such as water level, water table level, water 
depth, soil water content, and percentage of inundated days 
per year in the wetland affect the growth and distribution of 
vegetation (Stromberg et al., 1996; Katz et al., 2009; Toogood 
and Joyce, 2009). Given its unique geographical location and 
characteristics of river–lake exchange, the seasonal variation in 
water conditions in the Poyang Lake wetlands is very significant. 
Carex cinerascens can tolerate a wide variety of hydrological 
processes, so C. cinerascens could be widely distributed in the 
Poyang Lake wetland, while Miscanthus sacchariflorus only 
adapts to a relatively small range of hydrological conditions 
(Zhang et al., 2012; Dai et al., 2019; Wan et al., 2018a). An 
excessively high water level does not benefit the growth of M. 
sacchariflorus, which indicates that M. sacchariflorus grows on 
the beach at higher altitudes.

Our results show that the low-AGB areas of the Poyang 
Lake wetland are generally concentrated in the center of sub-
lakes or dish-shaped bottomlands. The frequency of flooding 
in these areas is higher than that in high bottomlands. Phalaris 
arundinacea, with its flat leaf blade and 30 to 50cm stem 
height, grows in the easily flooded low-lying bottomlands 
and has strong adaptability to higher soil moisture content, 
which makes a lower AGB occur in these places. Artemisia 
selengensis and M. sacchariflorus are located in the highlands 
of the Poyang Lake wetland at a 14 to 17m elevation. They 
are less likely to experience flooding, to grow taller, or to 
have thicker stalks. Their AGB density was higher than that 
of P. arundinacea and C. cinerascens. Therefore, there are 
higher AGBs in some high-elevation alluvial deltas, such as 

the Ganjiang River delta. C. cinerascens, the most common 
vegetation category in Poyang Lake, is often found in the 
areas between 13 and 15 m, where water has no adverse 
effects for most of the year, except during the flood season, 
which allows them to have a higher AGB density value. From 
October to December, with the gradual decline in water 
level, C. cinerascens communities are exposed. At this time, 
vegetation communities such as those of A. selengensis and 
M.  sacchariflorus experienced blooming or withering stages, 
which caused the AGB density of M. sacchariflorus in the 
dry season to be lower than that of M.  sacchariflorus in the 
growing season.

Analysis of the Accuracy and Uncertainty 
of the Study
This study represents the first time that a landscape-scale 
remote sensing model of AGB for seasonal lake wetlands in 
floodplain areas has been produced based on RF algorithms 
and Landsat images. First, we chose the images whose imaging 
time is similar to that of the dry season of the lake, which 
ensures that the hydrological environment of the wetland of 
Poyang Lake is relatively similar at the imaging time of each 
year. Similar hydrological environments make the spectral 
characteristics of the vegetation samples collected in 2016 
consistent with those of other years to the greatest extent 
possible. In addition, in this period, the beach of Poyang Lake, 
is exposed, and the distribution area of vegetation is the largest 
in autumn and winter. The daily water levels of Poyang Lake, 
which were 11.65, 11.53, 11.77, 9.43, 11.47, 13.38, and 9.24 m 
in 2010–2016, respectively, corresponded to the times of image 
acquisition. From the results of our classification maps, the 
dynamic change in the exposed area of the beach landscape is 
consistent with the fluctuation of the water level. In 2010, 2011, 
2012, 2014, and 2015, the daily water levels are close, and the 
size of the exposed beach landscape is similar. The same is true 
for 2013 and 2016. Second, the validation sampling period for 
AGB in other years is the same as in 2016, which is October to 
December, around the dry season of Poyang Lake. We applied 
the training model for 2016 to AGB inversion in 2010–2015 
(except 2013), and the RMSE values were from 0.41 to 0.52 kg 
m−2. The results were acceptable, although the accuracy was 
slightly lower than that in 2016.

To our knowledge, there are very few works focused on 
estimating the total AGB of the Poyang Lake wetlands from the 
perspective of the vegetation community in a withered period 

TABLE 7 | The four most common vegetation communities’ biomass densities (kg m-2) in Poyang Lake wetland from 2010 to 2016.

Year C. cinerascens P. arundinacea A. selengensis M. sacchariflorus Ave.

2010 1.07 0.52 1.16 1.48 1.06 
2011 1.72 0.57 1.26 1.56 1.28 
2012 1.22 0.56 1.73 1.65 1.29 
2013 1.25 0.66 1.30 1.40 1.15 
2014 0.93 0.53 0.77 1.50 0.93 
2015 1.63 0.98 1.42 1.16 1.30 
2016 1.15 0.67 1.16 1.00 0.99 
Ave. 1.28 0.64 1.26 1.39 
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on a multi-year timescale. Our results show that the total AGB 
of Poyang Lake in autumn or winter from 2010 to 2016 was 
0.90 × 109, 2.07 × 109, 1.22 × 109, 1.44 × 109, 0.88 × 109, 1.45 × 
109, and 1.03 × 109 kg, respectively. The average total AGB for 7 
years was 1.28 × 109 and 0.27 × 109 kg higher than the result of 
Dong et al. (2008). It is noteworthy that our models have a better 
accuracy than that work (RMSE: 0.4 kg m−2). More research on 
the AGB estimation of the vegetation growth period in Poyang 
Lake wetlands has been performed. Wang and Liao, (2010) 
estimated the AGB of the Poyang Lake wetland in April 2007 
using Landsat TM and Envisat ASAR data and concluded that 
the total AGB of the whole Poyang Lake was approximately 
2.1 × 109 kg. Li and Liu (2002) estimated the total biomass 
of Poyang Lake wetlands in April 2000 using a simple linear 
regression model, which was approximately 3.8 × 109 kg. Their 
estimations are much higher than our results, mainly because 
they focus on the vegetation AGB of Poyang Lake wetlands in 
the vegetation growth period. Given the insignificant spectral 
difference in the dominant vegetation types of Poyang Lake in 
spring, and the oversaturation of the biomass response to the 
vegetation index, we hold that it is not appropriate to identify 
the distribution of vegetation types and that it will not result 
in an accurate AGB estimation in this period. Moreover, these 
works were all attempting to make an overall AGB estimation 
for the Poyang Lake wetland at a single time point, not long-
term specifications for the AGB of four dominant types of 
plants in the Poyang Lake wetland. Therefore, the results are 
undoubtedly highly uncertain and difficult to use to show a 
trend in AGB over a long period of time. A power model of the 
EVI was used to estimate the spatial distribution of vegetation 
AGB from 2000 to 2011in the PLNNR, located in the north of 
the Poyang Lake wetland (Wu et al., 2015). The overall fitting 
accuracy is 91.7%, based on MODIS long time series data. 
However, MODIS data are limited by spatial resolution, so it is 
difficult to identify the spatial characteristics of the dominant 
vegetation types or estimate the biomass of different vegetation 
types in Poyang Lake.

The uncertainty in accuracy is mainly due to several 
reasons. Differences in atmospheric conditions and lake water 
levels may lead to errors in vegetation classification and AGB 
inversion. The atmospheric conditions during the imaging 
period will affect the grey value of the pixels, resulting in the 
phenomenon of homologous vegetation with different spectra. 
We tried to reduce errors by selecting images from around the 
dry season and performing field samplings in the period from 
late October to late November. However, incomplete temporal 
inconsistency of data still exists. Subtle changes in the spectral 
characteristics of vegetation from October to December and 
mixed vegetation communities in some areas make it difficult to 
identify vegetation accurately. In autumn, emergent vegetation 
such as M. sacchariflorus enters the heading stage from October 
to November, and the aboveground stems wither and die in late 
December. Sparse emergent vegetation such as P. arundinacea 
and A. selengensis communities begin to wither and die from 
October to November. The C. cinerascens community has 

a longer lifetime. It has developed the distinctive feature of 
initiating growth twice within a year, in spring and autumn. 
In September, the water level recedes, and the C. cinerascens 
community initiates growth as the sites are eventually 
exposed. The biomass reaches a maximum during October and 
November. Although the AGB of these vegetation communities 
did not change significantly during this period, differences in 
the spectra and AGB still existed. Furthermore, we found that 
in some bottomlands, A. selengensis tended to grow mixed with 
P. arundinacea, which reduced the classification accuracy.

CONCLUSIONS

In this study, the machine learning algorithm RF was used to 
estimate the AGB of the Poyang Lake wetlands and to obtain 
the AGB levels of four dominant vegetation communities on 
the basis of maps derived from classification images generated 
through an SID classifier in autumn from 2010 to 2016. The 
primary conclusions are as follows:

(1) The coverage of each of the vegetation types is always changing 
as a result of water level fluctuations. From 2010 to 2016, 
Carex cinerascens had the largest distribution, with an average 
area of 569 km2. The distributions of Phalaris arundinacea and 
Artemisia selengensis were 226 and 200 km2, respectively. The 
smallest was Miscanthus sacchariflorus, with a distribution 
area of only 120 km2.

(2) M. sacchariflorus had the highest AGB density, with an 
average value of 1.39 kg m−2; C. cinerascens and A. selengensis 
were almost at the same level with 1.26 and 1.28 kg m−2, 
respectively; and P. arundinacea had the lowest AGB density 
at 0.64 kg m−2.
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