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Recent advances in Deep Neural Networks have allowed the development of efficient 
and automated diagnosis systems for plant anomalies recognition. Although existing 
methods have shown promising results, they present several limitations to provide an 
appropriate characterization of the problem, especially in real-field scenarios. To address 
this limitation, we propose an approach that besides being able to efficiently detect 
and localize plant anomalies, allows to generate more detailed information about their 
symptoms and interactions with the scene, by combining visual object recognition and 
language generation. It uses an image as input and generates a diagnosis result that 
shows the location of anomalies and sentences describing the symptoms as output. Our 
framework is divided into two main parts: First, a detector obtains a set of region features 
that contain the anomalies using a Region-based Deep Neural Network. Second, a 
language generator takes the features of the detector as input and generates descriptive 
sentences with details of the symptoms using Long-Short Term Memory (LSTM). Our 
loss metric allows the system to be trained end-to-end from the object detector to the 
language generator. Finally, the system outputs a set of bounding boxes along with the 
sentences that describe their symptoms using glocal criteria into two different ways: a set 
of specific descriptions of the anomalies detected in the plant and an abstract description 
that provides general information about the scene. We demonstrate the efficiency of 
our approach in the challenging tomato diseases and pests recognition task. We further 
show that our approach achieves a mean Average Precision (mAP) of 92.5% in our newly 
created Tomato Plant Anomalies Description Dataset. Our objective evaluation allows 
users to understand the relationships between pathologies and their evolution throughout 
their stage of infection, location in the plant, symptoms, etc. Our work introduces a cost-
efficient tool that provides farmers with a technology that facilitates proper handling of 
crops.
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inTrODUcTiOn
Plant diseases are responsible for major economic losses in the 
agricultural sector worldwide (Martinelli et al., 2015). They are 
directly related to food safety and sustainable food production 
(Savary et al., 2012). Quantifying the impact of plant pathologies 
in crops represents one of the most challenging problems in 
agriculture (Donatelli et al., 2017). Nutrition deficiency or 
imbalance between soil moisture and oxygen makes a plant more 
susceptible to get affected by pathogens. Anomalies in the plants 
can be caused by pest, diseases or other abiotic stresses such as 
low temperature. The diseases recognition task is often related 
to time-consuming, laborious, and subjective. Traditionally, 
crop inspection has been carried out visually by people with 
some expert knowledge in the field. However, regarding any 
activity carried out by humans, this approach is subject to 
generate a degree of uncertainty or error (Barbedo, 2018a), 
and consequently, leads to incorrect decisions to control them. 
In addition, it is not always possible to control plant diseases, 
especially in remote areas with difficult conditions. On the other 
hand, it is also important to notice that the economic factor is 
also an inconvenience.

With the rise of media and technology, the application of 
deep learning-based methods has been increased widely. Along 
with that, fast and accurate approaches are rising in demand 
for better results. The application of this technology has been 
also extended to the area of plant diseases recognition. Several 
automated diagnosis methods (Kawasaki et al., 2015; Fuentes  
et al., 2016; Mohanty et al., 2016; Sladojevic et al., 2016; Amara  
et al., 2017; Fuentes et al., 2017a; Fuentes et al., 2017b; Araus et al.,  
2018; Ferentinos, 2018; Fuentes et al., 2018; Liu et al., 2018; 
Barbedo, 2018b) have been proposed to detect plant diseases and 
pests in different types of crops. They offer an effective tool for 
people who are involved in the agricultural area. An accessible 
application of this technology can offer even more possibilities 
to farmers in different parts of the world who lack the advanced 
technology to manage their crops in an appropriate way so 
that they can avoid such economic losses (Ferentinos, 2018). 
This technology can be adapted for large-scale cultivation, and 
represents a tool to monitor breeding programs efficiently in 
real-time (Fujita et al., 2016).

Although recent studies in plant anomalies recognition 
have shown some progress, the accuracy of these frameworks 
greatly depends on the extraction and selection of the visible 
characteristics of the disease. Specifically, regions containing 
the infected area of the plant should be extracted. To address 
that problem, two different ways have been commonly used: 
1) Image-classification-based diseases detection (Mohanty 
et al., 2016), and 2) Region-based diseases and pest recognition 
(Fuentes et al., 2017b; Fuentes et al., 2018). The first approach 
estimates if an image contains any instances of an object class 
(what), while the second one, provides information about the 
class and location instances of any particular object in the image 
(what and where). Both methods present limited capabilities 
in providing a real estimation of the symptoms of diseases in 
plants. The proposed system aims to provide more user-friendly 
information that allows people to better understand the state of 

the crop. Consequently, we introduce a method that combines 
the capabilities of the previous approaches, and on the other 
hand is able to generate more detailed information about the 
plant anomalies and their symptoms. Figure 1 shows a visual 
representation of the aforementioned approaches.

In this work, we take a step towards deep learning tools and 
propose a system that generates a user-friendly estimation of 
plant anomalies, specifically tomato plants (Cruz et al., 2017). 
We further investigate the interaction between anomalies along 
with their inter- and intra-class variations. More specifically, the 
goal of our approach is to automatically localize and describe 
anomalies in tomato plants using a “glocal” concept, which 
generally represents the interconnection between global and 
local regions. Conceptually, in our approach, global represents 
regions of the context and local introduces the specific areas of 
the anomalies in the image.

For the purpose of our research, we identify the following 
main challenges: First, a detector should be able to provide 
the class and location of the anomalies in the plant. Second, a 
language generator should associate each region of the image with 
its corresponding text. Third, the information from both should 
be then combined to generate descriptions of the anomalies in 
the plant in the form of fully comprehensible sentences. Each 
sentence is further associated with a specific region (bounding 
box) of the image and also provides a reliable description that 
includes surrounding objects, infection status, patterns, colors, 
etc. Using the glocal criteria, a description is a statement of 
the symptoms and their characteristics of the plant. Figure 1C 
illustrates the purpose of our work.

To address the above points, in this paper, we introduce a 
technique that explores the learning capabilities of Deep Neural 
Networks (DNN) for object detection and Recurrent Neural 
Networks (RNNs) for text generation, and propose an automated 
diagnostic system for plant anomalies recognition. Our system 
consists of two parts: First, a detector is trained to obtain a set 
of region features that contain plant anomalies using a Region-
based Deep Neural Network. Second, a language generator takes 
the features of the detector as input and generates descriptive 
sentences with details of the symptoms using Long-Short Term 
Memory (LSTM). In addition, we generate a single sentence 
that describes the scene in general. Our loss metric allows the 
system to be trained end-to-end from the object detector to 
the language generator. Finally, the system generates a set of 
bounding boxes along with specific sentences that describe the 
symptoms.

The main contributions of our work are summarized below: 
1) We propose an end-to-end system that besides being able to 
detect plant anomalies and their location in the image, allows 
to generate more detailed information about their symptoms 
and interactions with the scene. It uses an image as input and 
generates a diagnostic result as output. We further obtain 
specific descriptions of the contents in the image (local) and 
an abstract description of the scene (global). 2) Our loss metric 
allows the system to be trained end-to-end from the object 
detector to the language generator. 3) To improve stability and 
results, we further implemented some additional knowledge 
added to the language generator, such as context information 

Frontiers in Plant Science | www.frontiersin.org November 2019 | Volume 10 | Article 1321

https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Deep Learning for Plant Anomalies DescriptionFuentes et al.

3

and fusion techniques. 4) We demonstrate the efficiency of 
our approach using our newly created tomato plant anomalies 
description dataset. We collected the images of our dataset 
in real conditions of plant environments, using cameras with 
different resolutions. In addition, we designed an annotation 
procedure based on the glocal concept. We annotate plant 
anomalies in the images using bounding boxes along with 
their specific descriptions using sentences. The insights drawn 
from the experimental results led to a better understanding of 
the strengths and limitations of plant anomalies recognition. 
Our results suggest some potential targets for future research 
on the subject as it constitutes an efficient tool to monitor the 
state of plants.

The remainder of the paper is introduced as follows. In Related 
Works Section, we review techniques used for object detection and 
recognition, language generation and plant diseases recognition. 
Our proposed system is presented in Phenotyping System With 
Global Description of Plant Anomalities and Symptoms Section. 
We then evaluate the performance of the system through the 
experimental results in Experiment Results (Section). Finally, we 
conclude this work in Conclusion Section.

reLATeD WOrKS
In this section, we first introduce some related works based on 
deep neural networks for object detection and image description. 
Then, we review some recent techniques used for plant anomalies 
recognition.

Deep Learning Methods for Object 
Detection and image-Based Description
In vision systems, object detection has opened a wide range 
of opportunities with several applications in different fields. 
These systems involve not only recognizing and classifying 
objects in the image (Russakovsky et al., 2015) but also 
localizing them by drawing bounding boxes around their 
area (Ren et al., 2016). State-of-the-art methods based on 
deep learning for object detection can be categorized into 
two types: two-stages (Dai et al., 2016; Ren et al., 2016; He 
et al., 2017) and single-stage (Redmon et al., 2015; Liu et al., 
2016; Redmon and Farhadi, 2017). Correspondingly, in recent 
years, much of the progress in deep learning has been also 
directed to develop handful and efficient feature extractors 
(Krizhevsky et al., 2012; Simonyan and Zissermann, 2014; 
Szegedy et al., 2015; He et al., 2016; Huang et  al., 2017; Hu 
et al., 2017; Xie et al., 2017). Lately, Feature Pyramid Network 
(FPN) (Lin et al., 2017) has shown progress, especially in the 
recognition of objects at various scales. Basically, it exploits 
a pyramidal form of CNN feature hierarchy while creating a 
feature pyramid that has semantics at all scales. The result is 
a feature pyramid that has a rich semantics at all levels and is 
built quickly from a single input image.

In addition to recognizing patterns within images, methods 
based on deep learning have shown remarkable abilities 
to generate text as well (Bahdanau et al., 2015). In practice, 
to generate an automatic description from the images, it is 
necessary to understand how humans describe an image 
(Bernardi et al., 2016). Humans by nature have the ability 

FiGUre 1 | General idea of frameworks for Plant Diseases Recognition. (A) Image-based diseases classification (class). (B) Region-based diseases and pest 
recognition (class, localization). (c) Our proposed approach for plant anomalies description (localization, glocal description). The proposed model provides more 
detailed information about anomalies that affect the plants and their interactions in the scene.
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to find relationships between objects and their possible 
interaction, their attributes and actions they perform. The 
problem of generating descriptions from visual data has 
been widely studied and recent interest has been put into 
solving the problem of image description in natural language 
(Kiros et al., 2014a; Kiros et al., 2014b; Donahue et al., 2017; 
Kaparthy and Li, 2017; Vinyals et al., 2017). For instance, 
Kiros et al. (2014a) used a CNN to learn representations of 
words and image characteristics together by jointly training a 
language model. Subsequently, Kiros et al. (2014b) proposed 
an encoder-decoder based method that learns a joint image-
sentence embedding where sentences are encoded using 
LSTM recurrent neural networks. To that purpose, image 
features extracted by a CNN are projected into the space of 
the LSTM to generate language. Kaparthy et al. (Kaparthy 
and Li, 2017) developed a deep neural network that infers the 
alignment between segments of sentences and the area of the 
image that they describe. Specifically, they use a Region-Based 
Convolutional Neural Network (R-CNN) to find objects in the 
image, and a RNN to generate a description in the form of text. 
In addition, to make the combination of visual recognition 
and description end-to-end trainable, Donahue et al. (2017) 
proposed Long-term Recurrent Convolutional Networks 
(LRCNs). Further, Vinyals et al. (2017) introduced an end-
to-end approach to generate a description of images. They 
combine vision (CNN) for image classification and language 
models (RNN) for language generation.

Although the detection and recognition of objects 
are necessary, they are not sufficient to produce detailed 
information. The results are a list of labels corresponding to 
the objects in the image. in specific applications, an efficient 
image description should not only contain a list of objects 
but also possibly a clear and concise description of them. In 
that direction, several recent studies take advantage of image 
description on regions to describe images with natural language 
(Johnson et al., 2016; Kaparthy and Li, 2017; Yang et al., 2017). 
They are specifically based on a combination of RNN language 
model that is conditioned on the image information. However, 
in those approaches, they tackle the problem from a subjective 
point of view, since they find the objects that are presented in 
the image but not a relationship between them. In our work, we 
extend the idea of object-based description as an application 
for recognizing plant anomalies. The system can provide more 
precise and clear information about the pathology that affects 
a plant.

Plant Anomalies recognition
The worldwide accessibility to mobile systems and the recent 
advances in software and hardware technologies have allowed 
the implementation of more efficient technologies in several 
areas. Recently, several works have demonstrated the potential 
and possibilities of utilizing deep neural network techniques 
for phenotyping in plants (Mutka and Bart, 2015; Singh et al., 
2016; Araus et al., 2018; Singh et al., 2018). The rapid growth 
of sophistication and capabilities of deep neural networks 
have opened up a wide range of opportunities to extend their 

application towards the solution of common problems in the 
plant science research community, such as the case of plant 
diseases recognition. Following this trend, recent studies based 
on deep learning, have addressed automated identification 
of plant diseases by non-destructive methods in different 
types of crops. These methods can be divided into two types: 
image-based diseases recognition and region-based diseases 
recognition.

In approaches based on image classification, features of 
images containing a specific disease are extracted using CNN 
and subsequently classified into different categories. Some 
examples include the detection of plant anomalies in several 
crops such as apple (Liu et al., 2018), bananas (Amara et al., 
2017), cucumber (Kawasaki et al., 2015), tomato (Fuentes 
et al., 2017a), etc. This application has been further extended 
to multiple crops (Mohanty et al., 2016; Sladojevic et al., 2016) 
to distinguish different types of pathologies out of healthy 
leaves. However, it is worth to mention that, although these 
approaches show the use of CNN-based methods as a powerful 
tool to extract features and efficiently classify images that 
contain particular diseases in different types of crops, they 
are limited to perform experiments using images obtained 
in the laboratory, rather than a real scenario. Therefore, they 
do not cover all variations included in real-field conditions 
such as state of infections, presence of various anomalies in 
the same sample, surrounding objects, etc. Consequently, their 
results may be subjective to the scene instead of the diseases 
in particular.

In contrast to the aforementioned works, Fuentes et al. (2017b) 
proposed a robust system that can recognize nine different types 
of anomalies in tomato plants. They show a satisfactory method 
that is able to provide the category (class) and location (bounding 
box) of pathologies using images collected in real-field scenarios. 
Recently, Fuentes et al. (2018) extended their work in (Fuentes 
et al., 2017b) and showed a significant improvement in the task of 
tomato plant anomalies recognition using a secondary diagnostic 
function based on CNN-filter banks to reduce the influence 
of the false positives generated by the detector. Compared to 
their previous approach (Fuentes et al., 2017b), they obtained a 
recognition rate of approximately 96% which is a gain of 13%. 
This system has also demonstrated to be an effective technique to 
address the problem of class imbalance that appears especially in 
datasets with limited data.

In general, although the works mentioned above have 
substantially allowed satisfactory detection and recognition of 
plant anomalies, they present limited capabilities to provide a 
better characterization of the problem, especially in real-field 
scenarios. In other words, they lack specific information that 
can specifically allow users to better understand the state of the 
infection based on the symptoms of diseases. To address this 
limitation, we propose an approach that differs mainly from 
previous methods in that, besides being able to detect plant 
anomalies and their location in the image, it also provides more 
detailed information about their symptoms and interactions 
with the scene. It uses an image as input and produces a user-
friendly diagnostic result that is shown in the form of sentences 
as output.
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PhenOTYPinG SYSTeM WiTh GLOcAL 
DeScriPTiOn OF PLAnT AnOMALieS 
AnD SYMPTOMS

System Details
The goal of our work is to propose a system that generates glocal 
descriptions of anomalies in the plant. Our system consists of two 
parts: First, an object detector is trained to obtain a set of region 
features that contain plant anomalies using a Region-based Deep 
Neural Network. Second, a language generator takes the features 
of the object detection results as input and generates descriptive 
sentences with details of the symptoms using Long-Short Term 
Memory (LSTM). Finally, the system outputs a set of regions of 
interest (bounding boxes) and their corresponding descriptions 
of the symptoms (sentences). Additionally, we generate a single 
sentence describing the scene in general. An overview of the 
proposed system is represented in Figure 2. We describe the 
contents of our work in the following subsections.

Plant Anomalies Detection vs Anomalies Description
Figure 1 shows a general overview of the idea pursued by our 
proposed framework. To demonstrate the capabilities of our 
system, we firstly differentiate between image-based anomalies 
classification (Figure 1A), region-based anomalies recognition 
(Figure 1B), and plant anomalies description (Figure 1C). In 
general, the first approach provides a holistic image classification 
(what) which sometimes is limited to the salient objects of the 
image. Given one target class that corresponds to the whole 
image can be quite subjective to the representation. In the second 
approach, an image can provide a better interpretation of the 
contents. It provides information about the class and location 
instances of any particular object in the image (what and where). 
On the other hand, the third approach, which is in the scope of 
our work, is able to not only localize plant anomalies in the image 

but also provides more detailed information about the symptoms 
using sentences. In addition, this local description is able to 
objectively represent the visual elements and their relationships 
between them.

recognition and Description of Plant 
Anomalies
The main idea of our approach is to incorporate visual and 
word features to locate and describe the symptoms of anomalies 
that affect plants. Our system, in general, introduces a tool that 
provides more specific information about the state of the plant. 
The input to our system is an image I and the output is a set of 
sentences Si that especially describe the symptoms happening 
within a specific area of the plant. Each description consists of 
several words y that fit a fully understandable sentence.

 
S y y y y i ni C

k= …{ } ∈ = …1 2 1 2 3, , , ,   ,    , , ,  ,    (1)

where k, c and n represent the size of the vocabulary, length of the 
sentence and number of bounding boxes in the image respectively.

Considering the general idea of the system, our baseline 
model begins with two main parts: an object detector and a 
language generator. Each part performs a function that allows 
the system to describe the contents of the image using an end-
to-end training manner. However, we expand its capabilities 
so that the system can perform “specific descriptions of the 
anomalies” and an “abstract description of the scene”. We 
explain each part below.

Specific Description
The purpose of this part is to generate detailed information 
about the plant anomalies, specifically including their symptoms, 

FiGUre 2 | System overview of the proposed approach. It includes the object detection, language generation, localization, detailed description of the contents, and 

the abstract description of the scene. ⓐ Bounding boxes and detailed description of anomalies. ⓑ Abstract description of the scene. ① Context features obtained 

from the feature extractor. ② Region-context fusion. ③ Language-localization fusion.
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patterns, color, location, infection status, etc. Each detected region 
is associated independently with a specific sentence describing its 
behavior (See ⓐ in Figure 2).

Anomalies Detection
This part is responsible for detecting regions that contain 
anomalies in the plant. For this, we extend the application of 
Faster R-CNN (Ren et al., 2016). It uses a two-stage process to 
detect objects in the image. In the first stage, a Region Proposal 
Network (RPN) takes the feature maps of an image as input and 
outputs a set of object proposals with their region score. In the 
second stage, the feature vectors of the object proposals are fed 
into a network to predict the localization of the bounding boxes.

Our application, in particular, contains several visual variations 
such as the stage of infection, color, patterns, location, occlusion, 
and especially objects at various scales, etc. Therefore, the object 
detection part should be efficient enough to achieve satisfactory 
detection results while dealing with all variations in the image. 
A special difficulty of object detectors is the capability to detect 
small-scale objects. Therefore, we propose to use a pyramid-based 
architecture as the feature extractor of the anomalies detector. 
This is represented in the feature extractor of Figure 2.

FPN (Lin et al., 2017) is one of the most recent CNN 
architectures that have shown progress, especially in the 
recognition of objects at various scales. Basically, it exploits a 
pyramidal shape of a CNN feature hierarchy while creating a 
feature pyramid that has semantics at all scales. The result is a 
feature pyramid that has rich semantics at all levels and is built 
quickly from a single input image. It produces proportionally 
sized feature maps at multiple levels. This process is independent 
of the feature extractor used as the backbone. In our paper, we 
use a ResNet-50 network as the basis of the FPN. The ResNet-50 
network consists of five residual blocks. The FPN takes the output 
of the last layer of each block to construct the pyramid using 
a bottom-up pathway. The outputs of the last residual blocks 
are denoted as {C2,C3,C4,C5} or conv2, conv3, conv4, and conv5 
outputs. Then, starting at the coarsest level, involving a top-
down pathway, the FPN obtains higher-resolution features by 
spatially up-sampling the coarse levels to semantically stronger 
higher levels of the pyramid. These features are merged via lateral 
connections between levels. The sampled map is merged with 
the map of the next level, iteratively until the finest level of the 
pyramid. The final set of feature maps of the FPN are denoted as 
{P2,P3,P4,P5} as represented in Figure 2.

To be able to use a FPN network with Faster R-CNN, the 
system needs to compute Regions of Interest (RoIs) of different 
scales in the pyramid levels. Following the concept of an image 
pyramid, a FPN needs to assign an RoI of width w and height h 
to the level Pk of the pyramid by:

 
k k wh= + ( )



0 2 224log /  (2)

where, k0 is the target level on which the RoI should be assigned, 
and 224 is the pre-training model size of the image. Our FPN is 
composed of four levels which are extracted from the residual 

blocks of the ResNet. Consequently, the scale of the RoIs becomes 
smaller at finer-resolution pyramid levels and prediction is 
performed at all levels of the pyramid. Based on these statements, 
we are able to train the detector to obtain regions that contain 
plant anomalies.

Bounding Boxes Localization
Having computed the feature vectors of the regions containing 
anomalies of the plant using the first stage of Faster R-CNN, the 
localization part predicts the coordinates of the bounding boxes 
using Non-Maximum Suppression (NMS) and Region of Interest 
(ROI) pooling layer. See the region features in Figure 2.

Language Generation
The same region features generated by the object detector, are 
used as inputs of the language generator that associates each 
region with text. In this part, LSTM modules predict words at 
each time step and use those predictions to predict the next word 
from the init token until the end of the sentence. This procedure 
is shown in the language generation part of Figure 2. LSTMs 
are a special kind of units of RNNs that incorporates a built-in 
memory cell to store information and exploit long-range context 
(Hochreiter and Schmidhuber, 1997). They are able to learn 
long dependencies while avoiding the problem of long-term 
dependency. In addition, when integrated with image models, 
LSTM systems are not limited to fixed-length inputs or outputs, 
allowing simple modeling for sequential data of different lengths, 
such as machine translation, speech recognition. However, 
different from text or video, our approach overcomes the problem 
of region description using a single input region and expecting a 
label space consisting of sentences with various lengths.

Our language generator model takes the region features of 
the image I hat are generated by the RPN of the object detector 
and the sequence of input words {x1,x2,...xC} The LSTM then 
computes a sequence of hidden states {h1,h2,...hC} or each word 
and a sequence of outputs {y1,y2,...yC} y the following relation for 
all words:

 
b W R Iv hi c= ( ) θ  (3)

 h f W x W h b bc hx c hh c h v= + + +( )−1 1  (4)

 
y classifier W h bc oh c o= +( )   (5)

where, Whi, Whx, Whh, Woh, bh, bo are the learnable parameters, 
Rθc (I) epresents the set of region features, and bv is an image 
context vector extracted from the last feature map of the CNN. 
The output vector yc generates the probable words included in 
the vocabulary and an additional dimension to finish the LSTM 
model. The RNN model has a final size of 512 neurons.

Starting with the first word of the sentence y1 and the desired 
known word x1 the network predicts the new word y2 until the last 
word yc in the sentence. The final goal of the LSTM is to find words 
with the higher probability using a classifier, such as softmax.
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Abstract Description
An abstract description provides general information about 
the symptoms and their interactions with the scene. Its main 
purpose is to provide a broader view of the anomalies that affect 
plants considering both global and local information. The first is 
obtained from the features of the input image while the second is 
generated by the object detector and the language generator (See 
ⓑ in Figure 2).

To obtain the global features of the scene, we use the same 
ResNet-50 architecture as in the object detector. Next, the 
abstract description of the scene is obtained by applying of an 
independent LSTM module that uses the last feature map of the 
CNN as input. A representation of the abstract description part 
is shown in Figure 2.

Accurate Localization and Description
As shown in Figure 2, our model can generate descriptions of 
the regions included in the input image. However, in order to 
improve the performance, we further analyze some of the specific 
components included in the architecture. Our main criteria 
about the capabilities of the system lie into the following facts:

• Context features: The use of context features provides 
information about the main scenario of the image (See ① in 
Figure 2).

• Region-context fusion: The use of LSTM modules and fusion 
techniques for the region and context features helps to improve 
the accuracy of the language generator (See ② in Figure 2).

• Language-localization fusion: The use of an LSTM module to 
match the vocabulary and the region features can improve the 
localization of the bounding boxes (See ③ in Figure 2).

To understand the capabilities of these criteria, we mainly 
focus in the language generation and localization. The first 
component is found in the use of “context information” in the 
language generator. This recalls a second component, which 
is the way to “fuse” the context information with the regions 
generated by the RPN. These are, a) early fusion, using a single 
LSTM module or, b) late fusion, using independent LSTM 
modules. Finally, a third component associates each bounding 
box with specific words in the sentences that have been generated 
using the region and context features.

Model complexity
The complexity of the system is represented in terms of the number 
of parameters of both the feature extractor used by the object 
detector, as well as the LSTM model for the language generator. 
These are 24,576,000 for the feature extractor, and 125,050,075 for 
the LSTMmodel. We use a ResNet-50-based FPN network (Lin 
et al., 2017) as the baseline architecture of our approach.

Training
The model is trained end-to-end and consists of three main steps: 
1) Detection of anomalies; 2) Detailed description; 3) Abstract 
description. In the first part, a Region-based Neural Network 

extracts the region features from the image. Next, the LSTM 
modules generate specific language descriptions that associate 
words with regions of the image. Finally, the abstract description 
is generated using the context features of the input image and an 
independent LSTM module.

Training the complete model end-to-end aims to minimize 
the following loss function:

 L L L L Lspec abs reg= + + +λ det β  (6)

where, Lspec, Labs, Ldet, and Lreg, are the specific description loss, 
abstract description loss, detection loss, bounding box regression 
loss respectively. λ and β are weight hyperparameters. Lspec and 
Labs corresponds to cross-entropy calculated for text prediction 
at each time step. Ldet and Lreg re calculated similarly as in the 
Faster R-CNN (20). The detection loss is a cross-entropy two-
class loss for foreground and background, while the bounding 
box regression loss is a Smoothed-L1 loss.

eXPeriMenTAL reSULTS

Tomato Plant Anomalies Description 
Dataset
Images
To validate our experimental results, we used the images from our 
Tomato Diseases and Pest dataset (Fuentes et al., 2017b; Fuentes 
et al., 2018). Our dataset consists of approximately 5,000 images 
collected from farms located in different areas of South Korea. 
The images were taken under different conditions and scenarios. 
They include anomalies that can be developed depending on the 
season and variables such as temperature and humidity. Since 
not all diseases can be found throughout the year, but in seasons, 
the number of images corresponding to each class is different. 
The categories and the number of annotated samples used in 
our system can be seen in Table 1. The number of annotated 
samples represents the bounding boxes annotated in the images 
after data augmentation. Every image contains several samples 
based on the affected areas of the plant. The background class is 
collected as a transversal category that is annotated in most of 
the images.

Groundtruth and Vocabulary
Since the purpose of our approach is to generate sentences that 
describe the symptoms of plant anomalies, we have taken the 
images of the Tomato Diseases and Pest dataset to create our new 
Tomato Plant Anomalies Description Dataset.

Differently from our previous dataset, our new dataset 
contains three types of information that have been annotated 
in every image: a) Coordinates of the bounding boxes showing 
the location of the anomalies, b) Detailed descriptions of the 
anomalies shown within the bounding boxes and, c) Abstract 
description of the scene. These facts provide user-friendly 
information while offering a more realistic representation of the 
scene and the anomalies that affect the plants.

Frontiers in Plant Science | www.frontiersin.org November 2019 | Volume 10 | Article 1321

https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Deep Learning for Plant Anomalies DescriptionFuentes et al.

8

Our research presents certain characteristics that make 
it different from a simple generation of sentences to describe 
an event. A key aspect that we have mainly taken into account 
is the design of the process used to annotate the images of 
our dataset. We have paid special attention not only to plant 
anomalies but also to the relationship between them and the 
scene. For instance, we considered cases when two or more 
anomalies are presented in the same sample image and located 
in different parts of the plant such as front or back sides of 
the leaves. Figure 1C shows some sample annotations. In this 

sense, we follow the procedure below to annotate each of the 
images in our database:

• We identified the anomalies and obtain their localization 
coordinates in the image using bounding boxes. We selected 
the anomalies using the glocal criteria, which represents the 
following regions: global, local, attributes, and background. 
We defined at least one global and more local samples. 
The attributes represent the patterns, colors, etc., and the 
background localizes other regions in the image. Figure 
3A shows the types of information and their location in  
the image.

• We identified the key terms and their relationships to 
generate a sentence that accurately describes the anomalies. 
To determine these terms, we first considered the following 
characteristic: classes (types of anomalies), symptoms, 
location, infection status, and complementary words. We 
looked for terms that may have a relationship with our specific 
task. Figure 3B represents some terms used for our purpose, 
which are divided into each category.

• Once identified the regions that show specific anomalies 
in the plant, we described their symptoms with a sentence 
that contains key terms and connecting words. Starting 
with a specific term from our categories, each sentence 
is constructed as a combination of words that describe a 
symptom and its relationship with the scene through the 
interaction between global, local, attributes and background 
regions. For example, Figures 3C–G show the paths and 
combinations to generate descriptions of the regions. The 
lines in color represent the interactions between regions. 
Some cases include, for instance: local regions that show 

TABLe 1 | List of categories in our tomato diseases and pests dataset and 
number of annotated samples.

class number of 
images in the 

Dataset1

number of 
Annotated 
Samples 

(Bounding 
Boxes)2

Percentage of 
Bounding Box 
Samples (%)

Leaf mold 1,350 11,922 24.06
Gray mold 335 2,768 5.57
Canker 309 2,648 5.33
Plague 296 2,570 5.17
Miner 339 5,283 10.63
Low temperature 55 477 0.96
Powdery mildew 40 338 0.68
Whitefly 49 404 0.81
Nutritional excess 50 426 0.85
Yellow leaf curl 3,927 3,927 7.90
Background3 2,177 18,899 38.03
Total 8,927 49,662 100

1Number of images in the dataset;
2Number of annotated samples after data augmentation;
3Category included in every image.

FiGUre 3 | Example of the procedure used to annotate the images in our Tomato Plant Anomalies Description Dataset. Each sample in dataset includes:  
(A) Coordinates of the bounding boxes. (B) A representation of the specific terms included in our annotations and their relationships. (c–h) Specific descriptions 
of the symptoms and abstract description of the scene. Note that each color of the sentences represents the corresponding bounding box in the image and 
information such as Global, Local, Attributes, and Background. To describe the symptoms, each sentence combines information from the variables such as 
classes, symptoms, location, infection status, and complementary words.
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different symptoms (Figures 3D–E), attributes of the 
anomaly at a specific infection status (Figure 3F), as well 
as other regions in the image that can be also affected by 
anomalies (Figure 3G), etc. The global region describes 
the interactions of several locals along with their attributes 
(Figure 3C).

In addition, it is necessary to mention that this procedure 
allows users to better understand the interactions between 
anomalies and with the scenario, as shown in Figure 3H. 
Finally, the annotation of each image includes a set of bounding 
boxes, detailed and abstract descriptions of the anomalies.

We annotated each image in the dataset and obtained a 
vocabulary of words. Every encoded-word in the sentences 
is extracted to build the vocabulary and obtain statistics such 
as top words, and sentence length. We further determined the 
statistics of the sentence length by counting the number of words 
that include the target class and connecting words. Our dataset 
is mostly composed of sentences with 11 and 12 words, as shown 
in Figure 4A.

Additionally, we found the most used words in the vocabulary 
by counting the number of repetitions. Our vocabulary is mainly 
composed of connective words, verbs, and nouns, as well as, the 
target anomalies or other type of stress. Some classes with more 
number of samples have more influence on the top words and 
repetitions in the vocabulary. A representation of the statistics of 
top words and the vocabulary used in our approach is presented 
in Figure 4B.

System Training and Validation Details
The system has been trained end-to-end using a PC computer 
equipped with two NVIDIA Titan XP GPUs. The dataset has 
been divided into 80% training, 10% testing, and 10% validation. 
The complexity in terms of the number of parameters of the 
feature extractor and the language generator LSTM is mentioned 
in Model Complexity Section.

To improve the results and stability during training, we used 
transfer learning from a pre-trained model in the ImageNet 
dataset. The training weights are initialized with Adam optimizer. 
In addition, we used extensive data augmentation to increase the 
number of samples and avoid overfitting problems.

evaluation Metric
In general, our system uses a single image as input and generates 
a set of regions along with their descriptions. Thus, we designed 
a system that is able to effectively predict plant anomalies 
(anomalies detector) along with their localization coordinates in 
the image (bounding boxes) and accurate descriptions (language 
generator). To evaluate the performance of the system, we used 
the mean Average Precision (mAP) as our metric. The mAP 
measures both localization precision and language accuracy. In 
the localization, we evaluated the Intersection-over-Union (IoU) 
with a threshold of 30%, and to measure language similarity we 
used METEOR (Banerjee and Lavie, 2005) with a threshold of 
25%. METEOR is an automatic machine translation evaluation 
which measures the correlation between the metric scores and 

FiGUre 4 | A representation of the vocabulary in the dataset. (A) Sentence length distribution based on the number of words. (B) A representation of the 
vocabulary used in our approach.
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human-produced reference translations. We evaluated the 
average precision using the two methods mentioned above to 
report the mAP in the following quantitative results.

Quantitative evaluation
We evaluated the performance of our model and the added 
components to improve localization and description. To further 
clarify the effectiveness of the proposed model, we conducted 
experiments on our dataset. We show these results in the training 
curves of Figure 5. These include the components of the loss 
function (Equation 6) such as captioning loss, object detection 
loss, bounding box regression loss, and the total loss. To this 
effect, we trained the model end-to-end including the object 

detector, localization, language generators for specific and 
abstract descriptions.

The loss curves of the experiments are presented in Figure 5. 
Among the proposed cases for plant anomalies description, the 
model that includes all components (context features, late fusion 
of the context and region features, and language-localization 
fusion), as mentioned in Accurate Localization and Description 
Section works better than the others. This can be seen in Figure 
5D. We may argue that this is mainly because the localization 
part directly associates the information from both the contextual 
and region-features and the language generator to estimate 
the bounding boxes. Each region is associated with a specific 
sentence. Based on that, we also determined that: a) Context 
features work for decreasing all losses. b) Late fusion works for 

FiGUre 5 | Loss curves in the model introduced in our approach. Each row represents the curves of the components included in the general framework. (A) Model 
without context features. (B) Region-context features early fusion. (c) Region-context features late fusion. (D) Complete model, which also includes the language-
localization fusion. Note the changes especially in the bounding box regression loss. The legends are represented by the middle and end losses. Middle means the 
evaluation at the middle layers and End means at the end of the network.
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decreasing objectness loss relatively. c) Language localization 
fusion works for stabilizing the bounding box regression loss.

In terms of the object detection loss, our complete model 
that includes all components, shows an improvement among 
the models. We assume that the main reason for the outstanding 
performance of the complete model, compared to other models, 
is due to the use the context information extracted from the 
last feature map of the FPN network. The model for abstract 
description also uses the region features provided by the CNN 
feature extractor. The training and validation losses of the abstract 
description are shown in Figure 6. Both curves show a similar 
trend, which means that there is an adequate performance both 
during training and validation.

From Figure 7, we can also determine the benefits of adding 
the FPN into the detector. As mentioned above, the challenges of 
our application demand an object detector that should be able to 
detect anomalies at various shapes, forms, infection status, and 
scales, etc. In fact, detecting objects at various scales is one of 
the main difficulties of object detectors. FPN has demonstrated a 

good response to deal with that specific problem. To demonstrate 
these capabilities, in Figure 7, we show a representation of some 
anomalies found by the detector. We applied a ResNet-50 with/
without FPN and report the detection results. We found that 
the model which includes a FPN-based architecture is able 
to correctly find anomalies with small scales, compared to the 
model without FPN.

Figure 8 shows some examples of the contextual regions 
selected by the detector based on FPN. Our detector localizes the 
regions likely containing anomalies in the plant. We used global 
and local information to define the anomalies, as well as other 
attributes, patterns, and context that provide the system with 
more information about the scene.

The performance of the system can be further supported by 
the mAP results calculated on the validation dataset at different 
epochs during training. We evaluated our proposed model, 
including all components previously analyzed, against models 
that use the components independently. According to the results 
shown in Figure 9, although the model using context features 

FiGUre 6 | Loss curves of the abstract descriptor (Labs). Both curves show a similar trend, which means that there is an adequate performance both during training 
and validation.

FiGUre 7 | Comparison of some detection results generated by ResNet-50 with/without FPN feature extractors. It shows the capabilities of the FPN-based network to detect 
objects with small scale and different variations in the images. The names and values in the bounding boxes represent the class and probability of recognition, respectively.
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shows a max mAP of 87.76%, it tends to be unstable throughout 
the iterations. In contrast, using independent LSTM models for 
the region features and context features respectively, and their 
subsequent fusion, performs better. Among them, our complete 
model that includes all components shows more stability while 
reaching a max mAP of 92.5%. Taking all these facts into account, 
we believe that our proposed model is perfectly adapted to the 
requirements of our application.

Qualitative evaluation
Our experimental results have quantitatively shown the ability 
of our proposed approach to generate descriptions from the 
regions containing anomalies in the plant. Here, we qualitatively 
evaluate how sensitive the system is to generate descriptions 
using test images.

Specific and Abstract Description
Following, we first evaluated the performance of the proposed 
models using the following objective criteria that focus 
specifically on the anomalies and their symptoms, as shown in 
Figure 10.

• A model without context features and fusion generates poor 
performance. It suffers from localization since the bounding 
boxes cover large areas of the image, including regions of other 

objects or background. This generates wrong descriptions. See 
Figure 10A.

• The addition of context features from the last layer of the 
FPN helps to improve performance, especially in terms 
of objectiveness and language generation. In general, this 
information considers interactions between anomalies in the 
image. However, it still lacks precise localization accuracy. See 
Figure 10B.

• The use of independent LSTM modules for the region and 
context features, respectively, and their subsequent fusion 
helps to improve the localization of bounding boxes. However, 
it lacks precision in that it generates wrong sentences and 
sometimes “Unknown” words that are not included in 
the vocabulary. We believe that this is because there is no 
relationship between the bounding boxes location and the 
words in the sentences. See Figure 10C.

We further show in Figure 10D some example results of our 
proposed complete model which includes all the components 
mentioned above. This model generates a more precise 
description and localization of the bounding boxes, which in 
fact may be a consequence of matching the language generator 
with the location of bounding boxes. Each region of the image 
is associated with the sentences and keywords. We also show the 
capabilities of the system to generate a general representation 
of the scene using an abstract description. To this end, we have 

FiGUre 8 | Anomalies are recognized from the region features detected on the given image and their descriptions. We use global and local information to define the 
anomalies, as well as other attributes, patterns, and context that provide more information about the scene.
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taken the information provided by the last convolutional layer of 
the CNN and use it as the input of the LSTM. With this model, 
we show that the output information is easier to understand and 
represents the real state of the plant.

Ablation Studies
Performance of the Loss Function
To understand which functions are critical for the detection and 
description performances, we analyzed the training results using 
different combinations of losses. The loss functions are described 
in Training Section. The results are summarized below.

The complete model is trained end-to-end using the loss 
function mentioned in Equation 6. It includes a specific 
description loss Lspec abstract description loss Labs detection 
loss Ldet and bounding box regression loss Lreg To analyze the 
performance of these losses, we started by looking at the training 
results using the following combination of losses: 1) Captioning 
loss, 2) Bounding box regression + Captioning losses, 3) 
Bounding box regression + Objectness losses, 4) Complete 
model using all losses (Equation 6).

Figure 11 shows the training curves for the aforementioned 
cases. Analyzing the results, reveal the importance of both main 
parts of the model, such as anomalies detection and description. 
We trained the system using the combinations mentioned 
above and found that training the system using independent 

combinations of the losses, generalize worse than combining 
all losses in the final function. This means that sacrificing some 
information while training can generally affect the final results in 
two ways, either in the detector or the language generator. More 
surprising is that training the model with only the captioning 
loss (Figures 11A–B) can generate an appropriate description 
but suffers from localization capabilities. On the other hand, 
training the model with only the bounding box and objectness 
losses (Figure 11C) can generally localize the anomalies 
but lacks description capabilities such it generates wrong 
descriptions. In contrast, using a combination of all losses, 
the system shows a higher score and stability during training. 
This result is implicitly demonstrating that the  efficiency of 
the language generator widely depends on the efficiency of the 
detector to localize the anomalies. Much of the representation 
power comes from the detector which provides an objective 
localization of the anomalies which are used as input to the 
language generator. These findings suggest potential benefits 
of the end-to-end training and the capabilities of each part of  
the system.

Intersection Over Union Threshold on the Detector
We further analyzed the results from the detector and its 
capabilities to identify regions that contain anomalies. We 
evaluated the performance of the system using different 
threshold values from 10 to 90% IoU. Previously, an IoU of 50% 

FiGUre 9 | Mean Average Precision (mAP) of our proposed system and its components. Note that our complete model achieves the highest mAP while showing 
more stability during training.
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has been used to evaluate the performance in object detection 
(Fuentes et al., 2017b). However, in this experiment, our goal was 
to determine the proper value that fits our approach. We aimed 

to understand the number of regions necessary for the system 
to generate accurate results. In average a number of 120 regions 
per image obtained by using an IoU of 30%, generates the best 

FiGUre 10 | A representation of the qualitative result of the recognition and description of plant anomalies generated by our proposed system. Each row represents the 
components added to improve the localization and language generation performances. Moreover, we show the specific descriptions (A–D) of the regions that contain 
anomalies, and the general abstract description of the scene (e). (A) Simple model without context features. (B) Model with contextual information. (c) Region-context 
late fusion. (D) Complete which includes all components. Our proposed approach generates more detailed and realistic description of the anomalies that affect plants.
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performance of 92.5% mAP, as shown in Figure 12A–B. We 
determined this value by varying the threshold in the detector 
and evaluating the number of regions that it generates. Based on 
this fact, we argue that the performance may be also conditioned 
to the number of true positives and false positives generated 
using different IoUs. A representation of the number of regions 
generated by the detector using different thresholds can be seen 
in Figure 12A.

To support the aforementioned, we further extend this analysis 
to determine the effect on the number of regions when training 
the system using a combination of losses as in the previous 
section. To that effect, we fix the threshold value to 0.3 and train 
the system to evaluate two specific cases: a) Using the bounding 
box and objectness losses. b) Using all losses. As shown in Figure 
12B, in both cases, the detector generates about 120 regions per 
image on average. This, in fact, demonstrates the capabilities of 

FiGUre 11 | Training curves to evaluate the capabilities of the loss function. Each row represents the curves of different combination losses included in the general 
framework. (A) Captioning loss. (B) Bounding box regression loss + captioning loss. (c) Bounding box regression loss + objectness loss. (D) Model with all losses. Note 
the system which includes all losses shows better performance while training. Middle means the evaluation at middle layers and End means at the end of the network.
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FiGUre 12 | Performance of the detector and language generator. First, we present the number of regions detected by the system under different conditions.  
(A) Using different threshold values. (B) With different loss functions. Second, we present a comparison between localization precision and language accuracy.  
(c) Localization precision scores generated by the regions detector. (D) Language accuracy scores generated by the LSTM. Each value represents the score 
generated using different combinations of loss functions at various threshold values. Note that the system performs better when all losses are used such as the 
case in R30 (3o% IoU threshold). (e) Distribution of the precision scores between {0,1} obtained by the detector using different combination of losses. Note that the 
detector generates a better recognition rate when using all losses, as shown in the probabilities closest to 1.
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the detector to localize anomalies that are used as input of the 
language generator.

Localization Precision vs Language Accuracy
To support the results of the previous section, we evaluated 
independently the performance of the localization precision 
and language accuracy. In Figures 12C–D, we show the detailed 
results of the localization precision (Figure 12C), and language 
accuracy scores (Figure 12D). We measured the final results 
independently in terms of the detection scores and language 
scores. Although the detector generates satisfactory results, the 
problem appears when using a combination of some losses. In 
that case, the mAP can be affected. Using an IoU of 0.3 and all 
losses to train the system end-to-end, it achieves a detection score 
of 92.5% and a description score of 92.57%, which in fact, is the 
best result among the other cases. Certainly, the precision score 
can be affected using higher threshold values, but in general, 
using all losses to train the system helps to maintain reasonable 
performance. Table 2 shows the mAP scores of the evaluated 
cases.

To give a sense of the precision, the distribution of the precision 
scores of the regions generated by the system is also presented 
in Figure 12E. This representation shows the probability of 
regions between {0,1}. We showed that a combination of all losses 
achieved a higher number of regions with higher probability, 
which is significantly ahead of the other cases.

cOncLUSiOn
In this paper, we introduced an efficient end-to-end diagnostic 
system that automatically recognizes plant anomalies along 
with their location in the image, and allows to generate more 
detailed information about their symptoms and interactions 
with the scene. It uses an image as input and generates a 
diagnostic result shown as a set of bounding boxes and glocal 
descriptions as output. Our system consists of two main parts, 
first, a detector is trained to obtain a set of region features 
that contain anomalies of the plants using a Region-based 
Deep Neural Network based on a FPN architecture, and 
then a language generator takes the features of the detector 
as input and generates descriptive sentences of the symptoms 
using Long-Short Term Memory (LSTM). Our loss metric 
allows the system to be trained end-to-end from the object 
detector to the language generator. We also demonstrated 
that the use of context information and fusion techniques 
provide a substantial improvement in the localization and 
description parts while making the training process more 

stable. For the purpose of this work, we created a new dataset 
called Tomato Plant Anomalies Description Dataset, that 
specifically includes three types of information: bounding 
box coordinates of the anomalies, detailed description of the 
anomalies within the regions and, abstract description of 
the scene. In general, our experimental results showed that, 
compared to previous diseases detection systems, our work 
provides more objective information of the anomalies. It does 
not only locate the anomalies in the images but also describes 
in detail the symptoms of those anomalies using sentences 
that are easier to be interpreted by the users. In addition, 
an objective evaluation may also allow users to understand 
the relationships between pathologies and their evolution 
throughout their stage of infection, location in the plant, 
symptoms, etc. The model estimates visual and semantic 
correspondences for all the evaluated cases, even for complex 
objects such as miners, leaf mold located in the front and 
backside of the leaves, plague affecting different parts of the 
plant, and cases with more than one disease affecting the leaves. 
The generated sentences are clear and grammatically correct 
while providing concise information about the pathogens that 
affect the tomato plants. We presented a cost-efficient tool 
that provides farmers with a technology that facilitates proper 
handling of crops. Furthermore, we hope that this approach 
will serve as a reference guide to facilitate future research in 
the area of precision agriculture, as well as in the design of 
more efficient monitoring systems to control plant anomalies, 
as the application could be extended to other crops.
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TABLe 2 | System performance with different combination of losses.

Loss Detection mAP Description mAP

All 92.5 92.57
Captioning 4.32 4.26
Bbox reg + Captioning 4.87 4.78
Bbox reg + Objectness 88.09 10.64
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