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Nitrogen use efficiency (NUE) in crops is generally low, with more than 60% of applied 
nitrogen (N) being lost to the environment, which increases production costs and affects 
ecosystems and human habitats. To overcome these issues, the breeding of crop 
varieties with improved NUE is needed, requiring efficient phenotyping methods along 
with molecular and genetic approaches. To develop an effective phenotypic screening 
method, experiments on wheat varieties under various N levels were conducted in the 
automated phenotyping platform at Plant Phenomics Victoria, Horsham. The results from 
the initial experiment showed that two relative N levels—5 mM and 20 mM, designated 
as low and optimum N, respectively—were ideal to screen a diverse range of wheat 
germplasm for NUE on the automated imaging phenotyping platform. In the second 
experiment, estimated plant parameters such as shoot biomass and top-view area, 
derived from digital images, showed high correlations with phenotypic traits such as 
shoot biomass and leaf area seven weeks after sowing, indicating that they could be used 
as surrogate measures of the latter. Plant growth analysis confirmed that the estimated 
plant parameters from the vegetative linear growth phase determined by the “broken-
stick” model could effectively differentiate the performance of wheat varieties for NUE. 
Based on this study, vegetative phenotypic screens should focus on selecting wheat 
varieties under low N conditions, which were highly correlated with biomass and grain 
yield at harvest. Analysis indicated a relationship between controlled and field conditions 
for the same varieties, suggesting that greenhouse screens could be used to prioritise a 
higher value germplasm for subsequent field studies. Overall, our results showed that this 
phenotypic screening method is highly applicable and can be applied for the identification 
of N-efficient wheat germplasm at the vegetative growth phase.

Keywords: high-throughput phenotyping, digital imaging, controlled environment, plant growth analysis, broken-
stick model
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INTRODUcTION
Over the past five decades, there has been a significant increase 
in global food production resulting, in part, from the major 
contribution of substantial nitrogen (N) fertilizer application. 
Nevertheless, food production must be increased to sufficiently 
meet the projected world population of 9 billion people by 
2050 (Godfray et al., 2010). However, with current agricultural 
practices this means that more than 240 million metric tons 
of additional N fertilizer would be utilized (Good et al., 2004). 
Approximately 110 million metric tons of synthetic N fertilizers 
are used annually for farming and food crop production globally 
(International Fertilizer Industry Association, 2013). However, 
nitrogen use efficiency (NUE) is generally low, with only 40% of 
applied N being taken up by the crop plants, while the remainder 
is lost to the environment resulting in increased production costs 
and environmental pollution (Good and Beatty, 2011; Nguyen 
et  al., 2015), as well as affecting human health (Ahmed et al., 
2017). Annually, excessive N application is estimated to cost up 
to €320 billion of damage to the environment in Europe (Brink 
et al., 2011). Proper N fertilization management practices are 
expected to reduce N fertilizer application while maintaining 
stable crop production (Good et al., 2004; Good and Beatty, 
2011). To achieve this, improving NUE in crops is one of the most 
effective ways to ensure current crop yields can be maintained 
while N supply is reduced, or increasing crop yields with an 
optimum N input (Cormier et al., 2013).

NUE is a complex concept, but can be defined as the function 
of two varying components: N uptake efficiency (NUpE)—
the plant’s ability to obtain N from the soil—and N utilisation 
efficiency (NUtE)—the plant’s ability to assimilate and remobilize 
absorbed N into the grain (Moll et al., 1982; Craswell and Godwin, 
1984; Xu et al., 2012). In simplistic terms, NUE is determined by 
a plant’s ability to utilise supplied N into biomass and grain yield, 
and can be calculated as the ratio of biomass or grain yield to 
the amount of N inputs (Nguyen et al., 2016; Hawkesford, 2017). 
Multiple approaches have been proposed for NUE improvement 
in crops that include applications of advanced agronomical 
practices, genetic improvement through molecular breeding, and 
genetic engineering (Hirel et al., 2007; Hawkesford, 2014; Beatty 
and Good, 2018; Nguyen and Kant, 2018).

Among these, molecular breeding for N-efficient varieties 
is considered the most effective method to lift NUE in wheat 
(Cormier et al., 2016), although this approach depends on the 
availability of reliable and accurate molecular markers linked 
to N-efficient genes for marker assisted and genomic selection 
(Cabrera-Bosquet et al., 2012; Garnett et al., 2015; Han et al., 
2015). However, molecular breeding for N-efficient varieties 
is still a daunting task, given that NUE is a polygenic trait 
with complex interactions, and associated genes are heavily 
influenced by environmental conditions such as varying soil N, 
soil type, rainfall pattern and soil water availability (Cormier et 
al., 2013; Lammerts Van Bueren and Struik, 2017; Nguyen et al., 
2017). A large volume of high-quality phenotypic data is needed 
to dissect NUE’s genetic influences into smaller manageable and 
measurable components, and to derive reliable and accurate 
molecular markers or genomic estimated breeding values (Araus 

and Cairns, 2014; Nadeem et al., 2018). Thus, molecular breeding 
goals for N-efficient varieties rely heavily on the deployment of 
effective phenotyping methods (Araus and Kefauver, 2018; Araus 
et al., 2018). However, the absence of a robust, high-throughput, 
and reliable phenotyping method that is powerful enough to 
break down genetic components is currently limiting breeders’ 
efforts to make a breakthrough in the genetic improvement 
of NUE traits (Nguyen and Kant, 2018). Effective screening 
methods for identifying N-efficient germplasm that performs 
consistently in the greenhouse and field conditions are required 
to facilitate breeding outcomes (Garnett et al., 2015; Nguyen 
and Kant, 2018). High-throughput phenotyping methods which 
can effectively differentiate the performance of germplasm at 
early growth stages and predict their performance at harvest are 
urgently required (Sharma and Bali, 2018).

Over the last two decades, proximal sensing technology 
has become one of the most promising high-throughput 
phenotyping approaches that can provide key non-destructive 
support in measuring performance and predicting crop yield 
in controlled and field environments (Fiorani and Schurr, 
2013; Araus and Cairns, 2014; Araus and Kefauver, 2018). This 
technology was fundamentally developed on the principle that 
the light reflectance from the interaction between the natural 
light spectrum with plant components could provide accurate 
information on the morphological and physiological status of 
plants (Homolová et al., 2013; Fahlgren et al., 2015). The light 
reflectance captured by specially designed optical instruments 
can then be used to generate vegetation indices (VIs) and digital 
plant objects. Once validated, these derived VIs or digital plant 
objects can be used as proxies of various plant traits, such as shoot 
biomass, leaf area or N content, to compare the performance 
of individual varieties (Nguyen and Kant, 2018). For instance, 
the most common vegetation index i.e. normalised difference 
vegetation index (NDVI), is often used to assess a plant response 
to varying N supplies (Nguyen et al., 2016). Moreover, the 
application of optical devices such as Red-Green-Blue (RGB) 
digital cameras has also been used for measuring crop growth, 
phenology and yield components, as well as the development 
of VIs (Casadesús et al., 2007; Casadesús and Villegas, 2014; 
Nguyen et al., 2018). Unlike conventional spectral indices, RGB 
indices are not affected at long wavelengths by elements such 
as crop architecture and soil cover, and they were shown to 
outperform the conventional spectral indices in measuring crop 
growth and N use to some extent (Araus and Kefauver, 2018). 
There have been a few reports on the application of automated 
RGB imaging platforms to study phenotypic responses of grass 
species (Poiré et al., 2014), and sorghum (Neilson et al., 2015; 
Berry et al., 2018) to N fertilizer under controlled environments. 
Recently, ground and aerial based RGB imaging has been 
successfully used to study NUE in wheat and maize under field 
conditions (Prey et  al., 2018; Buchaillot et al., 2019). However, 
a robust method using imaging technology for screening of 
crop germplasm for NUE under controlled conditions is still to 
be reported. To the best of our knowledge, this is the first study 
describing a vegetative phenotypic screening method for NUE 
improvement in wheat using automated imaging phenotyping 
technology under controlled environments.
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The aim of this work was to develop a high-throughput 
and high-resolution phenotyping protocol that can effectively 
screen wheat varieties at the vegetative growth phase for NUE 
improvement in controlled environments, and then to compare 
the performance of wheat varieties under controlled and field 
conditions with respect to NUE. The perspectives of applying 
sensing technologies for phenotypic screens of wheat germplasm 
for NUE under field conditions are also discussed.

MATERIAlS AND METhODS

Plant Materials and Growth conditions
Fifteen genotypically diverse wheat (Triticum aestivum L.) 
varieties used in our previous field trial (Nguyen et al., 2016), 
where they were shown to be differentially responsive to N, were 
studied in two separate experiments at Plant Phenomics Victoria, 
Horsham, described in detail by Nguyen et al. (2018). Briefly, 
the automated phenotyping platform consists of a conveyor 
belt system, a watering and weighing station (Figure 1A), and 
an imaging chamber with a Scannalyzer 3D imaging system 
(LemnaTec GmbH, Aachen, Germany; Figure 1B).

In the first experiment, two varieties, Bobwhite and Chara, 
were used for the identification of appropriate low and optimal N 
levels for further screens. White plastic pots (200 mm diameter x 
190 mm deep, Garden City Plastics Pty Ltd, Victoria, Australia) 
were filled with 3.5 litres of cereal standard soil mix without 
added fertilizers (Biogro, South Australia, Australia). To ensure 
that each pot was filled with an equal amount of soil, pots were 
weighed prior to sowing. Three seeds were sown per pot on rolling 
benches and thinned to one plant at 3 leaf stage (~ 2 weeks old). 
To avoid water leaking, pots were placed on white saucers for 
the duration of the experiment. On a weekly or fortnightly basis, 
between 100 ml and 200 ml of nutrient solution, components 
listed in Supplementary Table 1, was supplied depending on the 
crop growth stages (vegetative or reproductive). Ferrous fertilizer 

(Fe3+) was supplied as Librel® Fe-LO (CW Pacific Specialties 
Pty Ltd, NSW, Australia) and phosphorus fertilizer (PO4

-3) was 
supplied as a phosphate buffer with pH 6. Six relative N levels 
using KNO3 as the sole N source were applied; 2 mM, 5 mM, 
10 mM, 15 mM, 20 mM, and 25 mM N. Water was supplied 
adequately and equally among pots to keep plants growing 
healthily. Due to some greenhouse conditions, we could not 
continue the experiment until crop maturity. However, the crop 
growth and canopy development were carefully observed and 
used as guidance for the second experiment.

In the second experiment, 15 wheat varieties were screened 
for their responsiveness to two N levels, 5 mM and 20 mM, 
designated as low and optimum N. Under our observation, the 
total amount of N supplied for these two levels was equivalent to 
147 mg and 588 mg N per pot, respectively, which were similar to 
the N levels supplied in the previous study by Malik et al. (2016). 
Pot preparation and plant growth management were conducted 
similarly to the first experiment at the Plant Phenomics Victoria, 
Horsham. Three weeks after sowing, pots were loaded and laid 
out on the conveyor belt system in a split-plot design with 15 
replicates per N treatment, where N was the main treatment 
and variety was the sub-treatment. The growth conditions in the 
greenhouse were 24°C during the day and 16°C during the night 
with a 12 h photoperiod. To keep plants upright for imaging, a 
cage was placed into each pot, which was painted blue so that its 
images could easily be segmented and removed as background 
noise during image analysis.

Wheat plants at both N treatments were divided into two sets. 
The first set of plants was harvested at 49 days after sowing (DAS) 
for the vegetative growth evaluation. The second set continued to 
grow until maturity and was harvested for grain yield and yield 
attributes assessment. Heading date was recorded as the day the 
first head in each pot completely emerged as described previously 
by Guedira et al. (2016). Physiological maturity date was recorded 
as the day when the lower glumes of spikes completely lost all the 
green colour.

FIGURE 1 | The automated system in Plant Phenomics Victoria, Horsham. (A) Pots laid out on conveyor system with a watering and weighing station. (B) Plants 
moving to imaging booth containing a side and a top RGB camera for image acquisition.
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RGB Image Acquisition and Analysis
Digital image capture and analysis were implemented following 
the procedure described previously by Nguyen et al. (2018). In 
brief, after loading plants on the automated system, they were 
imaged twice a week by the Scannalyzer 3D plant-to-sensor 
imaging unit which consists of two 28.8 megapixel RGB cameras 
(a side and a top camera), and model Prosilica GT6600C 
(Allied Vision Technologies, Stadtroda, Germany) (Figure 1B). 
Three colour images were acquired from 3 sides of the plant 
after consecutive rotations of 0, 120, 240 degrees, and a top-
view image of the plant was also acquired. Images taken were 
automatically recorded in the database server which is managed 
by LemnaBase software (LemnaTec GmbH, Aachen, Germany). 
Figure 2A illustrates a simplified image processing algorithm, 
containing key steps and devices of LemnaGrid software 
(LemnaTec GmbH, Aachen, Germany). To analyse the images, 
the region of interest consisting of whole plant parts in the raw 
images (Figure 2B, i) was separated from the background by 
Vessel Cofig Marker device. In subsequent steps, the noise was 
removed from the region of interest and purified by LabtoGrey 
Converter and Threshold devices (Figure 2A) and finally the 

digital plant objects were determined (Figure 2B, ii). This object 
was used to estimate morphological and physiological traits 
of the plant (the bright green objects, Figure 2B, iii). Table 2 
lists traits measured by digital plant objects and conventionally 
destructive methods.

Destructive Phenotyping
The first set of plants was destructively harvested at 49 DAS by 
cutting plants above the soil level in the pots. Whole plants were 
immediately weighed to determine fresh biomass (MB) per pot. 
All leaves from the plant were then detached from stems and 
used to determine leaf area (LA) using a Portable Area Meter, 
model LI-3050A (LI-COR Inc, Lincoln, Nebraska, USA).

The second set of plants was harvested at physiological 
maturity to determine yield and yield attributes as described in 
Table 1. All above ground parts of the plant were removed from 
pots and oven-dried at 65°C for 5 days. After the measurement 
of total dry biomass (DW), the spikes were separated from stems 
and counted to determine number of spikes per pot (SN), as well 
as number of grains per spike (GN), total grain yield (GY) and 
1000-grain weight (1000-GW).

FIGURE 2 | Image acquisition and analysis by the automated plant phenotyping system, Plant Phenomics Victoria, Horsham. Panel (A), a simplified image 
processing algorithm comprising key steps and devices of LemnaGrid software. Panel (B), i) a raw side-view image of a wheat plant cv. Bobwhite at 49 DAS; ii) the 
color classification and identification of corresponding object (the grey plant); iii) the processed image object (the bright green plant). Estimated shoot biomass is the 
pixel sum of highlighted green objects in processed images.
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Water Soluble carbohydrate Assay
Water soluble carbohydrate (WSC) concentration of plant shoots 
was determined by near-infrared reflectance (NIR) spectroscopy. 
The ground plant samples were measured using FOSS XDS 
Rapid Content Analyser (FOSS, Hillerød, Denmark). The WSC 
composition was predicted using the WINISI 4 NIR calibration 
with standard error of prediction of 1% and R2 of 0.98. The 
reference WSC method used for validating NIR data was adopted 
from Maharjan et al. (2018).

Shoot and Grain N concentration 
Measurement
The procedure for shoot and grain N concentration measurement 
was described previously by Nguyen et al. (2016). Briefly, a subset 
of samples was randomly collected from shoot dry biomass or 
grain samples and ground to fine powder by a grinder (Cyclotec; 
Foss, Hillerød, Denmark). Total N concentration in the shoot and 
grain samples were determined by NIR spectroscopy (Foss XDS 
Rapid Content Analyser) (AACC method 39-25) and calculated 
on a dry weight basis.

Nitrogen Use Efficiency
The NUE of wheat plant biomass and grain per pot was calculated 
according to the formula adapted from Crasswell and Godwin 
(1984) with modifications.

 NUE W Wb biomass N inputs=   /  (1)

 NUE W Wg grain N inputs=   /  (2)

where NUEb (1) and NUEg (2) are the nitrogen use efficiency 
of wheat plants per pot in regard to biomass and grain yield, 
respectively; Wbiomass and Wgrain are the weight (grams) of plant 
biomass and grain yield per pot at harvest, respectively; WN inputs 
is the amount (grams) of nitrogen inputs.

comparison of the Performance of Wheat 
Varieties Under Greenhouse and Field 
conditions
To compare the performance of 15 wheat varieties grown under 
greenhouse and field conditions, we utilized the published data 

set from our previous field trial (Nguyen et al., 2016). Harvest 
plant dry biomass and grain yield from this study were compared 
with the performance of the same wheat genotypes grown in the 
field trial.

Plant Growth Model and Statistical 
Analysis
Imaging-derived and manually measured data were initially 
checked for outliers by using GENSTAT statistical software 
version 18.0 statistical software (VSN International Ltd, Hemel 
Hempstead, UK). Two-way analysis of variance (ANOVA) 
was performed to determine varietal effects by using the same 
software. The procedure for the selection of the best fit nonlinear 
regression plant growth model based on the estimated biomass 
and statistical analyses was adopted from Nguyen et al. (2018). 
In brief, the biomass accumulation of wheat plants over the 
growth period follows a sigmoidal growth pattern (Malhi et al., 
2006; Archontoulis and Miguez, 2015) and the “broken-stick” 
statistical model fitting two straight lines using GENSTAT was 
used to identify the linear growth phase of wheat plants. Linear 
regressions and Pearson’s correlation coefficient (r) were used 
to determine the correlations between estimated and measured 
plant traits by using R statistical software (version R-3.5.0) (R 
Core Team, 2017).

RESUlTS

Wheat Varietal Response to Various N 
Supplies
The initial experiment screened six N concentrations, 2 mM; 5 
mM; 10 mM; 15 mM; 20 mM and 25 mM on two bread wheat 
cultivars, Bobwhite and Chara. Overall, data showed that 
increased N concentrations resulted in a larger canopy and higher 
biomass accumulation (Figure 3). Plants did not grow well at 2 
mM N, whereas they appeared over grown at 25 mM N with very 
large canopies. Leaf overlap due to large canopies can reduce 
the correlation of the digital image to actual biomass, especially 
when leaf area index > 3 (Serrano et al., 2000). Therefore, the two 
N concentrations, 5 mM and 20 mM were chosen and designated 
as low and optimum N levels, for subsequent screens of wheat 
genotypes for NUE traits.

In the second experiment, 15 genetically diverse wheat 
cultivars including Bobwhite and Chara were grown under the 

TABlE 1 | Wheat traits measured by digital RGB imaging and destructive methods.

Traits Abbreviation Unit Description

Estimated shoot area EB kilopixel (kPix) The pixel sums of three side-views and top-view image of the plant
Top-view area TVA kPix The pixel sums of the top-view image
Measured shoot bimass MB gram (g) Destructive biomass harvest at 49 DAS
Measured leaf area LA cm2 Total leaf area per plant per pot
1000-grain weight 1000-GW gram (g) Manually count and weigh 1000 grains
Number of spikes SN spike Manually count the number of spikes per pot
Number of grain per spike GN grain Manually count the number of grain per spike
Dry biomass DW gram (g) Determined by manually weighing total dry biomass per pot
Grain yield GY gram (g) Determined by manually weighing total seed yield per pot
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low and optimum N levels. Overall, all varieties showed positive 
responses to the increased N supply, resulting in longer growth 
duration, higher DW, GY, shoot and grain N concentration 
(Supplementary Figure 1 and Table 2). Data showed that wheat 
varieties responded differentially to the supplied N leading to a 
significant N and variety interaction (Table 2). Varieties such as 
Yitpi, Chara and Alsen had high DW accumulation, in contrast to 
Westonia, Kennedy and Drysdale, which accumulated less DW 
at both N levels (Table 2). Grain yield showed a highly positive 
association with DW accumulation at both N levels (Table 2). 
Greater DW accumulators such as Yitpi, Chara, and Alsen also 
had higher GY than Westonia, Kennedy and Drysdale (Table 2). 
However, the shoot and grain N concentrations of wheat varieties 
showed a highly negative trend with DW accumulation, GY and 
WSC at both N levels. Varieties with the lowest DW, GY, and 
WSC such as Kennedy and Drysdale had shoot and grain N 
concentration higher than Yitpi, Chara and Gladius at both N 
levels (Table 2). WSC concentrations of plants at maturity were 
higher under optimum N than low N for all the varieties (Table 2). 
Interestingly, WSC concentrations corresponded more with DW 
and GY at low N than optimum N (Table 2). On average, wheat 
varieties at optimum N level had higher SN, but slightly lower 
harvest index than those at the low N level (Table 3). However, 
the 1000-GW and GN were not changed significantly (Table 3).

The boxplots showed significant variations in NUE of biomass 
(NUEb) and grain (NUEg) per pot between varieties and N 
levels, confirming a significant interaction between these two 
factors (Figure 4). Varieties such as Alsen, Chara and Yitpi had 
high NUEs compared to Drysdale, Kennedy and Volcani DDI. 
Within N levels, 11 wheat varieties had significant variations in 
NUEb (Figure 4A), while only 3 varieties i.e. Alsen, Gladius and 
Excalibur were significantly different in NUEg (Figure 4B). This 
suggests that N treatments resulted in a more stable NUE for 
grain than biomass.

Validation of Imaging Phenotyping
To validate the application of the image-based phenotyping 
technology used to study the responses of wheat varieties 
to N supplies, we determined the association between the 
morphological and physiological parameters of 15 wheat varieties 
derived from digital imaging and conventionally destructive 
sampling methods (Figure 5). Manually harvested samples were 
collected at 49 DAS and used to measure MB and LA. The EB 
and TVA were derived from digital RGB images collected the 
night before the destructive harvest. Results from the correlation 
analysis at low N level showed that EB and TVA were highly 
correlated with important NUE traits such as measured fresh 

FIGURE 3 | Wheat varieties Bobwhite (A) and Chara (B) grown under six levels N levels: 2 mM, 5 mM, 10 mM, 15 mM, 20 mM, and 25 mM. Photos taken at 90 DAS.
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MB and LA for all 15 wheat varieties with statistically significant 
coefficients of 0.94 and 0.82, respectively (Figure 5A). Likewise, 
the correlation analysis at optimum N level showed similar results; 
EB and TVA were also highly correlated with these NUE traits 
with correlation coefficients of 0.93 and 0.90, respectively (Figure 
5B). The results also showed that there were intercorrelations 
within estimated and measured NUE traits at both N levels. For 
instance, EB was highly correlated with TVA and MB was highly 
correlated with LA (r ≥ 0.89, Figure 5). Similarly, EB was highly 
correlated with LA and TVA was highly correlated with MB 
(r ≥ 0.84, Figure 5). This suggests that these traits can be used 
interchangeably for an effective NUE assessment.

Association Between Vegetative 
Performance and harvest of Wheat 
Varieties
Biomass accumulation of wheat and other grain crops over the 
growth period follow a sigmoidal growth pattern (Malhi et al., 
2006; Archontoulis and Miguez, 2015; Nguyen et al., 2018). In 
the current study, our data showed that biomass accumulation 
(as indicated by EB) of wheat varieties under both N levels 
followed a sigmoidal growth pattern (Figures 6A, B). We 
determined the breakpoints where varieties commence or 
complete their linear growth phase using the “broken-stick” 
model (Table 4). Breakpoints are the reference points where each 
linear regression was “broken”, or the slope changed, given as X, 
Y coordinates, with X being the DAS and Y being the EB. The 
broken-stick model fitted well with the EB of wheat varieties, as 
indicated by high values of adjusted coefficients of determination 
(adjusted R2 > 0.99; Table 4). Regression slopes before (slope 1) 
and after (slope 2) the breakpoint indicate the commencement 
or completion of the linear growth phase, while the exact values 
can indicate the number of days spent in either the linear or lag 
growth phases during the imaging period (Table 4). At the low N 
level, ten wheat varieties, i.e. Alsen, Baxter, Bobwhite, Drysdale, 
Excalibur, Kennedy, Kukri, RAC875, Volcani DDI and Westonia, 
commenced their linear growth phase early, with the breakpoint 
identified in Table 4 being at the end of linear growth rather 
than the start, seen by a higher slope 1 and lower slope 2. Out 
of these, Drysdale completed its linear growth phase the earliest 
at 66.3 DAS (Table 4). Meanwhile, the remaining five varieties 
commenced their linear growth phase later, with 48.7 DAS being 
the latest time point when one of the varieties Yitpi commenced 
linear growth (Table 4). Thus, the period between 48–66 DAS 
is the duration when all wheat varieties were in their linear TA
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TABlE 3 | Mean value of yield components of 15 wheat varieties. GW, grain 
weight; SN, number of spikes per pot; GN, number of grains per spike; CV, 
coefficient of variation; n.s., not significant difference (p > 0.05).

component low N Optimum N l.s.d. 
(p = 0.05)

cV% p

1000-GW (g) 41.35 44.26 3.11 9.7 ns
SN 4.21 15.38 1.83 25 < 0.001
GN 34.8 37.88 3.84 14.1 ns
Harvest index 49.41 46.36 3.02 8.4 0.05
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FIGURE 4 | Boxplots of nitrogen use efficiencies (NUEs) of 15 wheat varieties at low and optimum N levels. (A) NUEb is nitrogen use efficiency calculated by 
harvested biomass (equation 1); (B) NUEg is nitrogen use efficiency calculated by grain yield (equation 2). The asterisks indicate the statistically significant levels of 
ANOVA, comparing the NUE of a variety within N levels (* p ≤ 0.05; ** p ≤ 0.01).

FIGURE 5 | Validation of the relationships between estimated and measured NUE traits of 15 wheat varieties. Panels A) and B) represent the correlation between 
estimated biomass and top-view area with measured fresh shoot biomass and leaf area collected at 49 DAS at low and optimum N supplies, respectively. In each 
panel, the coloured windows are the histograms of individual traits. The windows above and below the diagonal of the coloured windows are Pearson’s correlation 
coefficients (r) and bivariate scatter plots with trend lines, respectively. L, low N; O, optimum N. EB, estimated biomass; TVA, top-view area, MB, measured biomass; 
LA, leaf area. The asterisks are the statistically significant levels (*** p ≤ 0.001). Sample number = 90.
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growth phase under low N (Table 4). At the optimum N level, 
all varieties commenced their linear growth phase later between 
36.1–52.4 DAS, compared to the same varieties at the low N level. 
However, like the results seen at low N level, Drysdale once again 
completed its linear growth phase earlier than all other varieties, 
at 62 DAS (Table 4). Therefore, the period between 52–62 DAS is 
when all wheat varieties were in their linear growth phase under 
optimum N (Table 4).

To validate whether EB during the linear growth phase can be 
used to evaluate the performance of wheat varieties for improved 
NUE, we compared the EB of the second plant set captured at 
54 DAS against fresh shoot biomass and leaf area of the first 
plant set harvested 49 DAS for all wheat varieties (Table 5). The 
fifteen wheat varieties are ranked in descending order of MB 
accumulation at the low N level, where the dark green cells denote 
the higher values and in contrast the dark red cells represent the 

lower values (Table 5). Under low N, varieties such as Bobwhite 
and Yitpi accumulated higher MB in contrast to Drysdale and 
Volcani DDI (Table 5). However, Pastor and Alsen showed a 
stronger response to optimum N. Interestingly, Excalibur showed 
strong responses to N at both levels. Data also showed that EB 
and TVA were well correlated with MB and LA at both N levels 
for all varieties, showed by similar ranking patterns across the 
three traits (Table 5).

To test if the estimated parameters at the vegetative stage 
could predict biomass accumulation and grain yield at harvest, 
we determined the association between EB on different DAS with 
final DW and GY (Figure 7). The heat map shows increasing 
positive correlations between EB and DW or GY at low N level 
from 30 DAS onwards, with the correlation peaking at 80 DAS 
coinciding with the start of the flowering period (Figure 7 and 
Supplementary Figure 1). In contrast, the positive correlation 

FIGURE 6 | Dynamic growth of wheat genotypes under low and optimum N levels. Graph A) and B) represent biomass accumulation over the growth period 
for 15 wheat genotypes at low and optimum N level, respectively. EB, estimated biomass; DAS, days after sowing. Specific marker shapes and colors indicate 
particular genotypes.

TABlE 4 | Regression parameters as determined by the split-line linear regression model of 15 wheat genotypes*. X is DAS and Y is EB, which represent the 
coordinates of the breakpoint where the linear regression was split or broken; slope 1 and slope 2, slopes of the regression before and after the breakpoint, respectively.

Variety low N Optimum N

Breakpoint X Breakpoint Y Slope 1 Slope 2 Breakpoint X Breakpoint Y Slope 1 Slope 2

Alsen 68.7 480.8 11.9 5.9 46.2 570.9 28.1 49.8
Baxter 71.2 413.4 10.0 5.4 43.6 454.0 26.0 41.8
Bobwhite 68.1 393.6 10.0 4.1 37.8 242.0 18.1 33.8
Chara 45.1 113.7 6.0 12.3 52.4 578.7 22.1 50.2
Drysdale 66.3 247.4 6.0 2.8 62.0 939.1 25.9 16.5
Excalibur 69.1 554.5 13.6 6.9 52.3 1024.0 37.6 53.7
Gladius 42.5 97.3 5.6 9.5 49.9 514.5 22.3 36.5
Kennedy 67.8 268.9 6.7 3.7 37.7 241.2 17.6 30.4
Kukri 69.3 419.1 10.4 4.6 36.1 273.0 22.6 34.3
Pastor 38.2 77.3 5.4 11.2 46.4 501.0 24.8 54.2
RAC875 71.8 374.5 8.8 4.8 45.7 457.3 22.8 33.8
Volcani DDI 68.6 384.4 8.3 5.4 39.2 232.7 15.5 27.6
Westonia 66.5 326.1 8.1 3.7 45.5 408.1 21.2 31.2
Wyalkatchem 38.6 81.6 5.7 10.4 51.0 619.7 24.7 39.1
Yitpi 48.7 170.4 7.9 16.4 51.9 620.7 25.5 57.4

*Adjusted R2 > 99%.
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between these parameters at optimum N only started at 48 DAS, 
also peaking at 80 DAS, even though the correlations were much 
lower compared to those under low N (Figure 7). Data also 
showed that EB observed at 60 DAS could possibly explain 50% 
and 70% of the variations in DW and GY at low N, respectively. 
Whereas, these figures were only approximately 18% and 14% at 
optimum N (Figure 7).

comparative Performance of Wheat 
Varieties Under controlled and Field 
conditions
To determine if better performing varieties in the greenhouse 
perform well in the field, we analysed the correlation between 

DW and GY of wheat plants grown under greenhouse and 
field conditions. We compared the performance of the 15 
wheat varieties from this greenhouse trial to the same varieties 
grown in the field at Horsham, Victoria, Australia in 2013 
(Nguyen et al., 2016). There were several correlations between 
DW and GY in the greenhouse and the field, with some trends 
identifiable (Supplementary Table 2). These results showed 
low to moderate positive correlation for DW, especially the 
DW of wheat plants in the greenhouse at both N levels was 
significantly correlated with that of field plants at 80 N, the 
N level gives optimum NUE (Supplementary Table 2). The 
GY at low N in the greenhouse and the three field N levels 
also demonstrated a positive correlation trend with each other 
(Supplementary Table 2) (Nguyen et al., 2016).

TABlE 5 | Comparative performance of 15 wheat varieties at vegetative stage. Data are means of fresh shoot biomass, leaf area at 49 DAS (n = 6) and estimated 
biomass, top-view area at 54 DAS (n = 9) under low and optimum N levels. Varieties are ranked in descending order of fresh biomass accumulation at low N level. In 
a column: dark green cells, the highest values; dark red cells, the lowest values. MB, measured fresh shoot biomass; LA, measured leaf area; EB, estimated shoot 
biomass; TVA, top-view area; n = sample number.

Variety MB (g pot-1) lA (cm
2
 pot

-1
) EB (kPix pot

-1
) TVA (kPix pot

-1
)

low N Optimum N low N Optimum N low N Optimum N low N Optimum N

Bobwhite 8.33 25.52 191.01 699.92 245.86 759.47 57.22 215.81
Excalibur 8.04 36.63 238.46 1162.61 347.36 1059.88 74.14 296.44
Yitpi 7.66 25.94 217.56 693.79 254.35 751.63 48.70 166.91
Alsen 7.66 31.61 214.09 906.27 295.29 921.56 66.91 249.65
Kukri 7.63 29.21 191.82 768.57 251.00 859.99 51.20 223.55
RAC875 7.49 26.79 178.45 636.31 207.91 699.55 39.89 180.93
Wyalkatchem 6.67 28.38 190.34 792.61 242.24 711.04 46.49 169.47
Chara 6.59 21.97 174.86 599.51 218.43 663.29 39.50 153.32
Baxter 6.29 25.97 173.00 784.56 233.44 840.74 49.58 218.80
Pastor 6.10 32.06 157.68 831.87 251.98 849.85 51.37 224.07
Kennedy 6.00 27.37 136.43 723.73 170.16 721.79 33.02 174.04
Gladius 5.87 23.14 142.66 587.06 199.04 647.07 39.25 163.88
Westonia 5.62 24.99 125.66 569.03 221.09 656.73 45.03 162.15
Volcani DDI 5.49 19.68 123.79 413.69 199.42 614.73 43.58 163.12
Drysdale 5.01 25.74 96.90 635.07 173.51 712.40 33.09 181.50

ANOVA N V N x V N V N x V N V N x V N V N x V
s.e.d 0.083 1.052 1.440 4.76 40.27 52.22 13.30 25.00 36.65 5.59 7.15 11.25
p <0.001 <0.001 0.003 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
l.s.d (p = 0.05) 4.17 4.13 113.05 116.66 73.42 70.82 22.75 20.25

FIGURE 7 | The relationship between estimated shoot biomass at different growth stages with harvest dry biomass and grain yield. The numbers inside the circle 
are correlation coefficients (r). Colour and circle size indicate r magnitude. DW, plant dry biomass per pot; GY, grain yield per pot. The asterisks are the statistically 
significant levels (* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001).
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DIScUSSION

An Advanced Phenotypic Screening 
Method for NUE Improvement in Wheat 
Under controlled Environments
This work describes the development of a robust, high-
throughput, reliable plant phenotyping method using 
automated digital imaging technology, that can be used to 
effectively screen a diverse range of wheat germplasm for 
NUE improvement at the vegetative stage in a controlled 
environment. The development of N-efficient wheat varieties 
through molecular breeding will undoubtedly contribute 
to the more effective use of N fertilizer, which is currently 
causing significant production and environmental costs 
(Cormier et al., 2016). However, NUE is a multi-genic trait 
and the lack of reliable phenotyping methods is currently a rate 
determining factor in NUE genetic improvement programs. 
These methods will aid in effectively screening breeding 
populations, phenotyping training populations for genomic 
selection, and evaluating breeding lines (Cabrera‐Bosquet 
et al., 2012; Araus et al., 2018; Campbell et al., 2018). Thus, the 
availability of efficient phenotyping methods that are capable 
of characterising and quantifying multiple NUE traits, will 
provide useful tools to wheat breeders. In the present study, 
our results have demonstrated an applicable and reproducible 
wheat growth assessment system in a controlled environment 
for NUE studies. The results also revealed corresponding 
performance between wheat varieties screened by the digital 
RGB imaging unit of automated plant phenotyping platform, 
compared to field conditions for NUE traits.

An optimal plant growth system that can precisely apply and 
manipulate nutrient supplies in a timely way will play an important 
role in N studies. Several potting systems using pre-fertilized 
mixes have been reported to screen wheat for improved NUE in 
greenhouse studies (Tian et al., 2015; Malik et al., 2016; Veres 
et al., 2017). Although effective, these systems pose challenges 
such as the ability to timely adjust the amount of N supply for a 
range of varieties with unknown and diverse N responsiveness. 
The gradually supplied liquid fertilizer method used here, has 
advantages over pre-fertilized potting mixes, especially when 
used in conjunction with an automated watering system, which 
can also accurately dispense a set volume of fertilizer solution 
(Nguyen et al., 2018). Since water highly interacts with N 
availability in the growth media (Nguyen et al., 2017), this system 
will ensure an adequate supply of water for plants so that NUtE 
is not affected by either a shortage or excess of water, and will 
help reduce the time and labour costs associated with manual 
watering. More importantly, it was demonstrated that the current 
screening method could effectively produce significant variations 
in NUE traits (NUEb and NUEg) among wheat varieties, which 
will facilitate selection in screening processes.

Vegetative Screens by RGB Imaging for 
N-Efficient Wheat Genotypes
Early vigour, biomass accumulation, grain yield and grain 
protein are key criteria for the selection of N-efficient wheat 

materials (Nguyen and Kant, 2018). Since wheat grain yield is 
largely determined by the availability of carbohydrate reserves 
in the leaves and stems pre-anthesis, the higher the biomass 
accumulation during vegetative growth, the higher DW and 
GY at harvest (Reynolds et al., 2009; Li et al., 2013). Improving 
wheat yield potential by increasing DW at harvest has been 
demonstrated as an achievable and feasible strategy in breeding 
programs (Aparicio et al., 2002; Hawkesford, 2017). The primary 
objective of vegetative screens is to save time and costs, while still 
being able to effectively identify wheat genotypes which perform 
better for DW and GY at harvest in controlled environments 
and the field; ultimately speeding up breeding outcomes 
(Aparicio et al., 2000; Aparicio et al., 2002). In the present 
study, results confirmed that the automated RGB imaging unit 
was effective in estimating biomass accumulation from early 
vegetative to heading stages with a high degree of accuracy. 
The high correlations between EB and TVA and important 
traits such as MB and LA confirmed that the formers can be 
used as surrogates of the latter to evaluate the performance of 
wheat varieties for NUE at vegetative stage without destructive 
samplings. Our results also demonstrated that the performance 
of wheat varieties could be assessed effectively at early vegetative 
stages, as plant status during the linear growth phase truly 
reflects the potential at maturity regarding DW and GY. Being 
able to phenotype traits early in a high-throughput, precise and 
reproducible manner is a clear advantage in greenhouse screens 
and crucial for accelerating the breeding of improved NUE 
varieties (Ly et al., 2017). Vegetative screens, using conventional 
phenotyping methods, have also been successfully used for 
quantitative trait loci (QTL) mapping of early growth traits such 
as seedling height or shoot biomass for improved NUE in wheat 
(An et al., 2006; Guo et al., 2012). Highly accurate estimates of 
vegetation coverage of field grown wheat at booting stage using 
digital RGB images have been reported previously (Lukina 
et al., 1999). Moreover, the automated RGB imaging unit used 
in this study, was also advantageous against other proximal 
sensing tools, since it was not negatively influenced by genotypic 
variations or N levels observed elsewhere (Babar et al., 2006; 
Nguyen et al., 2016).

However, the causal relationship between vegetative 
performance and both DW and GY isn’t fully understood. 
Under low N conditions, the EB of wheat plants was better 
correlated with GY than DW at early growth (40 DAS) and 
with correlation strength increasing until 74 DAS. Whereas, 
the correlation started at 67 DAS under optimum N conditions. 
In wheat, the remobilization of N reserved in vegetative parts, 
such as shoots and roots, before flowering, contributes up to 
95% of grain N content at maturity (Palta and Fillery, 1995). 
Previous studies suggested that higher grain yield and grain 
NUtE in wheat were determined by a higher N remobilization 
efficiency, which was subject to genotypic assimilation 
efficiency and the availability of stored N in vegetative parts of 
the plants (Barbottin et al., 2005; Tian et al., 2015). Additionally, 
the remobilization of reserved carbohydrate pre-anthesis in 
wheat contributes up to 20% of grain yield under favourable 
conditions and up to 60% under stressful conditions, including 
N stress (Li et al., 2013), which was supported by our WSC assay 
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results. Since NUE-related traits, e.g. remobilization efficiency, 
were highly expressed under low N conditions (Barbottin et 
al., 2005; Lammerts Van Bueren and Struik, 2017), it is likely 
that most of the reserved N and WSC in the wheat plants were 
translocated to grain yield before maturity due to N stress, 
leading to higher correlations between vegetative EB, DW and 
GY. Whereas, abundant N supplies meant that a large portion 
of the N and WSC reserved in shoots and roots were leftover 
in the DW, resulting in a lower correlation between EB from 
early stages and DW and GY (Barbottin et al., 2005; Gaju et al., 
2014). Thus, selection might focus on the performance of wheat 
genotypes under low N rather than optimum N conditions 
for vegetative screens. The small variations in NUEg within N 
levels among varieties again supports this hypothesis. Based on 
growth analysis in the current study of 15 wheat varieties, it is 
recommended that EB collected at 60 DAS, that coincides with 
booting stages, can be used to compare vegetative performance 
of wheat varieties.

Perspective of Image-Based Phenotyping 
for NUE Improvement in Wheat Under 
Field conditions
One of the biggest challenges in the development of N-efficient 
wheat varieties is necessity of developing an effective screening 
system in controlled environments that can effectively foresee 
the performance of wheat varieties under field conditions 
(Nguyen and Kant, 2018). In the present study, we compared 
the performance of wheat varieties for NUE under controlled 
and field conditions. We observed moderate and low-level 
correlations between greenhouse and field data for the DW and 
GY of identical wheat varieties, respectively (Supplementary 
Table 2). Interestingly, the DW of wheat varieties appears 
more consistent under both N levels in greenhouse compared 
to the 80 N, the optimum level under field conditions 
(Supplementary Table 2). The inconsistent performance of 
varieties under greenhouse and field has been well documented 
(Poorter et al., 2012; Junker et al., 2015). Quite often, genotypes 
selected from the controlled environments do not substantiate 
their performance under field conditions, because of significant 
competition among plants within plots under field conditions, 
which is not present for individual plants in pots in controlled 
environments (Araus and Cairns, 2014; Fischer and Rebetzke, 
2018). Associations between greenhouse and field trials 
using the same varieties is further complicated by other 
environmental factors such as soil type, microorganisms, N and 
water availability (Cormier et al., 2016; Nguyen et al., 2017). 
However, several studies have reported a causal relationship 
between greenhouse screens and the field performance of crops 
(Chapuis et al., 2012; Pardo et al., 2015; Peirone et al., 2018). 
Therefore, results from vegetative screens in greenhouses, like 
those in the current study, can still be useful indicators of the 
performance of genotypes for NUE, which can help reduce the 
time and cost of developing new breeding materials.

Non-invasive remote sensing and imaging, using sensors and 
cameras, has been successfully applied to field crop phenotyping 

for NUE improvement (Nguyen and Kant, 2018). Simple to set 
up and cost effective conventional digital cameras have been 
effectively used as assessment tools for leaf area index and 
biomass in cereals (Casadesús and Villegas, 2014). The advent 
of various ground-based and aerial-based plant phenotyping 
platforms has made the estimation of final biomass and grain 
yield in wheat faster, more accurate and economical (Reyniers 
et al., 2006; Wang et al., 2014; Kefauver et al., 2017). Vegetation 
indices have been used to estimate biomass and grain yield under 
varying N supplies with high accuracy (Serrano et al., 2000). 
However, all the above-mentioned phenotyping platforms were 
deployed at the booting and heading stages to predict yield and 
final biomass, since biomass accumulation peaks at anthesis 
(Aparicio et al., 2000; Chang et al., 2005; Malhi et al., 2006); 
but, none of them were designed to predict final biomass and 
grain yield at early vegetative stages. Early vegetative prediction 
of N-efficient genotypes by high-throughput phenotyping will 
be especially useful, particularly when applied with genomic 
selection for NUE (Ly et al., 2017). This is particularly helpful 
for sensor and image based phenotyping in the field because 
vegetation indices will possibly become saturated if the leaf 
area index of the canopy is > 3 (Aparicio et al., 2000; Serrano 
et al., 2000). Several recent reports showed the potential of RGB 
imaging technology to study early crop growth and yield for 
NUE improvement in the field. Prey et al. (2018) used canopy 
cover from RGB imaging as a criterion to assess early vigour 
in wheat. In a similar approach, Buchaillot et al. (2019) used 
vegetation indices generated by both ground and aerial based 
RGB sensors at the vegetative stage in combination with crop’s 
agronomic parameters, to successfully develop regression 
models for yield prediction of maize genotypes. Since TVA, 
observed here, was highly correlated with other traits, an 
avenue for further investigation is the deployment of digital 
RGB cameras, either handheld or mounted on ground or aerial 
vehicles (Araus and Kefauver, 2018; Fernandez-Gallego et al., 
2019; Gracia-Romero et al., 2019) to capture and assess the 
performance of wheat genotypes for NUE traits at the linear 
growth phase under field conditions.

cONclUSIONS
Here, we have described the development of a robust, high-
throughput and reliable screening method at vegetative 
growth phases to investigate NUE improvements in wheat 
under controlled environment. Our results have shown that 
this digital RGB imaging method is strongly correlated to 
important NUE traits such as MB of wheat varieties. The 
observed relationship between controlled and field conditions 
for the same varieties indicates that greenhouse screening could 
be used to prioritise germplasm for subsequent field studies. 
Therefore, the application of this designated wheat growth 
system in conjunction with the digital imaging will provide 
breeders with an excellent assessment tool to enable the rapid 
phenotyping of diverse wheat genotypes to select N-efficient 
germplasm. This screening method may also provide a basis for 

Frontiers in Plant Science | www.frontiersin.org November 2019 | Volume 10 | Article 1372

https://www.frontiersin.org/journals/plant-science/
http://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Image-Based Phenotyping to Screen Wheat GermplasmNguyen et al.

13

the rapid phenotyping method of other crop species to identify 
germplasm efficient to a range of nutrients and stresses.
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