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Increasing herbage biomass is the predominant objective for pasture plant breeding 
programs. Three types of field trials are commonly involved during forage plant 
breeding, i.e., individually spaced plants, row plot, and sward trials. Assessments 
of biomass production at individual plant, row plot, and sward plot levels are through 
visual scoring and/or cutting of biomass manually or mechanically. Both visual scoring 
and cutting of plants are laborious, time consuming, and costly. The development of 
sensor technology such as multispectral sensors and unmanned aircraft systems (UAS) 
provide the opportunity to accelerate the process of biomass evaluation and to increase 
throughput, improve resolution, and reduce time and cost. We tested either the handheld 
Trimble GreenSeeker® or Parrot Sequoia multispectral sensors attached to a 3DR Solo 
Quadcopter to assess biomass in perennial ryegrass field trials sown as spaced individual 
plants, row plots, and simulated sward plots. Significant correlations were observed 
between visual score and normalized difference vegetation index (NDVI) in a spaced plant 
field trial and between biomass yield and NDVI in row plot and sward trials (r = 0.12 ~ 
0.93). NDVI obtained from multispectral sensors and UAS can replace visual scoring in 
spaced plant trials. It was also a valuable proxy for yield estimation in row plot and sward 
trials. These technologies will assist in transition for the forage grass breeding from pen 
and notepad to digital and data era.

Keywords: Lolium perenne, normalized difference vegetation index, perennial ryegrass, sensor, unmanned aerial 
vehicle, biomass

INTRODUCTION

Increasing herbage biomass production is the predominant objective for pasture plant breeding 
programs. The common breeding systems include ecotype selection, restricted recurrent phenotype 
selection, half-sib progeny test, between-and-within family selection, and recurrent multistep family 
selection (Vogel and Pedersen, 1993). Whichever breeding systems are adopted, there are three types 
of field trials generally involved: transplanted spaced plant nursery, which allows breeders to observe 
variation and make selection within a population/family/accession; clonal row trials, which test the 
performance of polycross clonal progenies; and seeded sward plot trials, which enable the evaluation 
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of population/family/cultivar performances (Humphreys et al., 
2010; Hayes et al., 2013). The goal of breeding trials is to select 
the best genotypes or lines within a group of selection candidates. 
Therefore, the ranking order based on biomass yield of the 
candidates compared to reference cultivars and each other is 
often the primary focus rather than the absolute yield.

The method for evaluation of spaced plant nursery trials and 
row trials is commonly based on breeder’s visual score, which 
gives a discrete rank order of 1 to 5 or 1 to 9. Although, the visual 
score is much more efficient than cutting plants, drying, and 
weighing the biomass (Smith et al., 2001), it is highly subjective 
and is influenced by interference from surrounding plants. The 
method for evaluating biomass of sward trials generally involves 
sampling and cutting plants either manually or mechanically. In 
each breeding cycle, repeated evaluations over seasons and years 
are essential for perennial grasses. The cost in time and labor 
becomes a restricting factor for the upscaling of any breeding 
program. The inability to accurately screen large numbers of 
plants is one of the limitations to increase the rate of genetic gain 
in forage grasses.

Technologies for rapid, nondestructive, and high-throughput 
biomass evaluation have been highly sought after especially when 
next-generation genotyping and sequencing becomes available 
and requires the in-field phenotyping to be high throughput to 
support genomic selection programs. Remote sensing is often 
used to assess rangeland condition and primary productivity 
across large areas on earth surface using satellite platforms 
(Pettorelli et al., 2005). Normalized difference vegetation index 
(NDVI) provided a proxy measure for green plant biomass 
(Tucker et al., 1981; Schino et al., 2003). Adaptation of NDVI into 
field-based spectrometry makes the application into breeding 
scale trials possible. The ground-based Trimble GreenSeeker® 
(Trimble Navigation Limited, Sunnyvale, CA, USA) optical 
sensor emits light at two fixed wavelengths (660 ± 10 nm and 
770 ± 15 nm) and measures the amount of each type of light 
that is reflected from the plant and outputs the calculated NDVI 
value. Using NDVI obtained by GreenSeeker as a biomass proxy 
has been reported for a range of crops (Teal et al., 2006; Li et al., 
2010; Raun et al., 2011; Lofton et al., 2012; Ji et al., 2017). The 
Trimble GreenSeeker can be either handheld or mounted on a 
ground-based vehicle such as buggies or tractors to increase the 
throughput (Deery et al., 2014).

The development and adoption of unmanned aircraft systems 
(UAS) provide an airborne platform for high-throughput 
phenotyping, which can be at centimeter-level resolution (Shi 
et al., 2016). Attached with various sensors, it has been used 
for high-throughput in-field phenotyping of plant biomass 
accumulation (Busemeyer et al., 2013) and responses to drought 
(Ludovisi et al., 2017). The aerial-based NDVI and ground-
based NDVI are highly correlated (Duan et al., 2017). The 
selection of either ground or airborne platforms will depend 
on the trial scale. Aerial-based platforms are more suitable for 
large scale trials in which postimage processing is essential and 
critical. Ground-based platforms are suitable for smaller trials, 
where walking/driving through the trial is logistically possible 
within a few hours and do not require postprocessing of images. 
As pointed out by Shi et al. (2016), most research to date has 

been on “one-off ” projects to demonstrate the technology and 
stopped short of developing routine methods. The applicability 
of these sensors and platforms for forage grass breeding and 
how they can be applied routinely remains to be validated. Since 
2014, we have developed ground- and aerial-based platforms 
for nondestructive high-throughput forage grass phenotyping, 
firstly for biomass yield, here, we validate these methods on our 
prebreeding research trials to facilitate genomic prediction and 
selection in ryegrass.

In this paper, we describe using Trimble GreenSeeker and 
multispectral sensors attached to UAS for high-throughput 
in-field biomass phenotyping in our perennial ryegrass pre-
breeding research trials. These trials represent all three trial types 
of spaced plant, row plot, and seeded sward trials in forage grass 
breeding. The goal is to validate the ground-based and aerial-
based platforms for nondestructive high-throughput biomass 
phenotyping and their potential to replace traditional visual 
score and clipping for routine application in breeding to improve 
data collection and decision-making ability.

MATeRIAlS AND MeTHODS

Field Trials
For this study, we used perennial ryegrass as the model species 
for perennial forage grasses. Three types of breeding trials were 
used to validate the sensors and platforms. All field trials were 
conducted in the research farm in Hamilton, Victoria, Australia 
(–37.841S, 142.073E). A spaced plant trial of perennial ryegrass 
was used to test the correlation between NDVI and visual score 
and therefore the possibility to replace visual scoring for plant 
biomass/vigor in a spaced plant nursery. This trial contained 
a total of 2,576 individual plants in four blocks. Each block 
contained 644 individual genotypes randomly assigned in a 
46-row by 14-column layout. The spacing was 60 cm between 
columns and 40 cm between rows. The primary aim of this trial 
was to screen genotypes for drought tolerance. Therefore, two 
blocks received natural rainfall as control and two blocks were 
under rainout shelters, which received less rainfall as a drought 
treatment. Here, the trial was used to develop the relationship 
between the aerial-based NDVI and visual score and compare the 
selections based on the two measurements. The effect of drought 
stress and response of different genotypes to the stress will be 
reported in a subsequent manuscript. The trial was planted in 
October 2015.

A row plot trial consisting of 50 perennial ryegrass cultivars/
breeding lines with 10 replicates, a total of 500 plots, was used to 
test the correlation between biomass yield and aerial-based NDVI 
at plot level. Each plot consists of 96 plants from one cultivar, 
arranged in three rows and 32 plants per row. Distance between 
plot and rows within plot was 60 cm and distance between plants 
within a row was 25 cm. The area of the trial site was 8,100 sqm. 
The trial was transplanted in June 2016.

Two simulated sward trials of perennial ryegrass were used 
to test the correlation between NDVI obtained by handheld 
Trimble GreenSeeker with biomass yield. The first sward trial was 
a cultivar subselection trial which contained 60 plots. They were 
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divided into 10 replicates each consisted of four subpopulations 
and two plots of the original cultivar. Each plot was a minisward 
that comprised 100 plants in a 10 plant × 10 plant, square 
grid layout. The distance between plants was 15 cm, which 
simulates the common spacing between rows as seeded sward. 
The distance between plots is 1 m. The trial was planted in May 
2014. The second simulated sward trial was a perennial ryegrass 
F2 family trial, which contained 72 plots of 10 families of two 
generations and three reference cultivars in two replicates. The 
distances between and within plots were the same as the cultivar 
subselection trial. This trial was planted in May 2015.

Data Collection
For the spaced plant trial, the individual plant from each block 
were visually scored on a scale from 0 to 9; where 0 (dead plant) 
and then 1 (the lowest biomass yield) to 9 (the highest biomass 
yield) on 12 December 2015 (before stress) and 28 July 2016 
(after stress). The flight missions were conducted with a Parrot 
Sequoia multispectral sensor attached to 3DR Solo Quadcopter 
at a flight height of 20 m (with ground sampling distance of 2 
cm, overlap and side lap 80%) on the same day as the visual score 
were taken. The Parrot Sequoia multispectral sensor has green 
(550 nm), red (660 nm), red edge (735 nm), and near infrared 
(790 nm) lenses all with a bandwidth of 40 nm along with a 
standard RGB camera, GPS sensor and incident light sensor. 
Images captured during takeoff and landing were discarded 
from further processing. Images processing, georectification and 
radiometric calibration were conducted through Pix4Dmapper 
(Version 4.1.15, Pix4D SA, Lausanne, Switzerland). Individual 
plant identification was achieved through an in-house developed 
segmentation algorithm in an R environment. NDVI for each 
plant was extracted from the reflectance at red and near infrared 
wavelengths represented in a reconstructed and segmented 
orthomosaic through QGIS.

For the row plot trial, a weekly flight missions were undertaken 
with the 3DR Solo multirotor and Parrot Sequoia multispectral 
sensor at the same flight height, speed, and overlap as described 
for the spaced plant nursery above. Image process followed the 
same procedure as described above (Figure 1). Segmentation was 
conducted for each row and NDVI was extracted at the row level. 
NDVI of each plot was averaged of the three rows. Mechanical 
harvests were conducted at row plot level and biomass yield 
in fresh weight was recorded to test the correlations between 
biomass and NDVI on four occasions.

For the simulated sward trials, herbage samples were harvested 
when plants reached 2.5- to 3-leaf stage with a push mower at a 
height of 5 cm from the ground. Biomass yield in fresh weight for 
each plot was recorded, and for most of the harvests, 200–300 g 
of herbage was subsampled from each plot and the subsamples 
oven-dried at 60°C for 48 h and dry matter yield of every plot was 
calculated. A total of 16 harvests were conducted for the cultivar 
subselection trial and 15 for the perennial ryegrass F2 trial. NDVI 
values were collected weekly by walking through the trial plots 
with a handheld Trimble GreenSeeker RT100 system at 80 cm 
height over the plot. The NDVI value of each plot was averaged 
from approximately 20–30 readings of the plot.

Statistical Analysis
Statistical analysis was conducted using GenStat (Payne et al., 
2009). Pearson correlation coefficients between NDVI and 
reference data were obtained using correlation command in 
GenStat for all field trials in each harvest. For the spaced plant trial, 
the best linear unbiased prediction (BLUP) of genotypic effects 
and tests of significance were conducted using residual maximum 
likelihood (REML) model in GenStat with genotype and replicate 
were fitted as random effects under both control and drought 
conditions. To compare the selection based on visual score and 
NDVI for the spaced plant trial, we assumed two scenarios. In the 
first scenario, the top 50 genotypes would be selected from each 
block (treat each block as independent) based on the raw data. In 
the second scenario, the 50 highest score/NDVI genotypes would 
be selected under both control and treatment conditions based on 
the BLUP values. The maximum consistency was calculated as the 
most possible number of common genotypes selected based on 
the two measurements. For the row plot trial, REML was used to 
analyze the data as a linear mixed model with cultivar fitted as a 
fixed effect and experimental design factors (column and row) as 
random effects. The cultivar ranks based on the predicted mean of 
yield and NDVI at each harvest were compared.

ReSUlTS

Relationship Between NDVI and Visual 
Score From the Spaced Plant Trial
Significant correlations (p < 0.001) were observed between NDVI 
and visual score and the correlation coefficients were 0.79 and 
0.93 in December 2015 and July 2016, respectively (Figures 2A, 
B). Each visual score spanned a range of NDVI values and there 
were considerable overlaps of the range of NDVI values across 
different visual score groups.

In the first scenario of selection, 50 genotypes were to be 
selected from each block to approximate a selection strategy that 
a breeder may use. Based on the distribution of the visual scores 
of the four blocks (Table 1), if selection was made for the top 50 
plants from each block based on visual score, plants in the same 
ranking may be chosen randomly. For example, based on vigour 
on July 2016, for field block-1 the 24 plants ranked “9” would 
be selected and the remaining 26 genotypes would be selected 
from the next level of rank “8” which had 115 plants (Table 2). 
If selection was made based on NDVI values, the genotype 
selection would be certain due to NDVI being a continuous 
variable. The maximum consistency between the two methods 
was from 54% to 96% for field block-2 and shelter block-2, 
respectively (Table 3). In the second scenario, selection is made 
based on the BLUP values after treatment in both control and 
treatment conditions, the maximum consistency was 90% for the 
control and 92% for the treatment conditions, respectively.

Relationship Between NDVI and Biomass 
From the Row Plot Trial
Significant correlations were observed between biomass 
yield and aeriel NDVI for the row plot trial (Table 4). The 
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correlation coefficients varied from 0.59 to 0.79 in different 
harvests. The cultivar ranking based on the predicted mean of 
biomass yield and NDVI was compared (Figure 3). Although 
the correlation of the ranking based on the two measurements 
were significant for all the 5 harvests (r = 0.45–0.87), the 
discrepancy of the rank for a particular cultivar was common 
especially for those middle ranked cultivars. It has to be 
noted that the different rank order may not necessarily mean 
any significant difference in cultivar mean yield which will 
be determined by the least significant difference value. In 
some cases, the difference was significant. For example, in 
the first harvest, cultivar C1 was ranked 28th by yield and the 
yield was significantly less than culitvar C8, which was ranked 
as 1st (highest yielding cultivar). However, C1 was ranked the 
1st by NDVI and not significantly different from C8 which 
was ranked 6th.

Relationship Between NDVI and Biomass 
From Sward Trials
Significant correlations were observed between NDVI and 
harvested biomass in the cultivar subselection trial from all 
but one harvest (Table 5). The correlation coefficients ranged 
from 0.12 (May 2015) to 0.91 (October 2015). The correlation 
coefficients were higher in September and October harvests.

The correlations between NDVI and the biomass were also 
significant in the perennial ryegrass F2 trial for all of the 16 
harvests (Table 6). The correlation coefficients were from 0.54 
(Noveber 2016) to 0.77 (May 2016), which were slightly lower 
than the cultivar subselection trial.

FIgURe 1 | Three types of field trials and schema of data collection. The normalized difference vegetation index (NDVI) was extracted from the spaced plant trial 
and row plot trial by aerial imaging using 3DR Solo Quadcopter and Parrot Sequoia multispectral sensors and image analysis. The NDVI values from the sward trials 
were measured using Trimble Greenseeker RT100.

FIgURe 2 | The scatter plots of visual score and the normalized difference 
vegetation index (NDVI) values based on Parrot Sequoia multispectral sensor 
attached to 3DR Solo Quadcopter in perennial ryegrass spaced plant trial in 
December 2015 (A) and July 2016 (B).
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Monitoring NDVI weekly during the 2.5-year experimental 
peroid for perennial ryegrass sward trials showed marked 
seasonal changes of the NDVI values (Figures 4B, E). NDVI 
was at the lowest point during summer and gradually increased 
and reached its peak in winter and early spring, then gradually 
decreased again into summer. The trend of this seasonal 
change largely followed the pattern of seasonal yield in this 
environment (Figures 4A, D) and the monthly rainfall pattern 
of the trial site (Figures 4C, F). The unusually high rainfall that 
occurred during the summer in January 2015 was associated 
with a clear transient NDVI peak while there was no such peak 
in the summer of 2016 and 2017 when there was a normal 

rainfall pattern with little summer rain. In the summer time, 
ryegrass plants are generally dormant,  NDVI  values   were 
low, and differences between cultivars were small. In the 
winter  and spring, NDVI values were higher and difference 
between cultivars were also larger (Figures 4B, E). There were 
sharp declines of NDVI in the spring in 2014 and 2015 in both 
trials due to lower than long-term average rainfall in contrast 
to the much slower decline   of NDVI in the spring of 2016 
where above long-term average rainfall occured.

DISCUSSION

To accommodate the need to collect a large amount of 
relatively accurate yield data rapidly and cost effectively, 
forage breeders select breeding parents based on visual vigor 
score of genotypes. For mass selection, nursery trials with 
up to 10,000 plants are not uncommon (Hayes et al., 2013). 
Scoring tens of thousands of plants in a field with a pen and a 
notepad is a tiring task and may take a few days. With sensors 
and UAS, it takes less than 20 minutes to fly over the site to 
capture the data to rank plants based on vegetative indices. 

TABle 2 | Top 50 selections based on visual score in four blocks after treatment 
(number of selection/number of candidate in each group) from the spaced plant 
trial.

Visual Score 9 8 7

Field block-1 24/24 26/115 –
Field block-2 50/55 – –
Shelter-1 12/12 17/17 21/27
Shelter-2 34/34 16/69 –

TABle 3 | Top 50 selection based on normalized difference vegetation index (NDVI) from Parrot Sequoia multispectral sensor attached to 3DR Solo Quadcopter in four 
blocks and their corresponding NDVI range, visual score, and maximum selection consistence between the two methods from the spaced plant trial.

Block NDVI range Visual score Maximum consistency

9 8 7 6 No. in common/total %

Field block-1 0.342–0.399 12 30 7 1 32/50 64
Field block-2 0.320–0.369 27 22 1 27/50 54
Shelter-1 0.243–0.350 12 16 13 9 41/50 82
Shelter-2 0.271–0.374 27 21 2 48/50 96

TABle 1 | Number of plants in each visual score group in four blocks at two-time points on 15 December 2015 (before treatment) and on 28 July 2016 (after 
treatment) (visual score 0 indicated dead plant; 1 to 9 indicated lowest to highest vigor scores) from the spaced plant trial.

Date Visual score 0 1 2 3 4 5 6 7 8 9

15/12/2015 Field block-1 6 3 2 4 9 62 170 248 122 18
Field block-2 7 2 4 4 10 87 239 231 50 10

Shelter-1 6 4 4 10 32 140 283 133 30 2

Shelter-2 4 9 4 8 12 104 290 162 40 11

28/07/2016 Field block-1 20 2 9 14 27 81 157 195 115 24

Field block-2 23 7 9 10 18 48 109 199 166 55

Shelter-1 379 13 38 27 42 43 46 27 17 12

Shelter-2 223 28 43 27 37 54 58 71 69 34

TABle 4 | Range of normalized difference vegetation index (NDVI) from NDVI from Parrot Sequoia multispectral sensor attached to 3DR Solo Quadcopter and herbage 
yield in fresh weight and their correlation coefficent at different cutting date from the perennial ryegrass row plot trial (n = 500).

Harvest Date NDVI FW (kg) r

Mean s.d. Min Max Range Mean s.d. Min Max Range

1 29/11/2016–1/12/2016 0.2382 0.06484 –0.0115 0.3713 0.3598 6.06 1.183 2.4 9.0 6.6 0.27
2 9/05/2017 0.6997 0.05839 0.4967 0.8251 0.3284 2.77 1.051 0.6 6.0 5.4 0.72
3 6–7/07/2017 0.8080 0.03775 0.6389 0.8757 0.2368 7.80 2.325 1.2 14.3 13.1 0.79
4 14/09/2017 0.7555 0.03108 0.6615 0.8388 0.1773 7.54 1.823 3.5 14.9 11.4 0.59
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In addition, in perennial grass breeding, programs scoring 
needs to happen at multiple times throughout multiple years 
to capture seasonal yield changes. The time saving of the 
application of sensor-based screening technology is enormous. 
The other advantage is that the data is stored electronically 
and can be checked and retrieved anytime afterwards. Most 
importantly, the multispectral image is more informative 
than the simple visual score and rank and it gives precise, 

continuous value of indices hence much higher resolution. 
The rapid adoption and increasing affordability of UAS and 
sensors provides potential for routine application of this 
technology in breeding. The major concern currently is the 
analysis and data extraction from large volumes of data. With 
the development of some open sourced and licensed computer 
programs such as those used in this study, image analysis is 
becoming more streamlined.

FIgURe 3 | The scatter plots between cultivar ranking based on biomass (x-axis) and ranking based on normalized difference vegetation index (NDVI) (y-axis) from 
Parrot Sequoia multispectral sensor attached to 3DR Solo Quadcopter in four harvests from the row plot trial.

TABle 5 | Correlation coefficent between normalized difference vegetation index (NDVI) from GreenSeeker and herbage yield in fresh weight and dry weight at different 
cutting date from the cultivar subselection trial (n = 60, NS: not significant at p < 0.05 level. a: NDVI data not available for the first harvest; b: dry weight data not 
available for these harvests).

Harvest Cutting Date NDVI FW (g) r 

Mean s.d min max Range Mean s.d min max Range NDVI-FW NDVI-DW

1 3/09/2014 1,601 1,084 79 4,200 4,122 a a
2 1/10/2014 0.9219 0.01686 0.8718 0.9464 0.0746 2,922 878.1 786 4,373 3,587 0.82 0.78
3 5/11/2014 0.7545 0.05482 0.6113 0.8469 0.2356 2,494 447.8 1,712 3,490 1,778 0.62 0.60
4 27/05/2015 0.7627 0.04844 0.6377 0.8403 0.2026 878 225.4 544 1,626 1,082 0.12NS 0.03NS

5 30/06/2015 0.8264 0.02717 0.7525 0.8737 0.1212 995 192.8 652 1,457 805 0.57 0.59
6 18/08/2015 0.859 0.03405 0.7682 0.9133 0.1451 1,668 411.5 971 2,601 1,630 0.68 0.67
7 30/09/2015 0.9044 0.02224 0.8647 0.9484 0.0837 3,163 731.1 1,768 5,070 3,302 0.83 0.77
8 28/10/2015 0.6286 0.09014 0.4668 0.8286 0.3618 1,544 528.5 778 2,692 1,914 0.91 0.89
9 14/12/2015 0.2144 0.0238 0.1704 0.3043 0.1339 465 163.3 120 894 774 0.79 b
10 18/04/2016 0.5033 0.06155 0.3608 0.6376 0.2768 317 102.2 63 569 506 0.54 0.50
11 24/05/2016 0.6317 0.08173 0.4293 0.8022 0.3729 403 148.2 161 866 705 0.77 0.74
12 12/07/2016 0.7776 0.06262 0.6214 0.8913 0.2699 685 230.9 247 1,232 985 0.78 0.75
13 6/09/2016 0.6981 0.07257 0.5307 0.8247 0.2940 1,071 343.5 493 1,876 1,383 0.86 0.82
14 19/10/2016 0.7559 0.0508 0.6411 0.8542 0.2131 2,221 684.2 1,131 4,135 3,004 0.82 0.80
15 23/11/2016 0.6933 0.07868 0.5567 0.8377 0.2810 2,623 670.8 1,709 5,023 3,314 0.68 b
16 3/05/2017 0.6617 0.07289 0.5226 0.7913 0.2687 969 408.4 453 2,061 1,608 0.86 0.85
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The significant correlation between NDVI and visual score 
forms the basis for NDVI to replace visual score. It was noted 
that there were overlaps of NDVI range across different ranking 
groups. For example, visual score as “0,” which indicated a 
dead plant, with a range of NDVI values 0–0.1 in 2015 and 
0–0.2 in 2016. This was partially due to leaves of neighboring 
plant that fill into the polygon delineated the plant. So, the 
accuracy of NDVI for each plant will depend on how well the 
segmentation of the image matches the actual plant. In this 
spaced plant trial, the distance between neighboring plants 
within a column was 40 cm which was less than the common 
distance in breeders’ nursery trial which is 50 or 60 cm. The 
greater the distance, the clearer of the separation between the 
neighboring plants and more accurate of the NDVI value. 
In this experiment, we extracted data automatically without 
manual correction, which would be useful if higher accuracy 
was required. Selection of genotypes based on NDVI and 
selection based on visual score was largely in agreement. The 
bigger the difference is between the genotypes the higher 
the confidence is for visual score and the higher consistency 
between the two methods as seen in the stressed condition 
compare to the control condition. The high-throughput 
nature of this technology may allow more replication within 
sites which will reduce environmental variance and improve 
selection efficiency. The NDVI obtained from multispectral 
sensors and UAS can replace visual score to assist selection.

Highly significant correlations were observed between 
NDVI and the biomass yield at row plot level. A similar 
correlation (r = 0.79) between biomass yield and NDVI was 
observed in wheat row trial (Tucker et al., 1981). The ranking 
of the 50 cultivars was correlated between based on biomass 
and based on NDVI although the rank discrepancy occurred 
commonly for a specific cultivar (Figure 4). However, it must 
be noted that even among cultivars with different ranks, 
the difference in yield may or may not be significant. At the 
current level of correlation (r = 0.59 to 0.79), some cases of true 

difference existed in ranks of a cultivar based on NDVI and the 
yield. Therefore, cultivar rank by aerial NDVI was not always 
in complete agreement with yield rank. The missing accuracy 
may be due to the saturation of NDVI value at high density 
vegetation (Gu et al., 2013). Beyond the saturation point, 
major component of yield may be explained by combination 
with other terms such as canopy height and structure. For 
perennial pasture, the saturation NDVI value may provide a 
threshold point for grazing rotation and this requires further 
study. Another reason may be the intensity of leaf green color 
difference between cultivars, which ranges from very light 
green to very dark green in perennial ryegrass (UPOV), may 
cause differences in reflectance. This may make the cross-
cultivar comparison less accurate. In this circumstance, the 
NDVI model could be adjusted according to different cultivars 
to achieve better ranking agreement with biomass.

Significant correlations were observed between the ground-
based NDVI and biomass for all 32 harvests except one from 
the two sward trials. The lack of correlation between NDVI 
and herbage yield in harvest 4 of the cultivar subselection 
trial (Table 5) may be due to the skewed distribution of yield 
(skewness 1.16). Under the climatic conditions of the trial site, 
the seasonal change of perennial ryegrass pasture production 
is remarkable. The NDVI change over time reflected the 
seasonal yield trend and may be explained since NDVI has 
been considered as an indicator of “greenness” (chlorophyll 
content) and positively correlated with photosynthetic rate 
in plants where canopy development and photosynthetic 
activity were in synchrony (Gamon et al., 1995). The NDVI 
fluctuation was also associated with the rainfall events and 
was more prominent when unusual rainfall occurs. So, plant 
response to moisture was reflected by the NDVI change. 
The NDVI may serve as a good early indicator of plants 
responses to the environment, hence to explore genotype-
environment interaction during cutting/grazing intervals 
and to track regrowth after cutting/grazing to explore the 

TABle 6 | Correlation coefficent between normalized difference vegetation index (NDVI) from GreenSeeker and herbage yield in fresh weight and dry weight at different 
cutting date from the perennial ryegrass F2 trial (n = 72, a: data not available due to long harvest peroid; b: dry weight data not available for these harvests).

Harvest Date NDVI FW (g) r

Mean s.d Min Max Range Mean s.d Min Max Range NDVI-FW NDVI-DW

1 9/09/2015 0.8455 0.05057 0.6528 0.9498 0.2970 1,070 840.8 147 5,524 5,377 0.63 b
2 30/11/2015–

14/12/2015
0.6338 0.06938 0.4936 0.8154 0.3218 1,653 706.9 520 3,140 2,620 a a, b

3 18/04/2016 0.6903 0.06023 0.5333 0.8093 0.2760 1,003 305.5 431 2,113 1,682 0.67 0.66
4 24/05/2016 0.7892 0.05367 0.6237 0.8713 0.2476 966 320.4 316 1,892 1,576 0.77 0.78
5 15/07/2016 0.8382 0.05393 0.6769 0.9224 0.2455 1,312 499.2 326 2,852 2,527 0.75 0.75
6 6/09/2016 0.7122 0.06445 0.5628 0.8592 0.2964 1,452 639 481 3,988 3,507 0.74 0.71
7 13/10/2016 0.7741 0.0454 0.6576 0.8841 0.2265 1,816 622.9 99 3,935 3,836 0.67 0.62
8 15/11/2016 0.7688 0.04287 0.6456 0.8669 0.2213 2,180 484.9 1,181 3,498 2,317 0.54 0.46
9 19/12/2016 0.5889 0.09472 0.3897 0.8317 0.4420 1,437 586.4 570 3,745 3,175 0.64 b
10 1/02/2017 0.467 0.06305 0.3622 0.7113 0.3491 648 300.7 294 2,219 1,925 0.60 b
11 26/04/2017 0.6591 0.04814 0.5292 0.7988 0.2696 934 262.7 430 1,674 1,245 0.56 0.49
12 21/06/2017 0.8875 0.0321 0.8136 0.9578 0.1442 1,819 772 570 3,899 3,329 0.75 0.72
13 20/09/2017 0.6212 0.05318 0.5158 0.7817 0.2659 1,649 607.4 790 3,764 2,974 0.68 0.57
14 14/11/2017 0.7668 0.05249 0.6654 0.8716 0.2062 3,030 936.8 1,416 6,062 4,646 0.61 0.53
15 9/01/2018 0.5364 0.08475 0.399 0.8411 0.4421 1,220 591.8 440 3,211 2,772 0.51 0.46
16 24/05/2018 0.427 0.0527 0.304 0.57 0.2660 395.2 205.7 67.4 997.1 930 0.57 0.53
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dynamics and persistence of perennial pastures. Multispectral 
sensors and UAS also allow tracking productivity over time 
for perennial pasture, in particular, the regrowth after grazing 
or clipping and to explore seasonal changes and responses to 
environmental factors such as precipitation. We found that 
the correlation coefficients changed over harvests/seasons. 
In summer time, the correlation was generally lower than in 
spring, autumn, and winter. Similar trends have been reported 
by Schino et al. (2003), who indicated that in summer when 
the ratio of dry/green biomass increases, NDVI estimate 
becomes less accurate.

In this paper, we validated the most common vegetation 
index NDVI in the three main types of early-generation grass 
breeding trials for correlation with the visual score and biomass. 

Aerial NDVI was significantly correlated with visual score and 
has clear advantages and may replace visual score in forage 
grass breeding programs. NDVI was significantly correlated 
with the biomass yield in row plot trial and simulated sward 
trials. Cultivar rank by NDVI was correlated with the rank by 
yield. Future research would be to explore ways to improve 
the accuracy for biomass estimation. The modeling of absolute 
biomass prediction is not the focus of this paper, but would be 
important in predicting and monitoring animal consumption 
and production and for estimation of yield in larger sward trials. 
To accurately model biomass prediction, other terms including 
height, volume, and density may be measured simultaneously 
in combination with other sensors such as sonar and LiDAR 
(Deery et al., 2014). Remote sensing for traits related to forage 

FIgURe 4 | Biomass and normalized difference vegetation index (NDVI) from GreenSeeker change overtime and the monthly rainfall during the experimental periods 
in the cultivar sub-selection trial (A–C) and perennial ryegrass F2 trial (D–F), respectively (red dotted lines in (C and F) indicate long-term average rainfall).
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quality have been investigated and with mixed results for 
different parameters (Starks et al., 2004; Guo et al., 2010). Further 
research would be preferable into nondestructive forage quality 
evaluation procedures for ready application. NDVI provides an 
indication to study the plant response to environmental factors 
over time without destructive intervention. The sensors together 
with ground- and aerial-based platform technologies may be 
extended to pastoral farmland management in collection of data 
on the germination rate, early vigor, speed of establishment, 
and spatial variations to assist with decision making and to 
contribute to digital and precision agriculture.
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