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Roots are fundamental organs for water and nutrient uptake as well as for signal 
transduction in response to biotic and abiotic stresses. Flax has a shallow tap root system 
that relies mostly on top soil nutrient and moisture resources. The crop can easily be 
outcompeted by weeds or other crops in intercropping systems, especially in moisture 
deficit conditions. However, there is a wide range of variation among genotypes in terms 
of performance under scarce resources such as moisture limitation. Here we phenotyped 
15 root, two shoot traits and shoot to root dry weight ratio on 115 flax accessions grown 
in a hydroponic pouch system and performed a genome-wide association study (GWAS) 
based on seven different models to identify quantitative trait loci underlying these traits. 
Significant variation among genotypes was observed for the two shoot and 12 of the 14 
root traits. Shoot dry weight was correlated with root network volume, length, surface 
area, and root dry weight (r > 0.5, P < 0.001) but not significantly correlated with root 
depth (r = 0.033, P > 0.05). The seven GWAS models detected a total of 228 quantitative 
trait nucleotides (QTNs) for 16 traits. Most loci, defined by an interval of 100 kb up 
and downstream of the QTNs, harbored genes known to play role(s) in root and shoot 
development, suggesting them as candidates. Examples of candidate genes linked to root 
network QTNs included genes encoding GRAS transcription factors, mitogen-activated 
protein kinases, and auxin related lateral organ boundary proteins while QTN loci for shoot 
dry weight harbored genes involved in photomorphogenesis and plant immunity. These 
results provide insights into the genetic bases of early shoot and root development traits 
in flax that could be capitalized upon to improve its root architecture, particularly in view of 
better withstanding water limiting conditions during the cropping season.

Keywords: flax, root, shoot, genome-wide association study, quantitative trait nucleotides, candidate genes

INTRODUCTION
Roots are vital organs in terrestrial higher plants for acquisition of essential nutrients and water. 
Because roots function in a bio-physico-chemically dynamic rhizosphere, they play an important role 
in controlling and regulating the impacts of various edaphic factors through internal physiological 
adjustments (Jackson et al., 1990; Hodge 2004) and signal transduction (Batool et al., 2018). 
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Adaptation of plants to a scarcity of resources and associated 
edaphic factors is therefore governed by their root system. The 
architectural features of root systems are crucial in efficiently 
tapping the available resources such as water and nutrients in 
the rhizosphere (Yue et al., 2006) and inadequate root system 
development may lead to significant yield losses in water-limiting 
conditions (Henry et al., 2011). Understanding root traits and 
resource use efficiencies of the root system is key to crop yield 
improvement (Kell, 2011). However, the inaccessibility of the 
rhizosphere has made root trait studies challenging; hence these 
traits have been scantly considered in varietal improvement.

Flax, one of the founder crops of agriculture (Weiss and 
Zohary, 2011), has been grown as both fiber and oilseed crops 
for nearly the entire span of its cultivation history (Herbig and 
Maier, 2011). The crop is adapted to diverse ecologies, from 
the warm Indian subcontinent to the cool temperate areas in 
Eurasia (Casa et al., 1999; Sertse et al., 2019). A wide range of 
uses are derived from its stem fibers and its oil-rich seeds (Singh 
et al., 2011). Flax production, however, is constrained by low 
yield (Wittkop et al., 2009). The meager flax yield improvements 
of ~0.5 ton/Ha since the 1960s, obtained through breeding 
and agronomic practices, have not been sufficient to impact its 
production in a major way and production continues to decline 
as growers are shifting to better yielding crops such as soybean, 
canola (http://www.fao.org/faostat/en/#data). High and stable 
yielding cultivars are urgently needed to rekindle growers' 
interest and meet market potential.

Flax, like other oilseed crops, is a tap-rooted plant. Compared 
to canola, sunflower, and safflower, flax has a shallower root 
system and, as such, it mainly relies on moisture and nutrient 
resources available in the soil's top layers (Hocking et al., 1997; 
Kar et al., 2007) mainly within 70 cm depth ((Flax Council of 
Canada, 2015; Hall et al., 2016). Flax roots can grow to depth 
of 90–120 cm with a lateral spread of ~ 30 cm in light soil (Gill 
1987). However, the proportion of its root deeper than 60 cm is 
only 4–7% (Hall et al., 2016) and the roots rarely grow beyond 
80 cm (Flax Council of Canada, 2015). Unlike other crops such 
as canola, mustard and wheat that have aggressive root growth 
before early flowering the fastest root growth in flax is between 
early flowering to late flowering where it declines late bolling stage 
onwards (Liu et al., 2011). Under limited water, flax can be easily 
outcompeted by many weeds, exacerbating the competition for 
resources (Bell and Nalewaja, 1968; Gruenhagen and Nalewaja, 
1969; Alessi and Power, 1970; Klimek-Kopyra et al., 2015). Flax 
is also less competitive than fibrous rooted cereals such as wheat 
(Morillon and Lassalles, 2002) that are with more extensive roots 
than flax in top soil layer (Gill, 1987). Despite the fact that flax 
performed well being intercropped with chickpea in irrigated 
field when flax grown in the furrow and chickpea on the ridge, 
poor flax performance was noticed when both the crop grown 
on flat field suggesting the low competence of flax (Ahlawat and 
Gangaiah, 2010). However, a wide range of performance among 
flax genotypes under different moisture regimes (Foster et al., 
1998; Diederichsen et al., 2006) can be attributed to variations of 
their root system (Cattivelli et al., 2008).

Prompted by the current large sets of genetic data from 
genome-wide association studies (GWAS) and advancements 

in imaging and data processing, high throughput digital root 
phenotyping techniques have become attractive. Hund et al. 
(2009) used a pouch system to phenotype root traits in maize 
and, this system has subsequently been applied in other crops 
such as wheat (Atkinson et al., 2015), Brassica (Thomas et al., 
2016), and barley (Canto et al., 2018) for examples.

Here we applied this technique to study the early root and 
shoot development of a flax mini-core collection (n = 115) 
that comprises representative genotypes from all major flax 
growing regions of the world. A GWAS was performed using a 
set of single nucleotide polymorphism (SNP) markers obtained 
from shotgun short-read re-sequencing data of the germplasm 
collection. The objectives of this research were 1) to assess the 
extent of the variation in root traits among genotypes, 2) to 
identify quantitative trait nucleotides (QTNs) associated with the 
genetic architecture of selected root and shoot traits, and, 3) to 
identify candidate genes for the traits harbored at the QTN loci.

MATERIAlS AND METhODS

Plant Materials
A flax mini-core collection (n = 115) that comprised >95% of 
the genetic diversity (Soto-Cerda et al., 2013) of the flax core 
collection (n = 407) (Diederichsen et al., 2013) was used. The 
75 linseed, 33 fiber flax, and 7 accessions of unknown type of 
the mini-core collection were collected from 20 countries that 
represent all major flax growing regions of the world.

Phenotyping
Early development root and shoot phenotyping was performed 
in a hydroponic pouch system modified from Hund et al. (2009). 
The system comprised two large plastic bins each containing 108 
L of nutrient solution that was transferred every 3 h from one bin 
to the other using timer-operated peristaltic pumps. Aluminum 
frames mounted on top of the two opaque bins were used to 
hang the pouches. The bins, but not the plants, were covered with 
black polyethylene sheets to prevent algal growth. This system 
was installed in a growth chamber (Conviron PGC20, Serial No. 
150342, Controlled Environment Ltd, Canada) maintained at 
21/18°C with a 16 h day/8 h night photoperiod.

Sterile 24x30 cm blue germination blotting papers (SGB1924B, 
Anchor Paper Company, St Paul, MN, USA) were inserted in 
Ziploc bags. The assemblies were attached to rust-proofed rods 
using fold back clips that were suspended in the bins with the 
open side of the Ziploc bags down to allow blotting up of the 
nutrient solution. Assemblies were labeled and randomized for 
each of the three consecutive biological replicates performed 
(Figure 1B).

The Hoagland nutrient solution (HOP1, Hoagland's No. 2 
basal salt mixture, Caisson Labs, Smithfield, UT, USA) was made 
at 25% strength with deionized water and adjusted to pH~6.3. 
The pouches were randomly distributed in the two bins. After 
complete moistening of the blotting paper, three seeds were 
inserted directly in the paper using tweezers, ~2 cm below the 
top edge and slightly spaced out near the center.
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The siphons that transferred the nutrient solution were set ~3 
cm from the bottom of the bins, i.e., touching the bottom of the 
blotting papers, in order to keep them moist at all time. Five days 
after seeding, germinated seeds were thinned out to one seedling 
per pouch. The retained seedlings were allowed to grow for 18 days.

On the 19th day, plants were carefully removed from their 
assemblies for imaging and measurements. Shoots, cut at the 
shoot and root junction, were measured with a ruler to estimate 
shoot length prior to being transferred to labeled envelopes 
and dried for 3 days at 60°C to measure dry weight. The root 
system of each plant was imaged using a Canon camera (EOS 
Rebel T5i) mounted on a custom stand to ensure a consistent 
40 cm distance between lens and roots. After imaging, the roots 

were gently pealed from the paper and processed as the shoots to 
measure their dry weight. Three biological replicates were thus 
performed consecutively.

Root images were processed using the General Image Analysis 
of Roots (GIA Roots) software (Galkovskyi et al., 2012). Each 
image was scaled using the 30 cm edge of the paper as reference. 
Scaled images were then analyzed for 14 root traits (Table 1, see 
details of the traits at http://www.rootnet.biology.gatech.edu/
giaroots/download/recent/gia_roots_manual.pdf).

Shoot dry weight, shoot length, root dry weight, shoot to root dry 
weight ratio, and the 14 root traits measured by the GIA software 
were analyzed. Basic statistics of the 16 traits were computed for 
111 genotypes (Table 1). Four  genotypes with a single replicate 

FIGURE 1 | Early root phenotyping experiment set-up and representative root images. (A) Diagrammatic sketch of the phenotyping system, arrows show the water 
flow direction, (B) close-up of the experimental set-up showing a partial view of the upper section of the blotting papers, labels, and plantlets, (C) extensive root 
system of TMP-2530 (U_MAR_C_CN98193), and (D) root system of flax cultivar Hanley.
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were not included in the analysis. A one-way analysis of variance 
(ANOVA) was performed for each trait using R. Pearson 
pairwise correlation coefficients between traits were calculated 
and summarized using R package sjPlot (Lüdecke, 2017). To have 
insight into the potential effect of geography of origin, variation 
due to root network length among geographic regions was 
illustrated in boxplot using R.

Genotyping and Genetic Data Analysis
SNP data of the entire flax core collection (n = 407) was 
previously generated after resequencing each genotypes using 
Illumina HiSeq 2000 platform in 100 bp paired-end mode to at 
an average coverage of 17X. The alignment, SNP call, and quality 
control such as removal of SNPs in long terminal repeat region 
were performed as previously described (Sertse et al., 2019). The 
SNP data for the mini-core collection was extracted from this 
core collection dataset.

Single Nucleotide Polymorphism Filtering 
and Preparation of Datasets
For this study, only SNPs with no missing data were used. Because 
the minor allele frequency (MAF) of an SNP could differ between 

the core and the mini-core collections, we used two datasets for 
GWAS. The first dataset (7K) included all SNPs with no missing 
data regardless of their MAF in the mini-core collection because 
these had already previously been included based on MAF > 5% 
criteria in the core collection. The second dataset was smaller 
(3K) because SNPs with MAF < 5% in the mini-core collection 
per se were removed. The two datasets were analyzed separately 
and results were compared.

Genetic Structure and Variation Analysis
To estimate the possible number of ancestral populations (K), 
a cross-validation technique (Alexander and Lange, 2011) was 
applied. Analysis of ancestral proportion of each genotype 
(Pritchard et al., 2000) was performed for K values ranging from 
2 to 20 using sparse non-negative matrix factorization (sNMF) 
(Frichot et al., 2014) of the R package LEA (Frichot and François 
2015) with default parameters except that the number of runs 
was increased from 10 to 20. The K value producing the lowest 
cross-validation error was accepted as the number of ancestral 
populations. The same package was used to visualize the cross-
validation and to generate the structure plot. Neighbor-joining 
(NJ) phylogenetic and principal component (PC) analyses were 
performed using TASSEL v 5.2 (Bradbury et al., 2007). Results 

TABlE 1 | Phenotypic traits and their basic statistics of three replicates of the 111 accessions of the flax mini-core collection.

Trait Abbreviation Description Unit1 Range Median Mean ± SD2

Average root diameter ARD Average individual root diameter cm 0.01–0.04 0.03 0.035 ± 0.0001**
Maximum number  
of roots

MaxR After sorting the number of roots crossing a 
horizontal line from smallest to largest, the 
maximum number is considered to be the 
84th-percentile value (one standard deviation)

count 2–19 8.33 8.94 ± 3.37**

Median number of roots MedR The result of a vertical line sweep in which 
the number of roots that crossed a horizontal 
line was estimated, and then the median of all 
values for the extent of the network  
was calculated.

count 1–10 3.67 3.99 ± 1.65**

Network area NWA Total area covered by all roots cm2 1.92–14.67 7.31 7.27 ± 2.15**
Network depth NWDep The maximum depth reached by the root cm 10.95–24.91 20.29 20.04 ± 2.51
Network distribution NWDist The fraction of root network in the lower two 

third of the network (analogy of root depth 
density)

na 0.26–1.98 0.79 0.865 ± 0.331

Network length NWL Total length of the entire network (~half 
perimeter)

cm 156.2–513.7 255.9 245.3 ± 77.5**

Network perimeter NWPer Total length following all root surfaces cm 111.7–1061.7 539.1 510.2 ± 163.8**
Network surface area NWSA The sum of surface area of all roots in the 

network
cm2 7.03–53.93 26.79 26.49 ± 7.94**

Network volume NWV The total volume of all roots in the network cm3 0.08–0.48 0.25 0.252 ± 0.074*
Network width NWW The maximum linear width attained by the root cm 4.17–21.33 12.42 12.43 ± 3.12**
Network width to depth NWW_Dep Ratio of NWW to NWDep (NWW/NWDep) na 0.203–1.316 0.64 0.632 ± 0.159*
Root dry weight RDWt Oven dried root weight g 0.008–0.045 0.02 0.024 ± 0.006
Shoot dry weight SDWt Oven dried shoot weight g 0.015–0.064 0.03 0.028 ± 0.008*
Shoot length SL Length of shoot from root collar to tip of the 

shoot
cm 4.95–13.27 7.67 7.91 ± 1.30*

Shoot : Root ratio S_RDWt Ratio of SDWt to RDWt (SDWt/RDWt) na 0.70–3.00 1.00 1.30 ± 0.44
Specific root length1 SRL Ratio of NWL to NWV(NWL/NWV) cm-2 686.4–1249 990.4 976.6 ± 116.4**
Specific root length2 SRL2 Ratio of NWL to RDWt (NWL/RDWt) cm/g 5,615–19,685.5 10877 10,765.99 ± 

2,695.79

1cm = centimeter; g = gram; na = not applicable.
2SD = standard deviation; * and ** = significant at P < 0.05 and 0.001, respectively.
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of the two analyses were summarized using Tree of Life (iTOL) 
v3 (Letunic and Bork, 2016) and R, respectively. Genotypes were 
assigned to the suggested ancestral populations based on their 
Q-matrix. Populations were named based on the passport data of 
their members indicating geography of origin.

Phenotype-Genotype Association 
Analyses and Mapping
The use of multi-locus methods that capture small effect loci in 
complex polygenic traits such as in plant roots and shoots has 
recently become a feasible approach. To benefit the algorithmic 
merits of different models and support results of one by an 
other, it is also advantageous to apply multiple methods 
(Zhang et al., 2019). To assess the genetic variants underlying 
each root and shoot traits in this study, the multi-locus GWAS 
methods FASTmrEMMA (Wen et al., 2016), FASTmrMLM 
(Tamba and Zhang, 2018), ISIS EM-BLASSO (Tamba et al., 
2017), mrMLM (Wang et al., 2016), pKWmEB (Ren et al., 
2018), and pLARmEB (Zhang et al., 2017) included in the R 
package multi-locus random-SNP-effect mixed linear model 
(mrMLM) (Wen et al., 2017) were applied. The single locus 
genome scan method latent factor mixed linear model (LFMM) 
in the R package lfmm (Frichot et al., 2013) was also used. To 
control the type I error in multiple comparison, false discovery 
rate (FDR) correction at = 0.05 was applied (Benjamini and 
Hochberg, 1995) for all models to identify significant QTNs. 
For LFMM, Bonferonni correction factor at α = 0.05 (0.05/n, 
n = the number of total SNPs) was also used as a comparative 
methods. Quantitative trait loci (QTL) regions spanning 100 
Kb up and downstream of all associated QTNs were examined 
for the predicted coding genes they harbored using the flax 
reference genome (You et al., 2018). Predicted functions of 
genes identified within each QTL were investigated based on 
their Arabidopsis orthologues (www.arabidopsis.org). Strongly 

associated SNPs and their putative underlying genes were 
illustrated on the flax pseudomolecules (You et al., 2018) using 
MapChart 2.3 (Voorrips, 2002). The favorability of alleles at 
QTNs detected by at least two of the multi-locus models with 
high phenotypic variance explained (PVE) (R2 > 5%), was 
illustrated using box plot based on mean phenotypic value of 
genotypes with each allele.

For genes previously identified to encode for interacting 
proteins, protein interaction networks were constructed using 
the tool STRING V11 (https://string-db.org) (Szklarczyk et al., 
2018). The interaction networks were constructed based on 
protein matchings searches in flax (Linum usitatissimum) with a 
minimum regulatory confidence of 0.95.

RESUlTS

Phenotypic Variation
From the two shoot and 14 root targeted traits, significant 
variation (P < 0.05) among genotypes was detected for all except 
for root dry weight, network depth, and network distribution 
(Table 1). In multiple comparison, genotype TMP-2530 (U_
MAR_C_CN98193) was significantly outperformed at least 
one genotype for 10 of the 13 traits (Supplementary Table 1). 
TMP-2530 was also the only genotype that had significantly 
higher shoot dry weight and, it displayed a distinctive heavy 
root network (Figure 1C) compared to other genotypes such as 
Hanley for example (Figure 1D).

Several traits were significantly correlated (Table 2). Shoot 
length and dry weight were strongly correlated with root 
dry weight and root network volume; the latter being highly 
correlated with root and shoot dry weights with r values of 0.78 
and 0.58, respectively. East Asian genotypes appeared superior in 
network length (NWL) genotypes from Americas, the Middle-
East, and South east Asia (Figure 2).

TABlE 2 | Pairwise correlation of the traits.

Traits ARD MaxR MedR NWA NWDep NWDis NWl NWPer NWSA NWV NWW NWW_
Dep

RDWt SDWt Sl S_RDWt SRl1

MaxR –0.52***

MedR –0.48*** 0.87***

NWA –0.37*** 0.75*** 0.68***

NWDep –0.07 0.06 –0.11 0.37***

NWDis 0.25* –0.30** –0.45*** –0.11 0.32**

NWl –0.48*** 0.80*** 0.72*** 0.98*** 0.34*** –0.16
NWPer –0.51*** 0.84*** 0.75*** 0.98*** 0.34*** –0.16 0.99***

NWSA –0.37*** 0.75*** 0.67*** 0.99*** 0.36*** –0.12 0.98*** 0.97***

NWV –0.22* 0.64*** 0.59*** 0.97*** 0.38*** –0.08 0.93*** 0.91*** 0.98***

NWW –0.36*** 0.63*** 0.53*** 0.82*** 0.34*** 0.05 0.82*** 0.82*** 0.81*** 0.77***

NWW_
Dep

–0.35*** 0.62*** 0.62*** 0.65*** –0.17 –0.15 0.67*** 0.66*** 0.65*** 0.59*** 0.85***

RDWt –0.17 0.48*** 0.43*** 0.76*** 0.33*** 0.12 0.72*** 0.71*** 0.76*** 0.76*** 0.61*** 0.45***

SDWt –0.08 0.44*** 0.43*** 0.62*** 0.14 0.05 0.60*** 0.59*** 0.63*** 0.63*** 0.56*** 0.50*** 0.56***

Sl –0.14 0.270** 0.17 0.41*** 0.33*** 0.24* 0.39*** 0.40*** 0.40*** 0.39*** 0.39*** 0.19 0.45*** 0.50***

S_RDWt 0.16 –0.21* –0.16 –0.35*** –0.35*** –0.04 –0.33*** –0.33*** –0.34*** –0.33*** –0.29** –0.10 –0.63*** 0.21* –0.14
SRl1 –0.80*** 0.54*** 0.51*** 0.34*** 0.13 –0.24* 0.47*** 0.50*** 0.32*** 0.14 0.38*** 0.33*** 0.12 0.03 0.15 –0.21*

SRl2 –0.4*** 0.39*** 0.35*** 0.27** 0.02 –0.33*** 0.35*** 0.35*** 0.28** 0.21* 0.26** 0.29** –0.37*** 0.05 –0.08 0.44*** 0.454***

*P < 0.05; **P < 0.01,***P < 0.001.
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Single Nucleotide Polymorphisms and 
Genetic Structure
A total of 7707 SNPs with MAF > 5% in the core collection had 
no missing data and, 3,243 of these had a MAF > 5% in the mini-
core per se. These datasets are henceforth referred to as the 7K and 
3K datasets, respectively. Phenotypic data was incomplete for 4 
genotypes and additional 10 genotypes had poor SNP call; hence 
the following analyses were carried out on 101 accessions of the 
mini-core collection using the 7K and 3K datasets independently. 
Population structure analysis based on both SNP datasets 
clustered the genotypes into six ancestral populations (Figure 
3A) grouped as follows: Canadian cultivars (CANC), Canadian 
Russian (CA_RU), temperate (TEMP), Asian (ASIA), Admixture 
(ADM), and mini_Indian (MIND) with only two accessions 
(Figure 3B). Principal component analysis (PCAs) with PC1/PC2 
and PC1/PC3 produced similar population structure patterns 
(Figures 3C, D). The NJ clustering slightly deviated from this 
pattern by assigning more than half of the fiber type accessions 
to a clade (FIB), splitting the TEMP into two clades (TEMP1 and 
TEMP2), distributing the CAN_RU, ADM, and MIND into the 
TEMP clades but with distinguishable high branch lengths of 
MIND. CANC and ASIA were each in a separate clade for a total 
of five clades and six distinguishable populations (Figure 3E).

Quantitative Trait Nucleotide- 
Trait Association
From the two datasets, the six multi-locus (mrMLMs) and the 
LFMM methods identified a grand total of 228 QTNs associated 
with at least one of the 16 traits, of which 33 QTNs were 
detected in both datasets (Supplementary Table 2). A total of 
35 large effect QTNs (high PVE) with R2 > 5% for at least one 
trait were discovered, of which, 15 were identified by two or 
more models (Table 3). Overall, 14 QTNs were significantly 
associated with at least one trait with the LFMM model and the 
stringent Bonferroni 0.05/n threshold (Supplementary Table 3). 
The extent of the phenotypic variations for the traits at these 
15 QTNs is illustrated (Figures 4A, B). Large effect QTNs at 

Chr4:17242614 and Chr5:15312783 positions were consistently 
associated with root network depth explaining 22.7 and 19.3% 
of variation for this trait respectively. Both were detected by at 
least four of the six multi-locus models and the LFMM model 
where the latter was also significant in the 3K dataset using 
the Bonferroni correction threshold (Supplementary Table  3, 
Supplementary Figure 1). A QTN associated with network 
perimeter with the highest PVE (R2 = 24.20) at Chr9:19061342 
using the multilocus FASTmrMLM (Table 3, Supplementary 
Table 2) was also significantly associated with the same trait 
based the Bonferroni criterion in both dataset (Supplementary 
Table 3, Supplementary Figures 1 and 2).

As expected, QTN associations with multiple correlated traits 
were observed. For example, a QTN at Chr15:11371216 position 
was associated with the following six correlated root network traits: 
network area, NWL, network perimeter, network surface area, 
network volume, and network width (Supplementary Table 3). This 
QTN was one of the large effect QTNs detected by multiple models for 
all the traits in both datasets (Table 2 and Supplementary Table 2). 
Two QTNs (Chr6:3310382 and Chr11:8154007) were associated 
with shoot dry weight (SDWt), each explaining more than 15% of 
the phenotypic variance of the trait (Table 3). QTN Chr11:8154007 
was also significant for SDWt in both datasets using the Bonferroni 
correction criterion (Figure 5).

Genes linked to Quantitative  
Trait Nucleotides
Most loci within 100 kb up and downstream of the detected 
QTNs harbored genes that had previously been reported 
to play role(s) in root and/or shoot development in plants 
(Figure  6, Supplementary Table 2). The genes were primarily 
related to auxin efflux, nutrient transport, and plant immunity. 
Loci corresponding to large effect QTNs detected by multiple 
methods harbored genes for the growth and development of plant 
organs. For instance, the locus defined by QTN Chr15:11371216 
harbored genes predicted to encode a lateral organ boundary 
(LOB) protein and a mitogen-activated protein kinase (MAPK). 

FIGURE 2 | Box plot showing variation in root network length among genotypes based on their geography or origin. Letter/s in the box indicate (P < 0.05) after 
pairwise comparison.
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Network analysis indicated that this predicted MAPK gene likely 
interacts with other MAPK genes typical of MAPK cascades 
(Supplementary Figure 3A). QTN locus Chr5:15312783, also 
detected by multiple methods but in this case for its association 
with root depth, comprised genes predicted to encode GRAS 
[collective name for gibberellic acid insensitive (GAI), repressor 
of GA1 (RGA), and Scarecrow (SCR)] transcription factors (Gao 
et al., 2004). This locus also harbored genes that were predicted 
to encode ARM repeats, a GATA-type zinc finger transcription 
factor family protein and YUCCA6 (YUC6). The other large 

effected QTN associated with root depth (Chr4:17242614) 
was linked to Arabidopsis orthologue genes AT5G37020 and 
AT5G10360 that encode auxin response factor-8 (ARF8) and 
sucrose synthase-6 (SUS6), respectively.

Most QTNs associated with SDWt were at loci containing 
genes predicted to encode pentatricopeptide repeat (PPR), 
photomorphogenesis, ubiquitin-related and plant defense 
proteins such as multi and toxic compound extrusion (MATE) 
(Figure 6, Supplementary Table 2). The large effect QTNs 
Chr6:3310382 and Chr11:8154007 associated with SDWt were 

FIGURE 3 | Population structure. (A) Estimate of the number of ancestral populations indicating six as the best fit, (B) population structure plot showing the six 
populations in different colors, (C) principal component analysis (PCA) plot of the first two principal components (PCs) where the percentages in parentheses 
represent the variance explained by the PCs, (D) PCA plot of the first and third PCs, (E) neighbor-joining (NJ) dendrogram where naming convention indicates the 
type (O, oil; F, fiber; U, unknown), the country of origin, the breeding status (C, cultivar; B, breeding material; L, landrace) followed by the accession name.
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located in relatively high gene density regions involved in plant 
immunity, development processes, and plant growth regulation 
(Figure 6, Supplementary Table 2). Among others, a gene 
predicted to function as a suppressor of phytochrome A-105 
(SPA3) and assumed to regulate plant growth by suppressing 
photomorphogenesis (Laubinger and Hoecker 2003), was 
duplicated at QTN locus Chr6:3310382. The SPA3 and UBA 
proteins (Figure 6, Supplementary Table 2) were predicted to 
interact via COP1 (Supplementary Figure 3B).

DISCUSSION
Root trait measurements provide essential information to facilitate 
varietal improvement in breeding programs to select superior 
genotypes especially in nutrient and moisture deficit areas (Comas 
et al., 2013; Ndour et al., 2017). Root traits have already been used 
in breeding schemes to select elite genotypes in crops such as wheat 

for example (Wasson et al., 2014). Applications of root phenotype-
genotype association through GWAS has enabled the identification 
of important QTL for root traits (Hochholdinger et al., 2018) that 
impact shoot traits including yield (Reinert et al., 2016). Our study 
provides insights into phenotype-genotype associations for early 
root and shoot traits of flax genotypes from over 20 countries by 
identifying QTL and proposing plausible candidate genes for 
further investigations.

Phenotypic Variation
The significant variations observed among genotypes for 
most of the early root system and shoot development 
traits evaluated points to the genetic diversity of flax for 
such traits and the potential for genetic improvement. The 
highest and lowest morphometric values reflect the level of 
diversity within the gene pool, promising useful materials for 
improvement through breeding. The wide range of variation 

TABlE 3 | QTNs with high phenotypic variance explained (R2 > 5%).

Traits Model1 QTN2 R2 (%)3 lOD4 MAF5

NWW; NWW_Dep; RDWt 3,6; 3; 5 Chr1:756854* 6.32–13.07 3.1–6.0 6.06
RDWt 5 Chr1:4908649 8.50 4.8 7.07
MedR 4 Chr1:11064283 7.82 3.9 7.07
SDWt 4 Chr1:18970469 10.65 3.6 8.08
SDWt 5 Chr1:20356976 8.04 6.7 6.06
NWDis 3 Chr2:4513304 11.49 3.4 5.94
NWW_Dep 2 Chr2:5963452 14.88 3.9 9.9
NWDis 4 Chr2:7095057 10.54 3.4 10.1
MaxR; MedR; NWL; NWPer; 
NWA; NWSA

2; 3; 3,6; 6; 3 6 Chr3:6925560 9.00–13.34 3.7–4.4 3.96

NWW 3,6 Chr3:16939026 8.89 4.2–4.6 3.96
SDWt 4 Chr3:17343476 7.48 3.7 8.08
NWDis 3 Chr3:18772054 9.68 4.206 4.95
NWDis 4 Chr3:25380098 12.72 3.7 13.13
NWDep 2,3,4,6 Chr4:17242614* 7.18–22.68 3.6–5.1 7.07
SRL 2,3,5,6 Chr4:18399285 10.65–15.60 3.3–4.9 10.1
MedR 4 Chr5:1375386 12.94 4.0 9.09
RDWt 3,7 Chr5:2645287 21.88 4.2 6.93
MedR 4 Chr5:11019409 10.32 3.4 6.06
NWDep; NWL; NWSA 1,2,3,4,6; 6; 4 Chr5:15312783* 5.61–19.26 3.0–7.4 15.15
SDWt 5,6 Chr6:3310382* 11.45–17.64 3.3 13.13
SRL 3 Chr6:7732273 5.47 3.2 9.9
MedR 4 Chr7:4774423 7.72 3.025 6.06
NWW_Dep 3,4 Chr7:6346464 7.32–13.46 3.7–3.9 10.1
SRL 3,6 Chr8:21825897 5.00 3.4 13.86
RDWt 5 Chr9:15946848 9.16 5.3 7.07
NWPer 3,7 Chr9:19061342* 24.20 4.0–9.8 11.88
MedR 2 Chr11:5382629 8.27 3.2 5.94
SDWt 3,7 Chr11:8154007 16.53 4.8 7.92
NWV 3,6 Chr12:255713 11.34–11.40 3.1–3.2 5.94
SL 3 Chr12:3690290 12.58 3.3 5.94
SDWt 4 Chr12:12200657 10.05 3.5 18.18
NWL; NWPer; NWA; NWSA 4,6; 4; 4; 4 Chr14:13363192* 5.33–10.69 3.2–4.6 9.09
NWW_Dep 3 Chr14:15462441 14.77 5.0 2.97
MedR 4 Chr15:10531332 8.52 3.8 6.06
NWL; NWPer; NWA; NWSA; 
NWV; NWW

3,4,6; 3,4,6 3,4,6; 2,3,4,6 
2,3,6; 2,4

Chr15:11371216* 5.36–14.17 3.0–4.6 6.06

1Models are 1 = FASTmrEMMA, 2 = FASTmrMLM, 3 = ISIS EM-BLASSO, 4 = mrMLM, 5 = pKWmEB, 6 = pLARmEB; LFMM = 7 (only QTN that passed the Bonferroni correction criterion).
2QTN, quantitative trait nucleotide, chromosome number and position are indicated, asterisks (*) indicate QTNs detected by multiple models from both 7K and 3K datasets.
3R2, coefficient of determination explaining phenotypic variation due to allelic effect.
4LOD, logarithm of odds.
5MAF, minor allele frequency.
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for most agronomic traits among flax genotypes (Richards and 
Diederichsen 2003) is well represented in the core collection 
(Diederichsen et al., 2013; You et al., 2017). Most genotypes in 
the flax core collection exhibit both fiber and oilseed features 
that can attributable to selection processes for dually elite ones 
(You et al., 2017).

Correlations between root and shoot traits reflect the notion of 
balance between roots and shoots referring to plants partitioning 
their resource allocations between the two plant parts (Davidson 
1969; Garnier, 1991). A high correlation between shoot and root 
dry weights has also been reported in rice (Zhao et al., 2019); 
this is not surprising considering the role of roots in supplying 
nutrients to the above-ground parts. The higher correlations 
between root network traits such as network perimeter, network 
length, network surface area, and network volume with shoot 

traits compared to that with root depth suggest the crop's reliance 
on the top layer rooting system for resource uptake (Hocking 
et al., 1997; Kar et al., 2007).

The inverse relationship between average root diameter and 
root network related traits such as total network length, perimeter, 
and surface area have been reported not only in flax (Soto-Cerda 
et al., 2019) but also in other plants such as Arabidopsis thaliana 
(Qian et al., 2015). The strong negative correlation between 
specific root length and average root diameter agrees with similar 
trade-offs between these traits in plants such as maize (Zhu and 
Lynch, 2004) and various tree species (Bauhus and Messier, 
1999; Kramer‐Walter et al., 2016). The superiority of East-
Asian genotypes in root network length is consistent with the 
performance of these materials under drought condition (data 
not shown) that may reflect their breeding importance.

FIGURE 4 | Box plots of large effect quantitative trait nucleotides (QTNs). (A) Phenotypic variations at large effect QTNs consistently detected in both 3k and 7k datasets, 
and (B) phenotypic variation at large effect QTNs that were detected by at least two models in at one or both datasets. Trait abbreviations are listed in Table 1.
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Genome Wide Association and  
Candidate Genes
The genetic structure of the mini-core collection used herein is 
in accordance with previous reports describing the extent of the 
genetic and agronomic trait diversity of the flax core collection 
and indicating its suitability for GWAS (Soto-Cerda et al., 2013). 
Most QTN loci harbored genes predicted to play a role in organ 
development. QTN Chr15:11371216 was identified based on 
its association with multiple root traits, its large effect, and its 
detection by multiple models. The LOB and MAPK orthologous 
genes at this locus have already been shown to contribute to 
root development in Medicago trunculata (Liu et al., 2005; Ariel 
et al., 2010; Han et al., 2014). LOBs are plant-specific proteins 
known for their involvement in lateral organ development (Shuai 
et al., 2002) including lateral root formation (Jeon et al., 2017). 
LOB proteins not only mediate a number of root and shoot 
development processes but can also respond to environmental 
stimuli (Shuai et al., 2002; Xu et al., 2016). MAPKs regulate 
several physiological processes of all eukaryote organisms 
including microbes and metazoans (Nishihama et al., 1995). 
In plants, they are involved in diverse developmental processes 
including response to abiotic stresses (Nakagami et al., 2005) but 
they have also been reported to play a role in regulating plant 
root growth via auxin signaling (Zhao et al., 2013).

The consistent association of Chr5:15312783 with root 
depth based on most of the models used and the occurrence of 

multiple genes predicted to function as GRAS, ARM, ATA, and 
YUC genes at its locus hint at a possible role in determining root 
depth. GRAS family genes play important roles in plant organ 
development (Bolle, 2016). The predicted GRAS gene at this 
locus appeared to be an orthologue of A. thaliana's AT5G66770 
that encodes SCR (Gao et al., 2004), thereby supporting the 
candidacy of this gene for the QTL. SCR and SHORTROOT 
(SHR) proteins of the GRAS family are known for their regulatory 
functions of root development in Arabidopsis (Benfey et al., 1993; 
Kamiya et al., 2003; Sbabou et al., 2010). These two proteins 
interact and work in tandem, i.e., SCR regulates the movement 
of SHR (Cui et al., 2007). Arabidopsis orthologues ARM (Coates 
et al., 2006), GATA (Behringer and Schwechheimer, 2015), and 
YUC (Woo et al., 2007; Cha et al., 2015) at this locus could also 
be important for the development of plant organs in general and 
roots in particular. The specific YUC6 orthologue gene at this 
locus was reported to have important role in drought tolerance 
in Arabidopsis (Cha et al., 2015). The large effect Chr4:17242614 
QTN for root depth may be attributable to an ARF8 orthologous 
gene that can regulate auxin-mediated process and influence 
primary root elongation (Blilou et al., 2005) and possibly lateral 
roots as well (Wang et al., 2015; Lee et al., 2019). ARF8 has been 
demonstrated to have clear effect on root growth habit where 
the roots of wild type plants grew slanted and those of mutants 
had a vertical downward elongation (Tian et al., 2004). This 
gene can also regulate flower maturation in later developmental 

FIGURE 5 | Manhattan and quantile-quantile plots showing QTNs that are significantly associated with shoot dry weight using the stringent Bonferroni criterion 
for both datasets; (A) 3K dataset; (B) 7K data set. The horizontal brown lines indicate the threshold P = 0.05/n = 0.05/3243 = 1.54178E-05 and 0.05/7707 = 
6.48761E-06 for the 3K and 7K datasets, respectively. Position of the significant QTNs on chromosome 11 are indicated. Colors in Manhattan plot indicate the 15 
chromosomes of flax in order from 1 to 15.
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FIGURE 6 | Physical map of the 15 chromosomes of flax illustrating the position of the quantitative trait nucleotides (QTNs) and their proximal candidate genes (right 
of the chromosomes). QTNs with R2 > 5% in the 3K, 7K or in both datasets are in green, purple, and red, respectively. QTNs indicated in blue have R2 < 5% and 
were detected in the 3K dataset. Numbers on the left of the chromosomes represent physical distances in megabases.
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stage, affecting fertility and seed production (Nagpal et al., 2005; 
Ghelli et al., 2018). The existence of a SUS orthologous gene as a 
regulator of primary root development (Sturm et al., 1995) may 
also be entertained as a candidate QTL for flax root depth.

The consistent occurrence of PPR, MATE, and ubiquitin 
related orthologous genes at large effect QTN loci associated with 
shoot traits, especially with SDWt, make them strong candidates. 
The PPR genes are involved in plant growth and stress tolerance 
in several plant species (Laluk et al., 2011; Wu et al., 2016; Xing 
et al., 2018). MATE efflux proteins on the other hand play a vital 
role in plant immunity against different toxins (Diener et  al., 
2001) including secondary metabolites (Gomez et al., 2009), 
xenobiotics such as heavy metals (Li et al., 2002) and aluminum 
(Li et al., 2017). Ubiquitin orthologues linked to SDWt QTNs 
are candidate loci on the ground of their known roles in shoot 
development (Stirnberg et al., 2002; Yang et al., 2007). The SPA3 
orthologous gene at the Chr6:3310382 locus, the QTN associated 
with SDWt, is a member of a gene family that acts as a suppressor 
of phytochrome A and regulates photomorphogenesis (Hoecker 
et al., 1999; Laubinger and Hoecker, 2003). In Arabidopsis, SPA3 
has a pronounced effect on seedling elongation (Laubinger and 
Hoecker, 2003) and, interestingly, it is expressed in all above 
ground tissues while showing no detectable expression in roots 
(Zhu et al., 2008). The SPA3 protein in Arabidopsis and rice has 
a conserved DWD motif that reflects its role in modulating 
a protein involved in photomorphogenesis repression and 
in activation of etiolation through CONSTITUTIVELY 
PHOTOMORPHOGENIC1 (COP1); the latter also possesses E3 
ubiquitin ligase activity (Lee et al., 2008). A secondary role for 
SPA3 that would be related to UBA at this locus through COP1 
can therefore be considered (Supplementary Figure 3).

Most genes linked to the large effect QTNs associated with 
root and shoot traits are responsive to abiotic stresses such as 
drought, salt, and temperature. For instance, some GRAS family 
genes have useful roles in drought and salt tolerance (Ma et al., 
2010; Xu et al., 2015). Some members of MAPK genes positively 
regulate low-temperature tolerance while decreasing drought 
and salt resistance (Jia et al., 2016). The role played by auxin-
related genes (e.g., LOBs) in various abiotic stresses, including 
drought, have been reported for many plant species (Jain and 
Khurana, 2009; Wang et al., 2010; Jung et al., 2015; Huang et al., 
2016). The QTN trait associations in these studies may further 
implicate variation in local adaptation to different environmental 
conditions given that our germplasm represented all flax growing 
regions of the world and represented more than 95% of the 
genetic diversity of whole flax core collection.

CONClUSIONS
Early root and shoot trait phenotyping and GWAS of flax have 
provided insights into the complex relationships of these traits and 
their associated QTN loci were mined to hypothesize candidate 
genes. Early root network traits are interrelated, positively impact 
shoot traits and, consequently, seedling vigor. As such, early root 
establishment may also affect downstream yield performance. Our 
results suggest that, in flax, the extent of the root network is more 

important than root depth per se during the early growth stages. 
Root development studies spanning all growth stages would be 
necessary to quantify the relative importance of both traits over 
the entire cropping season and under different moisture regimes.

The GWAS yielded QTNs associated with most of the root 
traits and both shoot traits and the candidate genes identified 
at the major loci provide grounds for further investigations, 
particularly as they relate to stress tolerance. Some of the QTNs 
have pleiotropic effects that can either stem from linked genetic 
features at the loci or from single genes affecting multiple root 
traits. SDWt associated loci harbored genes that regulates 
physiological processes in above ground plant parts such as 
photosynthesis. Genes expressed at different stages and in 
different tissues may be tested for their specific role in controlling 
agronomic traits or imparting stress tolerance. Therefore, some 
of these loci co-locate with QTL for other traits not measured 
herein. Given the polygenic nature of several agronomic traits, 
consideration must be give to QTL of small effects because their 
cumulative impact is important in pre-breeding and positive 
selection can be achieve through genomic selection and other 
marker-assisted breeding schemes.
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