
1

Edited by: 
Jacqueline Batley, 

University of Western Australia, 
Australia

Reviewed by: 
Wenxin Liu, 

China Agricultural University (CAU), 
China 

Reif Jochen, 
Leibniz Institute of Plant Genetics and 

Crop Plant Research (IPK), 
Germany

*Correspondence: 
Yoseph Beyene 

y.beyene@cgiar.org

Specialty section: 
This article was submitted to 

 Plant Breeding, 
 a section of the journal 

 Frontiers in Plant Science

Received: 12 August 2019
Accepted: 29 October 2019

Published: 22 November 2019

Citation: 
Beyene Y, Gowda M, Olsen M, 

Robbins KR, Pérez-Rodríguez P, 
Alvarado G, Dreher K, Gao SY, Mugo S, 

Prasanna BM and Crossa J (2019) 
Empirical Comparison of Tropical Maize 

Hybrids Selected Through Genomic 
and Phenotypic Selections. 
 Front. Plant Sci. 10:1502. 

 doi: 10.3389/fpls.2019.01502

Empirical Comparison of Tropical 
Maize Hybrids Selected Through 
Genomic and Phenotypic Selections
Yoseph Beyene 1*, Manje Gowda 1, Michael Olsen 1, Kelly R. Robbins 2,  
Paulino Pérez-Rodríguez 3, Gregorio Alvarado 4, Kate Dreher 4, Star Yanxin Gao 2,  
Stephen Mugo 1, Boddupalli M. Prasanna 1 and Jose Crossa 4

1 Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya, 2 School of Integrative 
Plant Sciences, Cornell University, Ithaca, NY, United States, 3 Colegio de Postgraduados, Montecillos, Mexico, 4 Genetic 
Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico 

Genomic selection predicts the genomic estimated breeding values (GEBVs) of individuals 
not previously phenotyped. Several studies have investigated the accuracy of genomic 
predictions in maize but there is little empirical evidence on the practical performance of 
lines selected based on phenotype in comparison with those selected solely on GEBVs 
in advanced testcross yield trials. The main objectives of this study were to (1) empirically 
compare the performance of tropical maize hybrids selected through phenotypic selection 
(PS) and genomic selection (GS) under well-watered (WW) and managed drought stress 
(WS) conditions in Kenya, and (2) compare the cost–benefit analysis of GS and PS. For 
this study, we used two experimental maize data sets (stage I and stage II yield trials). The 
stage I data set consisted of 1492 doubled haploid (DH) lines genotyped with rAmpSeq 
SNPs. A subset of these lines (855) representing various DH populations within the stage 
I cohort was crossed with an individual single-cross tester chosen to complement each 
population. These testcross hybrids were evaluated in replicated trials under WW and 
WS conditions for grain yield and other agronomic traits, while the remaining 637 DH 
lines were predicted using the 855 lines as a training set. The second data set (stage 
II) consists of 348 DH lines from the first data set. Among these 348 best DH lines, 
172 lines selected were solely based on GEBVs, and 176 lines were selected based on 
phenotypic performance. Each of the 348 DH lines were crossed with three common 
testers from complementary heterotic groups, and the resulting 1042 testcross hybrids 
and six commercial checks were evaluated in four to five WW locations and one WS 
condition in Kenya. For stage I trials, the cross-validated prediction accuracy for grain 
yield was 0.67 and 0.65 under WW and WS conditions, respectively. We found similar 
responses to selection using PS and GS for grain yield other agronomic traits under 
WW and WS conditions. The top 15% of hybrids advanced through GS and PS gave 
21%–23% higher grain yield under WW and 51%–52% more grain yield under WS than 
the mean of the checks. The GS reduced the cost by 32% over the PS with similar 
selection gains. We concluded that the use of GS for yield under WW and WS conditions 
in maize can produce selection candidates with similar performance as those generated 
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from conventional PS, but at a lower cost, and therefore, should be incorporated into 
maize breeding pipelines to increase breeding program efficiency.

Keywords: phenotypic selection, genomic selection, genetic gain, maize, well-watered and water stress environments

inTrODUCTiOn
With more than 35 million ha harvested each year, maize is the 
most important staple food crop in sub-Saharan Africa (SSA). 
In SSA countries, maize is commonly grown by resource-poor 
farmers and covers large areas with very low average grain yield 
(1.4 ton/ha) (Smale et al., 2011). The low productivity of maize 
in SSA is due to several factors including drought and low soil 
nitrogen stress, foliar diseases, and insect pests among others. 
The ability to quickly develop germplasm with resistance to 
important abiotic and biotic stresses will be critical for the 
resilience of Africa’s maize-based cropping systems in the face 
of climate change. Breeding for drought tolerance and yield 
stability is an important objective of maize breeding programs in 
SSA, and a high priority for the International Maize and Wheat 
Improvement Center (CIMMYT) (Bänziger et al., 2006; Beyene 
et al., 2017; Cairns and Prasanna, 2018). Over the past decades, 
CIMMYT and its partners have made significant progress 
developing maize germplasm that is tolerant to drought, low soil 
nitrogen, and diseases including maize lethal necrosis (Beyene 
et al., 2017; Cairns and Prasanna, 2018). To accelerate breeding 
for drought tolerance, CIMMYT and its partners adopted several 
breeding approaches including pedigree selection, marker-
assisted recurrent selection (MARS), and genomic selection (GS) 
combined with high-throughput phenotyping, doubled haploids 
(DH), and year-round nurseries (Beyene et al., 2016; Cairns and 
Prasanna, 2018).

Genomic prediction is an approach that uses molecular marker 
data to predict the genetic value of complex traits in progeny for 
selection and breeding (Meuwissen et al., 2001). When genomic 
predictions are used to make selections, the process is referred to 
as GS. The primary difference between GS and traditional forms 
of marker-assisted selection (MAS) is the simultaneous use of 
many markers distributed genome-wide, as opposed to a small 
set of markers linked to quantitative trait loci (Heffner et al., 
2009). The objective of GS is to determine the genetic potential 
of an individual instead of identifying the specific quantitative 
trait loci. GS could be used in plant breeding programs in rapid 
recombination cycles and predict the breeding value of untested 
parents (genomic estimated breeding value, GEBV). Another 
way of using GS is with sparse testing where some lines are tested 
in some environments but predicted in others. Implementing 
genomic prediction and selection requires development of 
appropriate training sets consisting of individuals that have been 
both phenotyped and genotyped, followed by model calibration. 
Bernardo and Yu (2007) were the first to report the use of GS 
in maize breeding using simulation data. Massman et al. (2013) 
used real data to compare GS and MARS in a bi-parental maize 
population derived from temperate lines and reported that GS 
gave a 14 to 50% advantage over MARS for grain yield and stover 

quality. Beyene et al. (2015) reported genetic gains through GS in 
eight CIMMYT tropical bi-parental maize populations evaluated 
under managed drought conditions in SSA. The authors showed 
that (i) the average gain per cycle from GS was 0.086 t/ha under 
managed drought conditions, (ii) the average grain yield of cycle 
3-GS-derived hybrids was significantly higher than that of hybrids 
derived from C0, and (iii) three GS cycles can be achieved in one 
year. On the other hand, the average gain per cycle using MARS 
across 10 populations was 0.051 t/ha per cycle under managed 
drought stress (Beyene et al., 2016). Vivek et al. (2017) reported 
that the realized genetic gain per year was higher for GS than for 
phenotypic selection (PS) in two bi-parental populations.

As pointed out by Crossa et al. (2017), the main advantages of 
GS as compared to phenotype-based selection in breeding are: (i) 
GS reduces the cost per cycle, and (ii) it increases time efficiency 
of variety development. For example, in terms of cost reduction 
in maize breeding, the breeder can testcross 50% of all available 
lines, evaluate them in first-stage multi-location trials, and then 
use the phenotypic data to predict the remaining 50% by GS. The 
time efficiency advantage over PS could come from the second 
selection cycle, which uses the training population from the 
previous cycle to predict the new inbred lines, thus excluding 
testcross formation and first-stage multi-location evaluation 
trials. As more robust, multi-year training sets are developed, GS 
can be used to advance the best selection candidates directly to 
the second stage of multi-location evaluations. This significantly 
reduces the cost of testcross formation and evaluation in the 
earliest stage of multi-location multi-year evaluation.

Although testing predictive ability is critical for gathering 
information for GS, there is a large gap between the findings 
of these studies and their application in breeding programs 
(Bernardo, 2016). In maize breeding, the potential of GS was 
empirically evaluated (Crossa et al., 2010; Windhausen et al., 
2012; Massman et al., 2013; Beyene et al., 2015). CIMMYT 
maize breeding programs have evaluated several GS-related 
methods with varying levels of success over the past 8 years 
(Crossa et al., 2010; Burgueño et al., 2012; Windhausen et al., 
2012; Beyene et al., 2015; Edriss et al., 2017; Zhang et al., 2017). 
More recently, some authors have considered using genomic 
models for predicting hybrid performance (Kadam et al., 2016; 
Cantelmo et al., 2017; Acosta-Pech et al., 2017; Vélez Torres et al., 
2018); these studies have shown that genomic models can give 
reasonably accurate predictions of the agronomic performance 
of hybrids. Several of those studies have investigated the 
accuracy of genomic predictions but there is little empirical 
evidence on the practical performance of lines selected based 
on phenotype and GS (untested lines selected solely based on 
GEBV) in advanced yield trials.

The current study compares the performance of maize DH 
line testcrosses selected based on GS versus PS in second stage 
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multi-location yield trials of the CIMMYT maize breeding 
program in SSA. For this study, we used two experimental 
maize data sets: first-stage multi-location yield trials (hereafter 
referred to as stage I) and second-stage multi-location yield 
trials (hereafter referred to as stage II). The stage I data set 
consisted of 1492 DH lines genotyped with rAmpSeq (epeat 
lification uencing) dominant sequence tag markers (https://doi.
org/10.1101/096628). A subset of these lines (855) was crossed 
with an individual single-cross tester chosen to complement 
each specific population and evaluated in replicated trials 
under optimum and drought conditions for grain yield and 
other agronomic traits, while the remaining 637 DH lines were 
predicted using the 855 lines as a training set. The second data set 
(stage II) consisted of 348 DH lines from the first data set (stage 
I), of which 172 lines were selected solely based on GEBVs, and 
176 lines were selected based on phenotypic performance. In this 
second data set, each of the 348 DH lines was crossed with three 
common testers from complementary heterotic groups, and 
the resulting 1042 testcross hybrids and six commercial checks 
were evaluated in 4-5 optimum locations and one location with 
managed drought conditions in Kenya. The objectives of this 
research were to (1) empirically compare the performance of 
tropical maize hybrids selected through PS and GS under stress 
and non-stress conditions, and (2) compare the cost–benefit of 
genomic and PS in tropical maize.

MaTErialS anD METHODS

Plant Materials Used in the Study
The first data set (stage I) comprised a total of 1492 DH lines 
derived from 12 bi-parental DH populations developed at 
CIMMYT’s Maize DH facility in Kiboko, Kenya. The 12 
source populations were obtained by crossing elite CIMMYT 
maize lines (CMLs) with La Posta Seq C7, a drought tolerant 
population developed at CIMMYT, Mexico, through recurrent 
selection among full sib/S1 families (Edmeades et al., 1999). 
The selected CMLs were drought tolerant lines that have good 
combining abilities and are adapted across several environments 
in SSA (Beyene et al., 2013). The DH lines were grown at the 
Kenya Agricultural and Livestock Research Organization Kiboko 
Research Station during the 2015/16 short rainy season. Based 
on the results of per se evaluation (germination and good stand 
establishment, plant type, low ear placement, and well-filled 
ears), 1492 DH lines were selected for stage I multi-location 
yield trials (Table 1). The smallest DH family comprised 34 lines, 
while the largest had 240 lines.

Field Evaluation of Stage i Hybrid 
Yield Trials
To implement GS in CIMMYT’s maize breeding program, 
nearly half (855) of 1492 selected DH lines were crossed with 
a single-cross tester from complementary heterotic group and 
phenotyped across locations. The 855 hybrids were divided into 
14 trials connected by common checks. In each trial, three to six 
commercial checks were included and planted in an alpha-lattice 

design with two replications and phenotyped in three well-
watered (WW) environments and one managed drought stress 
(WS) environment in Kenya during the 2017 growing season. The 
WS experiment was conducted during the dry (rain-free) season 
by suspending irrigation starting 2 weeks before flowering until 
harvest, whereas the WW experiments were conducted during 
the rainy season, applying supplemental irrigation as needed. 
Entries were planted in two-row plots, 5 m long, with 0.75 m 
spacing between rows and 0.25 m between hills. Two seeds per 
hill were initially planted and then thinned down to one plant per 
hill three weeks after emergence to obtain a final plant population 
density of 53,333 plants per hectare. Fertilizers were applied at 
the rate of 60 kg N and 60 kg P2O5 per ha, as recommended for 
the area. Nitrogen was applied twice: at planting and 6 weeks 
after emergence. Fields were kept free of weeds by hand weeding. 
The following traits were measured: grain yield (GY, tons ha− 1), 
anthesis date (AD, days), plant height (PH, cm), grain moisture 
(MOI, %), gray leaf spot (GLS, 1–5 rating score), and turcicum 
leaf blight (TLB, 1–5 rating score). Plots were manually harvested 
and GY was corrected to 12.5% moisture. AD was measured 
from planting to when 50% of the plants shed pollen, and PH 
was measured from the soil surface to the flag leaf collar on five 
representative plants within each plot.

Genotyping 1492 DH lines Using rampSeq
Leaf samples were taken from each of the 1492 DH lines and sent 
to Intertek, Sweden, for DNA extraction. The DNA sample plates 
were forwarded to the Institute for Genomic Diversity, Cornell 
University, Ithaca, NY, USA, for genotyping with repetitive 
sequences (rAmpSeq markers) as per the procedure described 
by Buckler et al. (2016). Each sample was first amplified with 
PCR, and DNAs within each batch were pooled and multiplexed 
for rAmpSeq sequencing, a new genotyping technology which 
is used to amplify repetitive (LTR/retroelements) regions of the 
genome. A K-mer based approach was used to design the primer 
pairs which range between 150-bp to 200-bp in length and target 
~1,500–2,000 loci in the genome (Buckler et al., 2016, http://
www.biorxiv.org/content/early/ 2016/12/24/096628). With the 

TaBlE 1 | List of 12 bi-parental maize populations used in this study.

no. Population name # Doubled haploid 
(DH) lines genotyped

# DH lines 
phenotyped

1 CML440/LPS-F64 34 34
2 CML445/LPS-F64 181 91
3 CML312/LPS-F64 185 93
4 CML442/LPS-F64 240 126
5 CML505/LPS-F64 162 81
6 CZL04003/LPS-F64 134 67
7 CML536/LPS-F64 180 86
8 CML537/LPS-F64 110 55
9 CML538/LPS-F64 40 40
10 CML540/LPS-F64 51 51
11 ZEWAc1F2-134-4-

1-B-1-B*4-1-2-B-B/
LPS-F64

75 75

12 CML312/CML540 100 52
Total 1492 851
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availability of thousands of adaptors, this technology makes it 
possible to genotype 3,000 samples in a single sequencing run 
and dramatically reduces the genotyping cost per sample. A total 
of 4657 markers that passed quality control were used for GS.

Field Evaluation of advanced (Stage ii) 
Hybrid Trials Selected Through  
Phenotypic and GS
From stage I analyses, the top performing 348 (23%) DH lines 
were chosen for stage II evaluation. Among these 348 DH lines, 
172 lines represented selection from the 637 genomic predicted 
lines that had above average GEBVs and 176 lines were selected 
from the 855 phenotyped lines that had above average Best 
Linear Unbiased Estimates (BLUE). Each of these DH lines 
were crossed with three common testers from complementary 
heterotic groups. The resultant 1042 testcross hybrids were 
evaluated in eight connected trials. Six commercial checks were 
included in each trial and planted in an alpha-lattice design with 
two replications and phenotyped in 4-5 WW environments and 
one WS environment in Kenya in 2018. The WS experiment 
was conducted during the dry (rain-free) season by suspending 
irrigation starting 2 weeks before flowering until harvest, 
whereas the WW experiments were conducted during the rainy 
season, applying supplemental irrigation as needed. Planting and 
agronomic managements were similar as explained for stage I 
trials. The following traits were measured: grain yield (GY, tons 
ha−1), anthesis date (AD, days), plant height (PH, cm), grain 
moisture (MOI, %), gray leaf spot (GLS, 1–5 rating score), and 
turcicum leaf blight (TLB, 1–5 rating score). Plots were manually 
harvested and GY was corrected to 12.5% moisture.

Phenotypic Data analysis
There were two sets of phenotypic field trials; the first set 
included 855 hybrids used to predict the performance of 
unobserved 637 lines (stage I), and the second set (stage II) was 
made up of 1042 hybrids from 348 DH lines (172 lines selected 
from GEBV alone and 176 lines selected based on phenotypic 
data) crossed with three testers. Note that the second set of field 
trials was used to compare the performance of the GS vs PS of 
hybrids. All the phenotypic analyses were done to obtain the 
variance components and BLUEs for the lines under WW and 
WS. All testcrosses were evaluated in different trials but adjacent 
to each other and connected by common checks in the same 
field. Phenotypic data was analyzed first within trials and then 
across trials.

The BLUEs across WW and WS locations for each trial and 
each trait were generated using the following linear mixed model 
carried out using the META-R software (Alvarado et al., 2017): 

 
Y L R L B R L G GLijrk j r j k r j i ij               = + + ( ) + ( )



 + + +µ   ijrk  

where Yijrk is the grain yield of genotype i at location j in replicate r 
within block k; µ is the general mean; Lj is the fixed effect of location 
j; Rr(Lj) is the fixed effect of replicate r within location j; Bk[Rr(Lj)] 
is the random effect of incomplete block k within replicate r and 

location j is assumed to be independently and identically normal 
distributed with mean zero and variance σ   ( )B RL

2 ;Gi is the effect 
of line i; GLij is the effect of the line × location interaction; and 
ijrk  is the random residual error assumed independent and 
identically normal distributed with mean zero and variance σ   

2  .  
The variance components and heritability across locations for 
WW and WS sites were computed. The BLUE of each trait for the 
single WS location are obtained from the following model

 Y R B R Girk r k r i irk          ( )    = + + + +µ   

The analysis across trials was also performed using similar model 
as those shown above but including the trial as fixed effect.

Genomic-Enabled Prediction Models for 
Stage-i Yield Trial Data
The BLUE of the entries within and across testers were used 
for genome-based predictions. GEBVs were calculated for GY, 
AD, MOI and PH using the BGLR statistical R-package (Pérez-
Rodríguez and de los Campos, 2014) within and across testers 
for WW and WS sites. For genome-enabled prediction, a total of 
4657 markers that passed quality control were selected. For GS, 
the Genomic Best Linear Unbiased Predictor (G-BLUP) model 
was employed. Further, to understand the effect of testers on 
prediction accuracy, GS was applied to predict unobserved lines 
within and across testers.

The models described below were used with two purposes: 
one was to use the 855 lines as a training set to predict the GEBV 
of 637 lines (testing set) and use the observed and predicted 
values to select top performing lines. The other objective of 
the models described below was to study the genome-based 
prediction accuracy of the 855 lines with phenotypic and 
genotypic data and determine the prediction accuracy using 
main effects and main effects plus interaction models for each 
tester and across testers.

Environment + Genome Model (E + G + e)
This model can be expressed as

 y E g eij i j ij= + + +µ ,  

Where yij is the response trait for the jth hybrid in the ith 
environment, μ is the overall mean, and Ei is the fixed effect of 
the site (either WW or WS). Here, gj corresponds to the genomic 
breeding value of the jth line defined as a linear combination of 
marker codes and the corresponding marker effects, such that 

g x bj jm m
m

p
=

=∑ ,
1

 where p is the number of markers, xjm is 

the marker code for the jth line at the mth marker position (m = 
1,…, p), and bm is the corresponding marker effect. The marker 
effects are assumed identically and independently distributed 

(IID) such that b Nm b~ , ,
IID

0 σ 2( )  with σb
2  being the variance 

component of the marker effects. The covariance matrix of the 
vector of genomic values g = {gj} can be written as Cov g G( ) = σ g

2
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where G is the genomic relationship matrix computed as 

G XX=
'

p
 where X is the standardized genotype matrix (by 

columns), p is the number of markers, and σ σg bp2 2= ×  denotes 

the genomic variance component. Hence, g = { } ( )g Nj ~ ,0 Gσ g
2  

Since molecular marker information varies across individuals 
(even within the same family), the estimated breeding values are 
unique for each genotype. Finally, eij is the residual assumed to 
have an identical and independent distribution (IID) such that 

e Nij e~ ,
IID

0 σ 2( )  where σ e
2  is the residual variance.

Note that this model was used for the genomic prediction 
computed for the WW sites. The predictions for the unique 
managed sites had only the G + e component because these trials 
were established in only one managed drought site.

Environment + Genome + Genome × 
Environment Model (E +G + GE + e)
This is the same as the previous model but includes the interaction 
term based on marker and environment interaction data. The 
model (Jarquín et al., 2014) is written as:

 y E g gE eij i j ij ij= + + + +µ ,  

Where gEij is the component representing the interactions 
between molecular markers of the jth line and the ith 
environment. The distributional assumption for this term is such 
that gE = { } ( )°( )( )gE Nij g g E E gE~ ,0 Z GZ Z Z' ' σ 2  and σ gE

2  is the 
variance component of the random interaction component gE.
The other terms were already defined in the previously 
defined E + G + e model. As already mentioned, this model 
was used for the genomic prediction computed for the WW 
sites. The prediction for the unique managed sites includes 
only the G + e component.

random Cross-Validation for Determining 
the Prediction accuracy of the Models
The performance of the models when predicting the five 
traits was evaluated using the average Pearson’s correlation 
coefficient between observed and predicted values. The 
random cross-validation scheme mimics real plant breeding 
situations and is a scheme where the performance of 20% of the 
maize testcrosses was not observed in any of the environments 
and the rest of the lines (80%) were already observed in 
the same target environments. For this scheme, a five-fold 
random partitioning (80% of the data used as the training set, 
and the remaining 20% as the testing set) was employed. Four 
folds were used for training the models and for predicting 
the remaining fold. This procedure was repeated over the five 
folds and the predictions from the testing fold were joined in a 
single vector. Then, Pearson’s correlations between predicted 
and observed values within the same environment were 
computed. The partitioning was repeated 100 times. The cost 
benefits of PS vs GS were analyzed using spreadsheet-based 
budgeting tools.

rESUlTS

Test Cross Hybrid Performance in  
Stage i and ii Trials
For stage I, mean GY averaged across WW locations ranged from 
3.49 to 9.14 t/ha with an overall mean of 6.03 t/ha, whereas at stage 
II it improved further, ranging from 5.1 to 11.6 t/ha with an average 
of 7.59 t/ha (Table 2). Under WS, GY ranged from 1.08 to 5.76 t/
ha with an overall mean of 3.25 t/ha at stage I, whereas at stage II, 
the range varied from 0.77 to 6.33 t/ha with an average of 3.23 t/
ha. The average GY, PH, AD, and MOI were higher under WW 
conditions than under WS in stage I trials (Table 2). Interestingly, 
the average performance of hybrids at stage II was also higher for 
GY, AD, PH, and MOI compared to stage I trials. The magnitude of 
genotypic variances was higher than the genotype by environment 
interaction variances for all traits at stage I and only for GY and AD 
at stage II under WW conditions. For stage I trials, the heritability 
under WW conditions varied from 0.31 to 0.77, while under WS, 
it ranged from 0.84 to 0.95. Whereas at Stage II, the heritability 
under WW conditions varied from 0.18 to 0.82, while under WS it 
ranged from 0.32 to 0.61. A total 176 lines that had above average 
phenotypic value for grain yield and other agronomic traits were 
advanced to stage II evaluation (Supplementary Table S1). These 
superior lines were derived from all 12 populations, suggesting 
that the donor parents used to develop the DH lines are excellent 
sources of germplasm for combining ability with good adaptation 
to eastern Africa.

Genomic-Enabled Predictions of GY and 
Other agronomic Traits at Stage i
The cross-validation analyses yielded moderately high prediction 
correlations among optimum and drought conditions for GY and 
other agronomic traits. The prediction correlations ranged from 
0.65–0.67 for GY, 0.57–0.65 for MOI, 0.67–0.75 for AD, and 0.70–
0.72 for PH (Table 3). In general, trait–tester combination with 
higher training set (CML395/CML444) had a higher predication 
accuracy than the other two testers (CML312/CML395 and 
CML312/CML442) that had lower training set (Table 3). The 
predication accuracy was lowest for testers CML312/CML442 
and CML312/CML395 for all traits and highest for tester 
CML395/CML444 both under WW and WS conditions.

A total 172 lines that had above average GEBVs were advanced 
to stage II evaluations (Supplementary Table S1).

Comparing Hybrids Developed Through 
PS and GS Under WW Conditions at 
Stage ii
At stage II, 1042 hybrids were evaluated among them 526 were 
developed from lines selected based on PS and the remaining 
were derived from lines selected based on GEBVs. The GY of 
526 testcross hybrids advanced through PS evaluated across five 
WW locations (hereafter referred to as PS-WW) ranged from 
5.54 to 11.67 t /ha (Supplementary Table S2). In the PS-WW, 
the top 15% of hybrids produced an average grain yield of 9.4 t 
ha−1, which represents an increase of 1.0 t ha−1 compared to 
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the best commercial check, which produced 8.4 t ha−1. The best 
hybrid advanced through PS yielded 39% and 63% more than 
the best commercial check and the mean of commercial checks, 
respectively (Table 4).

A total of 516 hybrids advanced through GS and evaluated at 
the same five WW locations (hereafter referred to as GS-WW) 

produced GY ranging from 5.1 to 10.44 t/ha (Supplementary 
Table S2). The top 15% of hybrids advanced through GS had a 
mean GY of 9.1 t/ha, which represents a 0.7 t/ha increase over 
the yield of the best commercial check. The top 15% of hybrids 
had an average yield advantage of 8 and 21% over the best check 
and the mean of the checks, respectively (Table 4). The best 

TaBlE 2 | Mean, range, genetic variance, and broad-sense heritability estimates for grain yield (GY, t/ha) anthesis date (AD, days), plant height (PH, cm), moisture (MOI, 
%), gray leaf spot (GLS, 1–5 rating score), and turcicum leaf blight (TLB, 1–5 rating score) for stage I and stage II testcrosses evaluated under optimum and managed 
drought stress conditions in Kenya.

Optimum (Stage i) Managed drought (Stage i)

GY aD PH MOi GlS TlB GY aD PH MOi

Mean 6.03 64.31 235.56 16.81 2.31 3.43 3.25 63.3 207.7 16.2
Min 3.49 53.71 194.33 14.13 0.81 1.97 1.08 57.98 163.53 8.05
Max 9.14 73.90 270.04 21.60 4.18 5.04 5.76 69.88 244.65 23.20
Checks Mean 6.14 64.89 246.25 16.08 2.40 2.90 2.99 63.90 222.69 15.96
σ2

G 0.19** 1.29** 41.69** 0.18** 0.01* 0.10** 0.17** 1.96** 49.82** 0.91**
σ2

T 0.00 0.90 11.59 0.36 0.02 0.07 0.52 0.74 0.63 0.43
σ2

E 0.42 145.11 1200.50 14.70 0.00 0.00 – – – –
σ2

GxE 0.18** 0.14** 0.06* 0.00 0.01* 0.10** – – – –
σ2

GxT 0.74** 3.00** 81.18** 0.81** 0.02** 0.07** – – – –
σ2

e 1.41 2.82 160.47 3.19 0.16 0.24 0.33 1.36 59.08 2.43
h2 0.46 0.77 0.67 0.31 0.37 0.65 0.88 0.95 0.92 0.84
LSD 2.09 4.11 21.15 2.52 0.89 1.00 1.66 2.50 24.30 3.40
CV 19.66 2.61 5.38 10.62 17.31 14.12 17.56 1.80 3.70 9.70

Optimum (Stage ii) Managed drought (Stage ii)

Mean 7.59 71.9 247.6 19.64 1.98 2.58 3.23 72.40 206.40 14.60
Min 5.10 62.0 196.7 16.54 1.43 1.50 0.77 63.50 159.60 9.70
Max 11.67 77.5 291.2 22.22 4.45 4.08 6.33 81.00 247.10 22.90
Checks Mean 6.90 69.43 262.94 18.83 2.03 1.76 2.31 71.80 217.50 14.40
σ2

G 0.33** 2.6** 101.0** 0.24** 0.00 0.09** 0.20** 2.30** 73.50** 1.00**
σ2

T 0.37 1.9 97.1 0.00 0.00 0.08 0.55 7.1 44.10 4.60
σ2

E 2.06 75.8 389.5 10.03 0.00 0.01 – – – –
σ2

GxE 0.25** 1.10** 189.3** 2.31** 0.04 0.00 – – – –
σ2

GxT 0.23** 0.20* 10.9** 0.21** 0.01 0.00 – – – –
σ2

e 1.27 2.10 102.3 4.38 0.10 0.19 0.40 1.40 68.90 2.10
h2 0.38 0.14 0.53 0.09 0.82 0.18 0.34 0.32 0.61 0.52
LSD 2.11 2.00 29.30 4.48 0.63 0.66 1.42 2.70 21.10 3.00
CV 14.82 2.00 4.10 10.66 16.20 16.83 19.93 1.70 4.00 9.9

*,** Significance at P < 0.05 and 0.01 level, respectively.

TaBlE 3 | Prediction accuracy for each tester and across testers under cross-validation scenarios for grain yield (GY), anthesis date (AD), plant height (PH), and 
moisture content (MOI) evaluated under well-watered (WW) and water stress (WS) conditions in Kenya.

Trait Model\Tester Within tester across testers

CMl312 × CMl395 CMl312 × CMl442 CMl395 × CMl444

Total Hybrids 111 742 979
GY-WW G 0.41 ± 0.09 0.16 ± 0.12 0.60 ± 0.03 0.67 ± 0.05

G + GE 0.42 ± 0.07 0.19 ± 0.07 0.59 ± 0.04 –
GY-WS G 0.75 ± 0.04 0.22 ± 0.18 0.64 ± 0.07 0.65 ± 0.05
MOI-WW G 0.58 ± 0.05 0.16 ± 0.14 0.58 ± 0.01 0.65 ± 0.04

G + GE 0.61 ± 0.07 0.09 ± 0.07 0.59 ± 0.04 –
MOI- WS G 0.09 ± 0.04 0.44 ± 0.16 0.61 ± 0.06 0.57 ± 0.05
AD-WW G 0.58 ± 0.07 0.41 ± 0.13 0.70 ± 0.07 0.75 ± 0.04

G + GE 0.53 ± 0.19 0.40 ± 0.14 0.74 ± 0.04 –
AD- WS G 0.51 ± 0.06 0.49 ± 0.20 0.63 ± 0.04 0.67 ± 0.05
PH-WW G 0.28 ± 0.10 0.14 ± 0.12 0.65 ± 0.03 0.70 ± 0.03

G + GE 0.40 ± 0.06 0.16 ± 0.09 0.67 ± 0.03 –
PH-WS G 0.52 ± 0.03 0.17 ± 0.12 0.72 ± 0.04 0.72 ± 0.04
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hybrid advanced through GS had 24 and 46% higher GY than 
the best commercial check and the mean of the commercial 
checks, respectively.

The top 15% of hybrids advanced through PS on average 
had an increase of 8.5 cm in PH and 4.7 days in AD and a 1% 
increase in grain moisture content compared to the mean of 
the commercial checks (Supplementary Table S2). However, 
there was no difference between the top 15% of hybrids and 
the commercial checks in their responses to the two main foliar 
diseases, GLS and TLB (Supplementary Table S2). The top 
15% of hybrids advanced through GS had a 6 cm increase in PH 
and 4.7 days in flowering and a 1% increase in grain moisture 
content compared to the mean of the commercial checks 
(Supplementary Table S2). There was no difference among the 
top 15% of hybrids advanced through PS and GS for AD, MOI 
and their responses to the two main foliar diseases, GLS and 
TLB (Supplementary Table S2).

Comparing Hybrids Developed Through 
PS and GS Under Managed Drought 
Stress
A total of 526 hybrids advanced through PS were also evaluated 
under managed drought stress (hereafter referred to as PS-WS); 
their mean GY ranged from 0.99 to 6.19 t ha−1 (Supplementary 
Table S3). The top 15% of hybrids (79 hybrids) produced 42% and 
51% higher mean GY than the mean GY of the best commercial 
check and the mean of the checks, respectively (Table 4). The best 
hybrid advanced through PS produced 88% and 169% higher 
GY than the best check and the mean of the commercial checks, 
respectively, while for 516 hybrids that were advanced through 
GS, their GY performance under WS ranged from 1.14 to 6.33 t/ 
ha (Supplementary Table S3). The top 15% of hybrids produced 
47% and 52% higher mean GY than the best commercial check 
and the mean of checks, respectively (Table 4).

The best hybrid advanced through GS produced 92% and 
175% higher GY than the best check and mean of commercial 
checks, respectively (Table 4). Compared to the mean of 
commercial checks, the top 15% of hybrids advanced through PS 

and GS had a 3% increase in MOI, 2.8 days in AD, and a 10 cm 
increase in PH (Supplementary Table S3).

advancement rate of Stage ii Candidates 
to Stage iii
An additional metric of interest when considering the overall 
efficacy of GS as a substitute for conventional PS only schemes is 
the advancement rate of the GS stage II cohort compared with the 
advancement rate of the PS stage II cohort. The actual advancement 
rate of the two methods is a useful means of comparing the overall 
value of the two groups of advanced lines since it captures all 
information that the breeder uses to make the decision whether 
or not to move a given DH line/s into advanced testing (Figures 1 
and 2). Under WW condition the top 15% (157 of 1042 hybrids) 
advanced to stage III trials, 93 hybrids were developed through PS, 
and 64 hybrids were advanced thought GS (Figure 1).

While under WS condition the top 15% (157 of 1042 hybrids) 
advanced to stage III trials, 91 hybrids were developed through 
GS, and 66 hybrids were advanced through PS. There was no 
significant difference among the top 15% of hybrids advanced 
through PS and GS for grain yield, AD, and PH (Figure 2). The 
overall advancement rate of GS stage II candidates was 41% and 
58% compared with an advancement rate of 59% and 42% for PS 
stage II candidates under WW and WS condition, respectively, 
indicating that the two groups of selection candidates had 
functionally equivalent potential in terms of producing new 
stage III candidates.

Cost–Benefit analysis, PS Versus GS
We compared the costs involved in PS and GS using spreadsheet-
based budgeting tools (Table 5). At present, for a single entry to make 
testcross and conduct two row plot yield trial costs US$ 15 in Kenya. 
This value represented lower boundary cost because it was mainly 
based on operational costs excluding personnel and other costs. The 
cost of genotyping an entry is US$ 10. Based on this rough estimate, 
developing and evaluating 1492 testcrosses in stage I trials at four 
locations with two replications per location would have cost US$ 

TaBlE 4 | Comparison of hybrids advanced through genomic and phenotypic selections and commercial checks evaluated at stage II or advanced yield trials under 
optimum and managed drought stress across Kenya in 2018.

Phenotypic selection (PS) Genomic selection (GS)

Well-watered (GY, t/ha) Water stress (GY, t/ha) Well-watered (GY, t/ha) Water stress (GY, t/ha)

All hybrids 7.7 3.2 7.5 3.2
Top 15% of hybrids 9.4 4.7 9.1 4.8
Best hybrid 11.7 6.2 10.4 6.3
Mean of commercial checks 7.2 2.3 7.2 2.3
Best check 8.4 3.3 8.4 3.3
Yield improvement
Top 15% of hybrids over commercial 
checks

23% 51% 21% 52%

Top 15% of hybrids over the best 
commercial check

12% 42% 8% 47%

The best hybrid over commercial checks 63% 169% 46% 175%
The best hybrid over the best 
commercial check

39% 88% 24% 92%
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134,480, while it costs US$ 91,870 using a combination of phenotypic 
and GS. Therefore, using the current method (phenotyping half of 
the materials and predicting the remaining half), the same outcome 
was achieved with 68% of the phenotyping costs (Table 5). These 
costs are likely to vary in different breeding programs (primarily due 
to differences in labor costs), but the results indicated that GS was 
relatively cheaper than PS.

DiSCUSSiOn
With the advent of DH technology, thousands of fixed lines 
are generated each year in maize. However, identifying the 
best genotypes requires extensive field evaluations with 
several hybrid combinations, and all DH lines cannot be 
evaluated because of limited space and resources. One method 

FiGUrE 1 | Performance of hybrids advanced through genomic selection (GS), phenotypic selection (PS), and commercial checks evaluated in stage II trials under 
optimum conditions for grain yield (GY, t/ha), anthesis date (AD, days), plant height (PH, cm), and turcicum leaf blight (TLB, 1–5 rating score). The numbers in the 
bracket indicated the total number of hybrids.

FiGUrE 2 | Performance of hybrids advanced through GS and PS and commercial checks evaluated in stage II trials under managed drought for GY (t/ha), AD 
(days), and PH (cm). The numbers in the bracket indicated the total number of hybrids.
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for reducing the number of hybrids for field evaluation is 
crossing all DH lines with a common tester in the early 
stages of a breeding cycle. Another method is to use a genetic 
similarity matrix derived from pedigree or molecular markers 
for predicting performance of untested crosses (Kadam et al., 
2016; Cantelmo et al., 2017). GS can be used in plant breeding 
to improve selection in the early stages of a breeding program 
without testing all available lines in yield trials. Recently 
several genomic prediction models (reviewed by Crossa et al., 
2017) were used to predict the performance of tested and 
untested hybrids, and those predictions can be used to decide 
which hybrids should be selected for further evaluation in 
field trials.

In this study, we compared the performance of maize DH 
lines selected from stage I multi-location yield trials based on 
BLUEs and GEBVs by evaluating the hybrids in common stage 
II multi-location yield trials of the CIMMYT maize breeding 
program. We evaluated a total of 855 hybrids under optimum 
and drought conditions and used BLUEs data to predict the 
remaining 637 hybrids which were genotyped but have never 
been phenotyped. In our study, the prediction accuracy for GY 
under WW conditions was 0.67, and under WS, it was 0.65 (Table 
3). Our results agree with previous maize studies by Crossa et al. 
(2010) and Zhang et al. (2017), who reported medium to high 
prediction accuracy. In our study, higher marker density, higher 
heritabilities, and similarity in training and prediction data sets 
gave higher accuracies of estimated breeding values. Lorenz 
and Smith (2015) reported that prediction accuracies for GS 
decreased as the similarity of individuals in the training and test 
populations decreased. In our case, the training populations used 
for GS are highly related and purposefully designed (genotyping 
all and phenotyping half) for reducing field phenotyping, which 
is costly and logistically complex. Our results agree with those of 
previous studies by Riedelsheimer et al. (2012) and Lariepe et al. 
(2017), who concluded that prediction accuracies are enough to 
make GS more efficient than PS.

Identification of optimum size as training and prediction 
set is crucial for implementing GS in maize breeding program. 
Cao et al. (2017) reported that high predication accuracy was 
observed when 50% of the total genotypes were used as a training 
population. Zhang et al. (2019) obtained moderate-to high 

predication accuracy trait–environment combinations, when 
half of the population is used to build the prediction model. In 
this study we have implemented genotyping all and phenotyping 
half prediction scheme to reduce the cost of phenotyping all 
DH line generated each year in stage I yield trials. The ultimate 
objective is to select untested lines based on GEBV from previous 
years that improve accuracy and go directly to Stage II yield trials 
by skipping stage I yield trials. This will require to build multi-
year estimation set for specific germplasm groups and targeted 
growing regions.

Comparing Performance of Hybrids 
advanced to Stage ii Under WW 
Conditions
The mean GY of hybrids advanced through GS and PS methods 
was significantly higher than the mean of the commercial 
checks (Figure 1). The top 15% of hybrids advanced through 
PS were slightly better than hybrids advanced through GS. The 
top 79 hybrids (15% SI) advanced through PS had mean GY of 
9.4 t/ha, while the top 15% of hybrids (77 hybrids) advanced 
through GS had mean GY of 9.1 t/ha under WW conditions. 
When historical data from the same breeding program is 
available, there is the potential to bypass stage I trial evaluation 
and move material directly into stage II. This approach would 
reduce both the costs and cycle time but will require accurate 
predictions from training sets composed of historical data. 
GS has the potential for increasing the genetic gain per year 
by accelerating the breeding cycles (Crossa et al., 2017). 
Beyene et al. (2015) reported that GS can save the time over 
PS because three rapid cycles of recombination were possible 
to complete in a year. Gaynor et al. (2016) using simulation 
data proposed a two-part strategy for GS in plant breeding: 
namely, population improvement and product development. 
The population improvement strategy uses GS to perform rapid 
cycles of recurrent selection to minimize breeding cycle time 
and maximize the genetic gain per year, while the product 
development component focuses on developing inbred lines as 
hybrid parents. The authors concluded that implementing GS 
in breeding programs increases breeding program efficiency by 
reducing the cost of achieving a similar outcome.

TaBlE 5 | Cost–benefit analysis of phenotypic selection and genomic selection in International Maize and Wheat Improvement Center’s (CIMMYT’s) maize breeding 
program in Kenya.

Methods Cost/entry (US$) no. of entries no. of reps/sites no. of rows/sites no. of sites Total cost (US$)

PS (making testcrosses) 10 1492 1 1 1 14,920
PS (stage I multi-location 
yield trials)

5 1492 2 2 4 119,360

GS (making testcrosses) 10 855 1 1 1 8,550
GS (phenotyping training 
set in stage I multi-location 
yield trials)

5 855 2 2 4 68,400

GS (genotyping all lines) 10 1492 1 1 1 14,920
Total cost of GS 91,870
Total cost of PS 134,280
GS:PS cost ratio 0.68
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Comparing Performance of Hybrids 
advanced to Stage ii Under WS 
Conditions
Comparison of hybrids advanced through PS and GS under drought 
stress conditions revealed that GS did slightly better (4.68 t/ha was 
the mean of the top 15% of hybrids) than PS (4.48 t/ha, mean of the 
top 15% of hybrids). There was no significant difference among 
the top 15% of hybrids advanced through PS and GS for other 
traits. Longin et al. (2015) found an increased genetic gain when 
selecting parents based entirely on GEBV for highly heritable traits 
in wheat. The ultimate objective is to select untested lines based on 
GEBV from previous years that improve accuracy and go directly to 
advanced yield trials by skipping preliminary stage I yield trials. In 
CIMMYT maize breeding program, GS could be implemented to 
predict untested lines at the early stage of testing by selecting DH 
with good GEBV and going directly to stage II trials. This could 
reduce each breeding cycle to less than 2 years. The greatest benefit 
of GS for achieving genetic gains in crops will come from decreased 
cycle time (Heffner et al., 2009), as has been predicted and observed 
in GS of dairy cattle (Schaeffer, 2006; García-Ruiz et al., 2016).

Cost–Benefit analysis of GS vs. PS
GS was found to outperform MAS using the same financial 
investment, even at low prediction accuracies (Bernardo and Yu, 
2007; Heffner et al., 2010). GS can be used to identify promising 
lines much sooner than PS, thereby reducing cycle time and 
increasing the genetic gain per year (Heffner et al., 2009). Several 
studies considered the economic aspects of plant breeding while 
comparing the evaluation of selection strategies. Abalo et al. (2009) 
found that compared to PS, MAS had 26% lower total operating 
costs for maize streak virus resistance. For GS, Heffner et al. 
(2010) found similar results in maize and winter wheat (Triticum 
aestivum L.). Comparison of the genetic gain per unit time and 
per unit cost for oil palm (Elaeis guineensis Jacq.) breeding under 
PS and GS also revealed higher genetic gain per unit cost for GS 
(Wong and Bernardo, 2008). In our study, GS reduced the cost by 
32% over PS with similar selection gains. Currently, we are testing 
another set of lines with the aim of using historical data to predict 
new lines and bypass the first stage of testing, and also using both 
pedigree and marker data to improve the prediction accuracy, 
which significantly reduces costs and shortens the breeding cycle.

COnClUSiOnS
The largest potential advantage of GS is predicting the breeding 
value of genotyped parents that were never phenotyped. We found 
similar responses to selection using PS and GS for grain yield 

under WW and WS conditions. The top 15% of hybrids advanced 
through GS and PS produced 21% to 23% higher GY under WW 
and 52% to 51% under WS than the mean of the commercial 
checks. The GS reduced the cost by 32% over the PS with similar 
selection gains. We conclude that the use of GS for yield under 
optimum and drought conditions in tropical maize can produce 
selection candidates with similar performance as those generated 
from conventional PS, but at a lower cost; therefore, this strategy 
should be effectively incorporated into maize breeding pipelines 
to enhance breeding program efficiency.
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