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In shallow lake ecosystems, flooding is a key disturbance factor of aquatic vegetation. 
Aquatic plants, especially submerged plants, play key roles in water ecosystems. Liangzi 
Lake experienced severe flooding in July 2010, and the elevated water levels lasted for 
3 months. In this study, 10 transects with 120 monitoring points were set up for monthly 
monitoring during the 3-year period, encompassing the period before and after the 
flooding (2009–2011). The numbers, biomass, and diversity of the submerged plants, 
as well as the physical and chemical characteristics of the lake water, were surveyed. 
There were 12 species belonging to 7 families and 7 genera in Liangzi Lake. Eleven of the 
submerged plant species were found in 2009, but, after the flood, that number decreased 
to five in 2011. The total biomass differed significantly over the three years (P < 0.05), 
with the largest biomass in 2009 and smallest in 2011. In 2009 and 2010, Potamogeton 
maackianus was the dominant species, but its dominant position weakened in 2011. After 
the flood, water transparency decreased, and the water depth, turbidity, total nitrogen, 
and total phosphorus increased. A redundancy analysis between the submerged plants 
and environmental factors found that the water transparency, turbidity, and water depth 
were the key environmental factors affecting the plants. These results suggest that the 
long-lasting severe flooding of Liangzi Lake in 2010 led to the degradation of both the 
submerged plant community and water quality.

Keywords: flooding, submerged vegetation, dominant species, water quality, diversity

INTRODUCTION
Submerged macrophyte vegetation plays a central role in the functioning of shallow lake ecosystems 
(Coops and Doef, 1996; Jeppesen et al., 1997; Meerhoff et al., 2003). It can provide feeding and 
spawning habitats for fish, provide sanctuary for zooplankton, and generally help improve 
the biodiversity and stability of lake ecosystems (Jeppesen et al., 1998; Wetzel, 2001; Heikkinen 
et al., 2009; Tamire and Mengistou, 2013; Yu et al., 2016). Among lakes, the factors influencing 
the submerged macrophyte distribution, diversity, and abundance include light availability 
(Middelboe and Markager, 1997; Phillips et al., 2016; Zhang et al., 2016; Verhofstad et al., 2017), 
water temperature (Scheffer et al., 1992; Short et al., 2016), nutrient enrichment (Sand‐Jensen 
et al., 2008), bottom substrate (Andersson, 2001), herbivory (Marklund et al., 2002; Sponberg and 
Lodge, 2005), and the water level (Wilcox and Meeker, 1991). In shallow lake ecosystems, water level 
fluctuations are the main factor affecting the biomass and spatial distribution of aquatic plants and 
are an important ecological factor affecting their growth and reproduction (Gafny and Gasith, 1999; 
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Strand and Weisner, 2001; Ishii and Kadono, 2004; Deegan et al., 
2007; Schneider et al., 2018).

Flood is one of the important factors leading to fluctuation 
of water levels (Wantzen et al., 2008). In addition to a rise in 
the water level, the surface runoff caused by floods carries large 
amounts of potentially labile nitrogen and phosphorus into the 
lake, and the original endogenous nutrients used by aquatic 
plants are also released into the water (Carpenter, 2008; Keitel 
et al., 2016). Floods also resuspend the sediment, increasing 
the concentrations of suspended solid particles, nitrogen, and 
phosphorus in the water (Newman and Reddy, 1992; Tong 
et al., 2017). The phosphorus released by the resuspension of 
precipitates is 20–30 times higher than when they are undisturbed 
(Søndergaard et al., 1992). In addition, floods also restrict the 
availability of oxygen, inhibiting the growth of emergent and 
floating-leaved plants (Drew, 1997; Deegan et al., 2007; Lemke 
et al., 2014) and the germination of some species in the seed bank 
(Casanova and Brock, 2000; Johansson and Nilsson, 2002; Hölzel 
and Otte, 2004; Cui et al., 2017), thereby reducing the diversity 
of aquatic plant species (Jeppesen et al., 2015). Correspondingly, 
aquatic animal habitat and food sources also disappear, reducing 
species diversity, and thus the entire ecosystem becomes very 
vulnerable (Junk and Robertson, 1997; Dorn and Cook, 2015). 
In addition, climate change manifested through increasing 
temperatures and more variable precipitations impacted water 
quality, biodiversity, and ecological status of the world’s lakes 
(Solheim et al., 2010; O’Reilly et al., 2015). Climate change is 
predicted to lead to earlier, stronger, and more frequent flooding 
(Fowler and Hennessy, 1995; Trenberth, 2011; Cai et al., 2015; 
Lehmann et al., 2015). For example, floods have become more 
frequent in the central United States (Hirsch and Archfield, 
2015), and global warming has been linked to a substantial 
increase in flood risk in most countries in Central and Western 
Europe (Alfieri et al., 2018). The high frequency of future floods 
may have a more serious impact on water ecosystems (Watts 
et al., 2015; Castello and Macedo, 2016).

Flooding is a key disturbance factor of aquatic vegetation 
composition and community diversity in floodplain lakes 
(Tockner et al., 2000; Maltchik et al., 2005; Van Geest et al., 2005; 
Chaparro et al., 2014). The growth of emergent floating-leaved 
plants is not limited by low light penetration in the lake (Qiu 
et al., 2001a). Spate floods affected small to intermediate-sized 
submerged plant species, and long-term inundating floods affected 
tall submerged plant species (Bornette and Puijalon, 2011). The 
effects of water levels on submerged plants by simulating water 
level fluctuations for individual plants have been studied in 
depth (Armstrong et al., 1994; Vartapetian and Jackson, 1997; 
Vermaat et al., 2000; Lenssen et al., 2004; Wang et al., 2016a). 
For example, water depths greater than 3 meters severely reduced 
the survival of Vallisneria natans (Han et al., 2018). Potamogeton 
maackianus disappeared at an average depth of 6 meters in Erhai 
Lake (Fu et al., 2018a). Myriophyllum spicatum, Ceratophyllum 
demersum, and Potamogeton malaianus were more tolerant of 
deep water and flood intensity than P.maackianus and Hydrilla 
verticillata, as indicated by their larger biomass, plant height, 
stem tensile properties, and root anchorage strength (Zhu et al., 
2012; Ye et al., 2018). The response of submerged plants to floods 

is species specific. Therefore, flooding with extreme water levels 
may cause shifts towards a macrophyte-dominated state (Coops 
et al., 2003).

In recent decades, floods have become more frequent in the 
middle reaches of the Yangtze River in China, and the rise in water 
levels has been greater than before (Li et al., 2015; Wang and Yuan, 
2018). Lake Liangzi is located in the middle and lower reaches of 
the Yangtze River. From 2007 to 2016, two major floods occurred 
in Lake Liangzi, one in 2010 and one in 2016 (Xu et al., 2018). Ten 
transects with 120 monitoring points were set up for monthly 
monitoring during the 3-year period between 2009 and 2011 in 
order to compare the submerged vegetation and water characters 
before and after the flood in 2010. Specifically, we analyzed the 
relationship between submerged aquatic communities and water 
quality. Finally, we evaluate the consequences of flood regulation 
on the dominant submerged species.

MaTeRIaLS aND MeThODS

Study area and Flood
Liangzi Lake (30°04′55″–30°20′26″ N, 114°31′19″–114°42′52″ E) 
is located south of the Yangtze River in the southeast of Hubei 
Province, China. It is a typical grass-type lake, a type common in 
East China, with high vegetation coverage. The lake covers an area 
of 304.3 km2 and has a water storage capacity of about 14 × 108 tons.

The Liangzi Lake Basin suffered heavy rain, and Liangzi 
Lake was seriously flooded in July 2010, with the water level 
rapidly rising from 4.25m to 6.2m. In addition, the high water 
levels continued for three months. The survey was conducted 
for monthly monitoring from January 2009 to December 2011. 
Monitoring plots were established in three regions of Liangzi 
Lake (named as Qianjiangdahu Lake, Manjianghu Lake, and 
Gaotanghu Lake) (Figure 1). Altogether, there were ten transects, 
with 120 monitoring points for the sampling set up at 400-meter 
intervals (Figure 1).

Collection of Plant Samples and Water 
Parameter Measurements
During each survey, submerged plant samples were collected 
on-site using a boat positioned by GPS (GARMIN eTrex Summit; 
Garmin, Inc., Olathe, KS, USA) navigation. At each monitoring 
site, the submerged plants were randomly sampled twice with a 
Peterson’s mud filter (0.2m × 0.3m). The collected samples were 
packed in plastic bags (0.03 L) and brought to the National Field 
Station for Freshwater Ecosystem at Liangzi Lake (hereinafter 
referred to as the Liangzi Lake National Station). The plants 
from the monitoring sites were first classified, the number of 
each species was counted, and they were then drained of surface 
water and weighed using an electronic scale (0.01g) to obtain the 
wet weight. Some plant samples were dried at 80°C for 72 h and 
were then weighed to obtain dry-weight biomass, which was later 
converted to a submerged plant dry weight per unit area (1m2).

Water parameters were monitored at the time of the 
submerged plant sampling. The water pH, dissolved oxygen, 
and temperature were measured using a Pro Plus water quality 
monitor (YSI Inc., Yellow Springs, OH, USA); the water turbidity 
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was measured in nephelometric turbidity units (NTUs) using a 
HACH 2100P turbidity meter (HACH Co., Loveland, CO, USA); 
and the water depth and transparency were measured by Secchi 
depth monitoring. A Plexiglass water sampler was used to collect 
water samples; ten sites were sampled once a month from 2009 
to 2011, and these were returned to the instrument room of the 
Liangzi Lake National Station where the total phosphorus and 
total nitrogen were determined with HACH IL500P and IL500N 
analyzers (HACH Co., USA). We thus had a total of 4,320 samples 
(3 years × 12 months × 120 sites), 360 total phosphorus, and total 
nitrogen samples (3 years × 12 months × 10 sites).

Data analysis
The submerged plant diversity index was analyzed using the 
Shannon index formula:

H= – ∑(Pi)(log2Pi) (MaGuarran, 1988).

Only six submerged species were common in Liangiz Lake. 
Thus, the dominance analysis and redundancy analysis (RDA) 
were analyzed with the data for these six species. The dominance 
of the submerged plant species was calculated with the equation:

Dominance = [(relative frequency + relative weight)/2] × 100% 
(Chen, 1980).

The data analyses were conducted using SPSS 22.0 software. 
To ensure that all data met the normal distribution requirements, 
data that were not normally distributed underwent a logarithmic 
transformation, but, to the data that were not normally 

distributed, non-parametric statistics were applied. We conducted 
a Kruskal–Wallis test to determine the differences in the water 
quality. A one-way ANOVA with Duncan’s (P < 0.05) test for post 
hoc comparison was used to analyze the differences in species 
number, total biomass per area, total biomass of dominant 
species among 2009, 2010, and 2011, or during the same month 
over different years. A redundancy analysis (RDA) based on 
the biomass was conducted for the major water environmental 
factors affecting the submerged plant communities using Canoco 
for Windows 5.0 software.

ReSULTS

Species Number, Total Biomass and 
Diversity Index
Twelve submerged plant species were monitored in Liangzi Lake 
from 2009 to 2011, which belonged to seven genera in seven 
families (Table 1). There was a significant change in the number 
of submerged plant species over the three years (Figure 2A), the 
number of species in 2009 being significantly higher than that 
in 2010 and 2011 (Figure 2A). A comparison of the number of 
species before and after flooding found no significant differences 
from March to July in 2009 and 2010, while the number present 
from August to December in 2009 was significantly higher than 
that in 2010 (Figure 2C). There were significant differences in the 
number of submerged plants with each month within the three 
years (Figure 2C).

There were significant differences in total biomass over the 
three years(F = 504.227, P < 0.001, the largest biomass identified 

FIgURe 1 | Map of Liangzi lake showing sampling sites observation points. Ten transects: A. B. C. D. E. F. G. H. I. J.
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in 2009 and the smallest in 2011 (Figures 2B, D). According to 
monthly data, the three years also had significant differences in 
the total biomass during each month (All P < 0.05). The total 
biomass of the submerged plants differed significantly from each 
other in February, April, June, July, and August (Figure 2D). In 
January, March, and May, the total biomass of the submerged 
plants in 2009 showed no significant difference to that in 2010, 

whereas both them were significantly higher than in 2011 
(Figure 2D).

Flooding decreased the Shannon diversity index (Figure 3). 
The Shannon index was highest in November 2009, while only 
one species was found in September, October, and December 
2011, resulting in the lowest diversity index (Figure 3).

Changes in the Dominant Species
In the three years sampled, the dominance of P. maackianus was 
above 60%, while the dominance was less significant among C. 
demersum, M. spicatum, and P. crispus. P. maackianus was the 
dominant species during whole year both in 2009 and 2010. 
However, the dominant species was P. crispus in March, April, 
May, November, and December of 2011, and only P. maackianus 
was present from June to October 2011 (Figure 4).

Water environmental Parameters
There were significant difference in water depth (χ2 = 871.013, P < 
0.001), transparency (χ2 = 1667.673, P < 0.001), turbidity (χ2 = 
1649.164, P < 0.001), dissolved oxygen (χ2 = 218.637, P < 0.001), 
pH(χ2 = 804.817, P < 0.001), total nitrogen (χ2 = 1165.63, P < 

TaBLe 1 | Submerged plant species in Lake Liangzi.

Family Species

Characeae Chara vulgaris
Ceratophyllaceae Ceratophyllum demersum
Haloragaceae M. spicatum
Hydrocharitaceae H. verticillata

Elodea nuttallii
Vallisneria spiralis

Lentibulariaceae Utricularia aurea
Najadaceae Najas marina

N.minor
Potamogetonaceae Potamogeton crispus

P. maackianus A. Bennett
P.malaianus

FIgURe 2 | Submerged species number (a, C) and the total biomass (B, D) in different years or different months. Values shown are means ± S.E. Bars with 
different lowercase letters above are significantly different. Significant differences: ***P < 0.001.
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0.001), and total phosphorus (χ2 = 1704.382 P < 0.001) over the 
three years, There was no significant difference in temperature 
(χ2 = 2.4722, P = 0.291).

The mean water depth of Lake Liangzi from January to 
October was greater in 2010 than in 2009 and 2011 (Figure 
5A). On the other hand, water transparency was significantly 
lower in 2011 than that in 2009 and 2010, and the maximum 
transparency was found in August 2009 (Figure 5B). Water 
turbidity was significantly higher in 2011 than that in 2009 
and 2010, reaching its highest value in March 2011 (Figure 
5C). The highest water temperature values were reached in 
August, with an average maximum temperature of 34°C, 
and lowest values were present in January, when the average 

minimum temperature was 3°C (Figure 5D). In contrast to the 
temperature, dissolved oxygen had an inverse trend, decreasing 
in the summer and increasing in the winter (Figure 5E). The 
lowest dissolved oxygen concentration values were present in 
July, with a mean of 6.34 ± 0.793mg·L-1 (Figure 5E). The pH 
was significantly higher in 2011 than in 2009 (Figure 5F). Total 
nitrogen (TN) was lower in 2009 (0.310 ± 0.01mg·L-1) than in 
2010 (0.411 ± 0.011mg·L-1) and 2011(0.429 ± 0.109 mg·L-1). 
(Figure 5G). Total phosphorus (TP) fluctuated slightly in 2009, 
whereas it fluctuated widely in 2010 and 2011 (Figure 5H). 
The mean value was 0.007 ± 0.0005mg·L-1in 2009, and it was 
significantly less than in 2010 (0.020 ± 0.001 mg·L-1) and 2011 
(0.020 ± 0.0008 mg·L-1) (Figure 5H).

FIgURe 3 | The Shannon diversity species index of the submerged plants in 2009, 2010, and 2011.

FIgURe 4 | The species dominance of the submerged plants in 2009, 2010, and 2011.
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Redundancy analysis (RDa) of Submerged 
Macrophyte Communities and Water 
environmental Cactors
The eight environmental factors cumulatively accounted for 
41.17% of the species change information in the two axes. 
A Monte Carlo displacement test showed that the eight 
environmental factors were significant (P = 0.002), indicating 
that the transparency (which explained 36.8% of the variability 
with a correlation of 72.05% with the presence of submerged 
macrophytes), turbidity (which explained 11.9% of the 
variability), and water depth (which explained 8.3% of the 

variability) were factors affecting the structure of the submerged 
plant communities and were, therefore, key environmental 
water factors.

The gradient of the first axis from left to right shows that 
as the transparency increases and turbidity decreases, and the 
submerged macrophytes (except P. crispus) are distributed in the 
areas of high transparency (i.e., the positive direction of the first 
axis) (Figure 6). P. maackianus was related to the first axis and 
significantly positively correlated with transparency (P < 0.001); 
dissolved oxygen is significantly related to the second axis and 
negatively correlated with temperature (P < 0.001) (Figure 6).

FIgURe 5 | The water parameters of Lake Liangzi. (a) water depth, (B) transparency, (C) turbidity, (D) temperature, (e) dissolved oxygen, (F) pH, (g) total nitrogen 
(TN), (h) total phosphorus (TP).
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DISCUSSION

Dynamic Changes in the Submerged  
Plant Communities
In shallow lake ecosystems, the water level is the main factor 
affecting aquatic plant biomass (Wallsten and Forsgren, 1989; 
Zhang et al., 2016), and the natural water level is a dynamic 
factor (Rea and Ganf, 1994). High water levels caused by 
extreme flooding are known to reduce the diversity of aquatic 
plant species (Jackson, 1984; Arias et al., 2018). For example, 
flooding increased the water level and decreased diversity 
and biomass of the aquatic vegetation; the most serious effect 
observed was in submerged plants in Poyang Lake in China 
(Cui et al., 2000). In our survey, after the flood in 2010, the total 
number of species in Lake Liangzi decreased from ten species 
in 2009 to five in 2011, and the average number of species per 
site decreased from 1.38 ± 0.03 per m2 in 2009 to 0.5 ± 0.017 per 
m2 in 2011. The diversity and biomass of submerged plants were 
all significantly decreased by flooding in 2010. Those decreases 
were mainly due to a medium-term 3 m rise in the water level 
within several days, and this reached more than 6 m for a brief 
time; consequently, such an increased water depth significantly 
inhibited the growth of many submerged plants (Wang et al., 
2016b). In addition, there was a negative relationship between 
submerged macrophyte dominance and the long-term annual 
duration of inundation (Van Geest et al., 2003). Thus, the long 
duration of higher water levels (a greater than 4 m increase in 
water level that persisted for four months from July to October) 
caused by the flooding of Lake Liangzi in 2010 resulted in the 

dying-off of a large number of the submerged plants, and the 
dry biomass thus decreased significantly. On the other hand, 
a certain period of time is required for plants to adapt to 
different water levels (Bornette and Puijalon, 2011). The lack 
of significant differences in the number of species in July and 
August of 2009 and 2010 suggests that the submerged plants in 
Lake Liangzi had some tolerance for the short-term changes in 
water levels during flooding.

The RDA analysis showed that water transparency, turbidity, 
and water depth were the key water environmental factors 
affecting the submerged plants (Figure 6). The increase in water 
level leads to reduced light availability in shallow lakes, thereby 
limiting the growth of submerged plants (Van Geest et  al., 
2007). Decreasing water transparency significantly decreased 
the communities in terms of biomass, and it also decreased 
the submerged plants species’ richness (Vestergaard and Sand-
Jensen, 2000; Wang et al., 2016b). The key factor determining 
whether submerged plants can regenerate is the underwater 
light conditions during the germination period of the plants’ 
vegetative propagules (Lu et  al., 2012). Weak underwater light 
intensity prevents germination, thus the number of species 
decreases (Madsen et al., 2001). Thus, when sediment is disturbed 
by flooding, it causes the water transparency to decrease and the 
turbidity to increase, and this lack of underwater light affects the 
growth and reproduction of the submerged plants. In the present 
study, the water turbidity increased, the transparency of the water 
decreased after flooding, and these factors inhibited the growth 
and regeneration of submerged plants.

P. maackianus is the dominant species in the submerged 
vegetation of many lakes in the middle and lower reaches of 
the Yangtze River (Li et al., 2004). It is a constructive species in 
submerged plant communities, and the distribution area of the 
P. maackianus community once accounted for 50% of the total 
area of submerged plants in Lake Liangzi (Zhan et al., 2001). 
We also found that it was the dominant species in Lake Liangzi 
(dominance > 60%) in 2009 and 2010. However, after the 2010 
flooding, the dominant species was P. crispus in February, March, 
April, May, November, and December of 2011. P. maackianus 
was the dominant species only from June to October of 2011 
(Figure 4), which was mainly because the summer buds 
(dormant buds) of P. crispus germinate in the autumn and then 
grow over the winter. It was thus able to become the dominant 
species from February to May in 2011. Although P. maackianus 
can grow in winter, the flooding caused turbidity to increase, 
water transparency to decrease, and light intensity to weaken, 
resulting in the P. maackianus gradually dying. The tolerance 
of the summer buds (dormant buds) of P. crispus is strong. For 
example, higher water turbidity (90NTU) had no effect on the 
germination rate and growth of summer buds (Li, 2012), whereas 
four meters of water depth significantly affected the growth of P. 
maackianus (Zhu et al., 2012; Li et al., 2013), In addition, previous 
studies have found that P. crispus can successfully recover, while 
it has been difficult to successfully restore P. maackianus because 
P. maackianus are K-selected plants (Qiu et al., 2001b; Zhu et al., 
2012; Fu et al., 2018b) and P. crispus are r-selected plants (Pierce 
et al., 2012).

FIgURe 6 | Redundancy analysis ordination diagram of the submerged 
plant and environmental factors. Species codes: A, Myriophyllum 
spicatum; B, Vallisneria spiralis; C, Potamogeton maackianus A. Bennett; 
D, Ceratophyllum demersum; E, Hydrilla verticillata; F, Potamogeton 
crispus. Environmental codes: DO, Dissolved oxygen; pH, pH of water; SD; 
Transparency; T, Temperature; TN, Total nitrogen; TP, Total phosphorus; 
TURB, Turbidity; WD, Water depth.
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Dynamic Changes in the Water 
environmental Factors
The submerged macrophytes improve their own light climate 
by enhancing the water transparency (Van den Berg et al., 
1998). There is a significant positive relationship between water 
transparency and the maximum colonization depth of aquatic 
plants (Canfield et al., 1985; Sondergaard et al., 2013). These two 
parameters of the water before the flooding in 2009 were stable 
due to the high species numbers and biomass of submerged 
vegetation. Floods have an important effect on water clarity (Xu 
et al., 2018), and extreme water levels may cause shifts between 
the turbid and the clear, and the macrophyte-dominated state 
may change to a without-vegetation turbid state (Coops et al., 
2003; Scheffer and Carpenter, 2003). The flooding of Lake Liangzi 
in 2010 caused the turbidity to increase and, consequently, 
the water transparency to decrease. In addition, large areas of 
aquatic vegetation disappeared in Lake Liangzi after the flood. 
Submerged plants were only found at five monitoring points and 
one monitoring point in September and October 2011.

Nutrient input, mainly of N and P, is derived from the eutrophic 
main channels during floods (Van den Brink et al., 1994). A large 
amount of suspended sediment and, consequently, a higher 
concentration of nutrients into Lake Liangzi is caused by flooding 
that increases the content of nitrogen and phosphorus in water. 
During the growth phase, the water column is depleted in nutrient 
concentrations, whereas, during the decay period, there is a 
significant increase in water column nutrients (Shilla et al., 2006). 
Furthermore, the decomposition of submerged macrophytes 
is influenced by several factors, though water temperature has 
been cited as an important environmental factor (Carpenter 

and Adams, 1979; Carvalho et al., 2005). After the flooding in 
Lake Liangzi it was still a hot season, the higher temperature 
accelerating the decomposition of dead aquatic plants caused 
by the flood in 2010. Higher turbidity, higher total nitrogen and 
phosphorus, and lower transparency after the flooding in 2010 all 
contributed to the downward trend in water quality.

CONCLUSION
The serious flooding of 2010 in Lake Liangzi decreased species 
diversity and the biomass of submerged aquatic plants and 
resulted in declining water quality. P. maackianus was the 
dominant submerged species during the whole year before 
flooding, while this dominant position weakened after the 
flooding. The results suggest that heavy flooding may change the 
submerged community succession.
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