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Cassava roots are complex structures comprising several distinct types of root. The 
number and size of the storage roots are two potential phenotypic traits reflecting crop 
yield and quality. Counting and measuring the size of cassava storage roots are usually 
done manually, or semi-automatically by first segmenting cassava root images. However, 
occlusion of both storage and fibrous roots makes the process both time-consuming 
and error-prone. While Convolutional Neural Nets have shown performance above the 
state-of-the-art in many image processing and analysis tasks, there are currently a 
limited number of Convolutional Neural Net-based methods for counting plant features. 
This is due to the limited availability of data, annotated by expert plant biologists, which 
represents all possible measurement outcomes. Existing works in this area either learn 
a direct image-to-count regressor model by regressing to a count value, or perform a 
count after segmenting the image. We, however, address the problem using a direct 
image-to-count prediction model. This is made possible by generating synthetic images, 
using a conditional Generative Adversarial Network (GAN), to provide training data for 
missing classes. We automatically form cassava storage root masks for any missing 
classes using existing ground-truth masks, and input them as a condition to our GAN 
model to generate synthetic root images. We combine the resulting synthetic images with 
real images to learn a direct image-to-count prediction model capable of counting the 
number of storage roots in real cassava images taken from a low cost aeroponic growth 
system. These models are used to develop a system that counts cassava storage roots 
in real images. Our system first predicts age group ('young' and 'old' roots; pertinent to 
our image capture regime) in a given image, and then, based on this prediction, selects 
an appropriate model to predict the number of storage roots. We achieve 91% accuracy 
on predicting ages of storage roots, and 86% and 71% overall percentage agreement on 
counting 'old' and 'young' storage roots respectively. Thus we are able to demonstrate 
that synthetically generated cassava root images can be used to supplement missing root 
classes, turning the counting problem into a direct image-to-count prediction task.

Keywords: convolutional neural networks, generative adversarial networks, cassava phenotyping, machine 
learning, root counting
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INTRODUCTION
The tropical root crop, cassava (Manihot esculenta Crantz), is 
a staple food for more than a tenth of the world's population. 
However, a major obstacle reducing its industrial potential 
is it's long and variable growth cycle. Information on the 
development of the edible cassava storage root is therefore 
crucial for selecting high yielding, early bulking cassava root 
crops for industrial-scale production. Cassava root systems 
comprise two key types of root. Fibrous roots develop first, and 
only a small number of these go on to form the larger storage 
roots. It is these storage roots which become an important 
food source, in particular a major source of carbohydrates. 
Understanding the growth of these storage roots therefore 
becomes an important phenotyping task. Presently, 
phenotyping of cassava storage roots is carried out using 
manual, destructive sampling methods (Okogbenin et al., 
2013; Belalcazar et al., 2016), which are labour-intensive and 
require many replications of each genotype. The physiological 
traits of the cassava crop are usually measured manually, often 
during harvesting, but also pre-harvest. Measurements begin 
in the third month and continue every month until harvested 
(Okogbenin et al., 2013). The important pre-harvest traits 
measured include the number of storage roots and the primary 
stems, while harvest traits include the above-ground biomass, 
stem diameter and number of storage roots, along with their 
length and volume."

Image-based software tool development and usage for plant 
phenotyping tasks have increased in recent years (Furbank and 
Tester, 2011). Ideally, such tools should be high-throughput 
and at least semi-automatic, making them capable of providing 
accurate, quantitative data on plant structure and function 
with minimal manual labour. Most current phenotyping 
installations require precisely-designed, automated image 
acquisition hardware matched to specialist software solutions 
to achieve the best quality data and throughput. Often, the 
function of the image analysis step is impeded if the images 
are not captured in a tightly controlled, systematic way. 
Nevertheless, these tools are gaining more attention due to 
their merits in providing large-scale plant phenotyping when 
compared with manual methods. Image-based phenotyping 
techniques have recently been used in plant segmentation 
(Aich and Stavness, 2017; Aich et al., 2018), leaf counting 
(Giuffrida et al., 2015; Aich et al., 2018; Aich and Stavness, 
2017) and to automatically identify root and leaf tips (Pound 
et al., 2017a). Dedicated development frameworks are even 
available to make building custom systems easier. For example, 
PlantCV (Gehan et al., 2017) can support a number of plant 
phenotyping tasks via processing pipelines, and the Deep Plant 
Phenomics platform (Ubbens and Stavness, 2017) specifically 
supports deep learning development.

Recently, very deep Convolutional Neural Networks (CNNs) 
have been used to recover plant traits in an attempt to gain 
improved robustness and accuracy (Scharr et al., 2016; Minervini 
et al., 2016a; Minervini et al., 2016b; Aich and Stavness 2017; 
Pound et al., 2017b). Here, and in the broader computer vision 

community, these techniques have increased the accuracy of 
the image analysis, but require large numbers of data samples 
to make them sufficiently general. Deep networks can comprise 
very many parameters (in the millions), which in turn introduces 
expensive computations (Long et al., 2015; Yu and Koltun, 2015; 
Badrinarayanan et al., 2017; Lin et al., 2017; Zhao et al., 2017) 
and can make such models inefficient on low-cost, resource-
limited devices.

To date, deep learning methods addressing feature counting 
tasks have focused almost exclusively on phenotyping the plant 
shoot system. Two broad approaches are in use. The first begins 
by segmenting the input image. Learning to segment requires 
individual annotation of the relevant objects to create a training 
data set, a task which is usually error prone and time-consuming 
for the plant biologist to undertake. The second approach learns 
a direct regression model. The regression approach solves this 
problem by using the total object count as its only supervision 
information, which is comparatively very easy to collect. A 
complete, pixel-by-pixel labeling of the training images is not 
required, only instead requiring a numerical label giving the 
count of the features of interest; e.g. a root count. The regression 
models which must be learned are, however, non-linear and 
of very high dimensionality (Aich and Stavness, 2017): Here, 
instead, we propose to develop a direct image-to-count prediction 
model instead.

We aim to develop a fully-automated, image-based 
phenotyping system to count storage roots in color images 
of aeroponically grown cassava, including and in particular 
counting early bulking storage roots (those appearing in 
the first 2.5 months of growth). The challenge here is that 
early storage roots are usually particularly difficult to detect. 
There are comparatively few such roots on any given plant, 
and they are often occluded by fibrous roots, which have 
similar color and texture (see example images in Figure 1, 
bottom row). We develop here a direct "image-to-count" 
prediction model, avoiding the complexity of the regression 
approach, and avoiding a pure segmentation approach which 
can be problematic when the boundaries of the objects 
involved (especially fibrous roots) are not well defined. 
This prediction approach effectively classifies each image 
according to the number of plant features, e.g. storage roots, 
present. This raises a further challenge: to successfully train 
a classifier a training set containing multiple images of each 
class is required. In the current context this means that we 
require images showing 0, 1, 2, 3, 4 etc, storage roots, up to 
the maximum number expected to be encountered. Though 
the number of roots that can be reasonably expected is not 
large—we do not need examples for every integer, of course—
complete data sets of this type are often unavailable in existing 
repositories, and can take a significant amount of time to 
assemble. This is particularly true of more recently-studied 
species like cassava, for which limited image data exists. To 
remedy the problem of classes short on, or missing data, we 
first develop a conditional GAN to generate synthetic images 
of the storage roots classes which are not sufficiently well-
represented with real image data.
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The contributions of this work, then, are:

1. Design of a conditional Generative Adversarial Net (GAN) 
that can automatically generate synthetic cassava root images 
when presented with ground truth segmentation masks of the 
desired image classes.

2. Design of a deep CNN age-prediction model that predicts the 
age of cassava roots as either "old" (≥2.5 months) or "young" 
(≤2.5 months).

3. Design of a deep CNN-based storage root counting model, 
which given an input image and an age class will classify the 
image according to the number of storage roots present.

4. Combination of these components, which will create a cassava 
root counting tool to support an aeroponic phenotyping 
system (Selvaraj, 2019); this will be evaluated against a 
segmentation-based counting approach

The remainder of this paper is structured as follows. In 
Background, we review existing works that generate synthetic 
images using a GAN approach, and those that perform object 
counting using deep CNN systems. In Datasets, we introduce 
the cassava root datasets used in our experiments and proceed 
in Image Prediction and Generation Methods to describe our 

methods. We describe our experimental set-up, including a 
benchmark, in Experimental Evaluation. We then proceed to 
present and discuss our results in Results and draw conclusions 
in Conclusion.

BaCKgROUND
As many current phenotyping techniques were initially developed 
in Europe and North America, where cereal crops dominate, 
comparatively few studies have phenotyped cassava (Subere 
et al., 2009; Okogbenin et al., 2013; Adu et al., 2018 (Polthanee 
et al., 2016). Though these studies have considered both shoot 
and root phenotyping, and some even examined roots regularly 
during their development (Okogbenin et al., 2013), measurement 
of cassava root traits is typically carried out only during harvest. 
Despite consideration of root numbers, size and length alongside 
shoot structural measures and biomass (Okogbenin et al., 2013; 
Adu et al., 2018), it has not yet been established which traits 
or variables provide the most detailed differentiation between 
distinctive genotypes (Adu et al., 2018).

Traditionally, cassava storage roots are phenotyped 
destructively using manual or semi-automated methods. This 

FIgURe 1 | Sample real cassava root images from our datasets. The top row illustrates cassava roots that are 2.5 months and more, which we term “old” roots. 
The bottom row illustrates “young” roots, those less than 2.5 months.
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usually involves extracting the roots from the soil, losing a 
large number of small and fibrous roots in the process. Cassava 
roots are cut from their stem. They are then suspended in water 
to measure volume and spread on a black background to ease 
counting and measurement of their total length. Care is taken 
to avoid roots overlaying each other, as much as is practically 
possible. In semi-automated methods, a digital camera is used 
to capture root images. The controlled imaging conditions 
often allow simple thresholding methods to segment roots from 
background, and simple image analysis methods, controlled by 
the user, can be used to extract total root lengths and counts from 
the resulting binary images. This process is not only destructive 
to the plants but also time-consuming for the scientist.

Though there is existing literature presenting methods that 
count the plant features visible in an image, to our knowledge 
no study has considered automatically counting cassava storage 
roots. Automated counting methods have focussed on counting 
shoot features such as leaves (Giuffrida et al, 2015; Aich and 
Stavness, 2017; Ubbens and Stavness, 2017), plants (Ribera 
et al., 2017; Aich et al., 2018), seeds (Uzal et al., 2018), and fruits 
(Chen et al., 2017; Rahnemoonfar and Sheppard, 2017). Current 
approaches are all based on deep CNNs, and can be broadly 
divided into three categories: counting by segmentation, and 
direct image-to-count by class prediction or regression.

Methods that adopt a segmentation-based approach (Aich and 
Stavness, 2017; Aich et al., 2018) first identify pixels arising from 
the relevant plant component(s) in, usually, RGB images, using a 
CNN-based segmentation model. Aich et al. (Aich et al., 2018) 
counted leaves by summing the predictions of image patches 
from a deep CNN model. However, in Aich and Stavness, 2017, 
both the RGB image and the corresponding binary segmentation 
image produced by the CNN were used to estimate the number 
of leaves. The complexity of the images involved means that 
segmentation approaches may generate spurious segmentations 
that in turn lead to inaccurate counts.

Regression-based approaches usually pose the counting task 
as a non-linear regression problem, regressing the output of the 
final CNN to a single value which represents the object count. 
Giuffrida et al. (2015) used this approach, converting images to 
log-polar form to benefit from the information present in the 
natural radial structure of the plants. They extracted patches 
from the log-polar image to form a feature vector which was 
used to train a support vector regression network to predict leaf 
number. This study, however, uses perfect segmentation together 
with the image and it is not clear how robust the system is to 
segmentation errors.

Such a regression-based approach is effective, but introduces 
a non-linear regression problem of very high dimensionality, 
which can be avoided by image-to-count class prediction 
methods (Ubbens and Stavness, 2017; Ribera et al., 2017; Uzal 
et al., 2018). This approach treats the counting problem as one of 
classification. Direct image-to-count prediction methods that use 
a deep CNN typically have their final layer made up of a number 
of neurons equal to the maximum number of plant features to be 
counted. Ubbens and Stavness (Ubbens and Stavness, 2017) have 
shown that this method outperforms both the segmentation- 
and regression-based approaches. However, the problem with 

this approach is that samples representing all classes must be 
available. If some classes are not represented well, the network 
cannot be trained.

One way of overcoming this problem of missing data is 
to generate synthetic images for non-represented or under-
represented classes. Various methods for generating synthetic 
data have been proposed in the computer vision literature. Recent 
state-of-the-art methods commonly use conditional GANs (Isola 
et al., 2017). A conditional GAN is a general-purpose solution to 
image-to-image translation problems. Conditional GANs learn 
the mapping from an input image to an output image, as well 
as a loss function to learn this mapping. Some previous works 
(Giuffrida et al., 2017; Ward et al., 2018; Zhu et al., 2018), have 
reported using a GAN for image-to-image mapping in plant 
phenotyping. These methods used the GAN to generate synthetic 
images to augment real data for leaf counting in the CVPPP 2017 
LCC dataset (Scharr et al., 2017) and showed that the testing 
error is reduced compared with all the other state-of-the-art 
methods reported to date for the challenge.

DaTaSeTS
We use two combined plant image datasets, which we refer 
to as the "old" and "young" cassava root sets, to perform all of 
our experiments. Figure 1 shows samples taken from each of 
these. The top row comprises sample images drawn from the 
"old" dataset and the bottom from the "young." The "old" roots 
dataset is made up of cassava roots that are at least two and a 
half months old, while the young dataset contains images of roots 
that are less than two and a half months. Though they may have 
very similar size, color, and texture, some roots considered to 
be storage roots when seen in "young" cassava plants would not 
be classed as storage roots when they appear later in the plant's 
development, in "old" plants: storage root identification must 
therefore consider plant age. We therefore first classify an unseen 
image as containing "new" or "old" roots, then count storage roots 
taking that classification into account, as the analysis challenge 
presented by the two age groups is very different.

Three semi-aeroponic systems (fog, drip and spray) designed 
and constructed at the International Center for Tropical 
Agriculture (CIAT), Colombia, were used to grow and image 
cassava roots (Selvaraj, 2019). Semi-aeroponic growth made it is 
easier to record cassava root images at regular intervals without 
disturbing or damaging the plants. We captured images at a 
resolution of 960 × 720 pixels using Logitech C922 Pro Stream 
Webcams with a custom-developed capture software tool, built 
on the OpenCV library (Intel Corporation, 2017). When imaging, 
the cassava plants were taken from the semi-aeroponic chambers 
and their roots hung carefully over a black background. Cassava 
experts from CIAT segmented the cassava storage roots from the 
captured images using a further custom-built annotation tool, 
and at the same time provided a manual count of the storage 
roots to form our annotated cassava root datasets. Each dataset 
was divided randomly following an "80/20" train/test split and 
the training data subjected to a further "80/20" train/validation 
split. Images were normalized by scaling their RGB values to the 
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range 0–1. Image annotations were converted to a class label and 
then to a binary class matrix (one-hot encoding) before passing 
them to the deep neural networks. Example real data and classes 
can be seen in Figure 2.

IMage PReDICTION aND geNeRaTION 
MeThODS
The storage root counting system proposed, and experimental 
evaluation conducted, here relies upon variations of two 
popular CNN networks: SegNet and DenseNet. In each case 
we reduced the number of model parameters using separable 
convolution, before training the resulting networks on the 
datasets described above, and synthetic images generated by a 
conditional GAN.

Separable Convolution
MobileNet (Howard et al., 2017), MobileNetV2 (Sandler et al., 
2018) and Xception (Chollet, 2017) previously used separable 
convolution to reduce the number of model parameters. 
Separable convolution reduces the number of multiplications 
and additions in the convolution operation, thus reducing the 
model's weight matrix and speeding up both the training and 
application of large CNNs.

A 2D convolution can be defined as in Equation 1.
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where x is the (m × n) matrix being convolved with a (k × k) kernel h. 
If the kernel h can be separated into two kernels, say h1 of dimension 
(m × 1) and h2 of dimension (1 × n), then the 2D convolution can be 
expressed in terms of two 1D convolutions as in Equation 2.
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The 2D convolution requires k × k multiplications and 
additions. However, separable convolution has its kernels 
decomposed into two 1D kernels, which then reduces the 
multiplications and additions to k + k and thus reduces the 
number of model parameters.

age-Prediction and CNN-Based Count 
Models
Our Age-Prediction and CNN-Based count models both use 
the DenseNet (Huang et al., 2017) architecture but with some 

FIgURe 2 | This figure shows sample real cassava root images drawn from our datasets. The top row shows the cassava root images and the bottom, the ground 
truth annotation (segmentation mask and number of storage roots). The challenge of identifying storage roots is particularly evident in the one storage root image.
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minor changes. To decrease the model parameters, we reduced 
the 1 × 1 and 3 × 3 convolution blocks in the first dense block to 
3, the second to 6, third to 12, and fourth to 8 and converted 2D 
convolutions to 2D separable convolutions. However, we used a 
classification layer similar to the original DenseNet: 7 × 7 global 
average pool, 7D fully-connected layer with a softmax activation 
(CNN-Based Count model only), and 2D fully-connected layer 
with a softmax activation (Age-Prediction model only). The 
reduced-parameter architecture is shown in Figure 3.

Synthetic Cassava Root generation Model
Our synthetic cassava root generation model uses a conditional 
GAN (Isola et al., 2017). The GAN comprises a generative and 
discriminative network chained together to make a composite 
model for training end-to-end. The network learns a mapping 
from the input mask to an output image, as well as a loss function 
to train the mapping (see Figure 4). We adapted our network 
architectures from those in Isola et al. (2017) and deposited 
the code in the GitHub repository1. Similar to Isola et al. 
(2017), our generator uses a “U-Net”-based architecture and a 
“PatchGAN”classifier with a patch size of 60 × 45. Both generator 
and discriminator use modules of the form convolution-
BatchNorm-ReLu (ie. a 2D convolution followed by a Batch 
Normalization and then Rectified Linear Unit respectively). We 
use the convolution block “Conv2D-LeakyReLU-BatchNorm” 
(ie. a 2D convolution followed by a leaky Rectifier Unit and 
then a Batch Normalization respectively) denoted by Ci and the 
“Convolution-Dropout-BatchNorm” block, CDi, where i is the 
number of filters. The convolutions are 4 × 4 spatial filters applied 
with stride 2. The convolutions in the encoder of both generative 
and discriminative models are downsampled by a factor of 2 and 
the decoder in the generative model up-samples by a factor of 2. 
Our generative model’s encoder has:

 

C C C C C

C C C C C

64 128 256 512 512

512 512 512 512 51

⇒ ⇒ ⇒ ⇒

⇒ ⇒ ⇒ ⇒ ⇒ 22  

The decoder has:

D D D D D D D D D512 512 512 512 512 512 256 128 64⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒

We used the BatchNorm to improve the model's training 
procedure, thus allowing us to use much higher learning rates. 
ReLU is a type of activation function, which is defined as y = 
max(0, x), meaning for all negative values of x, y = 0 and y = x 
otherwise. On the other hand, the Leaky ReLU has a small 
gradient for negative values, instead of zero (for example, y = 
0.01x when x < 0).

The difference between our model and that in Isola et al. (2017) 
is that our encoder and decoder are both two blocks deeper. Here, 
we replace the MSE-based content loss with a loss calculated 
over feature maps of the VGG network, which are more robust 

1 https://github.com/Amotica/CNN-Based-Cassava-Storage-Roots-Counting/
tree/master/rootGAN

to changes in the pixel space. We used the pre-trained VGG-16 
network instead of the VGG-19. The discriminator architecture 
has a 60 × 45 patchGAN:

 D D D D64 128 256 512⇒ ⇒ ⇒  

Our approach, which we refer to as a "CNN-based count 
model," first predicts the age of the root from an image using 
the age-prediction model in Age-Prediction and CNN-Based 
Count Models. This prediction helps determine whether to use 
the "old" or "young" CNN-based model to count the number 
of storage roots in the given image. It should be stressed that 
while the architectures of these models are identical, they are 
trained on the distinct age datasets. Figure 5 summarizes 
our method.

Segmentation-CNN Model
For our deep segmentation CNN model—used in our 
experimental evaluation of the proposed method as a comparison 
approach—we used a a VGG-16 style architecture similar 
to SegNet (Badrinarayanan et al., 2017). We followed the 
convolution layers in each encoder with a batch normalization 
and ReLU activation except for the last block, where we placed 
a max-pooling at the end of each encoder block. Max-pooling 
is a sample-based discretization process, which down-samples 
the input images by reducing their dimensionality. We used the 
same settings as Badrinarayanan et al. (2017), with max-pooling 
indices for up-sampling. 2D convolutions were replaced with 2D 
separable convolutions to reduce the number of model parameters 
and produce a model similar to the Lite CNN models in (Atanbori 
et al., 2018). The convolution layers in both the encoder and 
decoder were made separable, and batch normalization and 
ReLU activations applied to the separated convolutions. The first 
convolution of the network was, however, not separated, as this 
captures important, high-detail features. The reduced architecture 
is illustrated in Figure 6. To provide a point of comparison with 
the direct prediction method, a storage root count is obtained 
from the segmentation mask produced by the SegNet-based 
CNN, following noise removal using morphological operations, 
by counting the number of contours in the mask.

eXPeRIMeNTal eValUaTION
We combined the cassava root datasets detailed in Datasets, 
and the CNN architectures presented in Image Prediction and 
Generation Methods to perform the following experiments:

• The conditional GAN architecture described in Synthetic 
Cassava Root Generation Model was used to generate synthetic 
cassava root images from storage root segmentation masks 
derived from the ground truth segmentations manually 
created at CIAT. The similarity of synthetic and natural 
images was quantitatively evaluated by comparing the results 
of segmenting those images with the segmentation network 
presented in Segmentation-CNN Model. The hypothesis is that 
if synthetic and real images can be automatically segmented 
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FIgURe 3 | Our reduced-parameter DenseNet architecture has four dense blocks. Each dense block is made up of a 2D separable Convolution 
(SeparableConv2D), Batch Normalization (BN), and ReLU activations.

FIgURe 4 | Our generative model (G) learns the mapping between cassava storage root masks and cassava roots. Then given a cassava storage root masks (x), 
the generator predicts the cassava root image (G(x)) and the Discriminator (D) determines if the generated cassava storage root (G(x)) is fake or real.

FIgURe 5 | Block diagram of our Convolutional Neural Network (CNN)-Based Count Model.
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with similar accuracy, the synthetic data is likely suitable as 
additional training data when training the counting networks.

• The age-prediction network described in Age-Prediction and 
CNN-Based Count Models was used to classify real images 
of cassava roots as "young" or "old." The performance of this 
tool is evaluated in the usual way, as a classification task. The 
motivation for this test is to show we can identify root age 
with sufficient accuracy that a suitable counting model (ie. 
optimized for younger or older roots) can then be selected for 
the image in question.

• Two instantiations of the root counting network architecture 
described in Age-Prediction and CNN-Based Count Models 
were trained, both using real and synthetic images, to perform 
a direct image-to-count mapping. One of these models is 
trained for "young" root images, and one for "old" images. 
Performance of each of these networks was quantitatively 
compared to manually obtained ground truth. Results were 
also compared with identical measures of performance 
obtained using the segmentation-based approach described in 
Segmentation-CNN Model.

To train the image generation GAN we apply an Adam solver 
with a learning rate of 0.0002, and momentum parameters of 
β1 = 0.5 β2 = 0.999. For this experiment, we trained the network 
from scratch for 900 epochs and used a batch size of 2. Similar 
to Ledig et al. (2017), we minimize the MSE between features 
extracted with a pre-trained VGG19 model for real and synthetic 
root images. We did this because the pixel-wise loss functions 
such as MSE usually struggle to handle the uncertainty inherent 

in recovering lost high-frequency details such as texture. As input 
to the GAN, we supply a storage root mask, which can derive 
from a mask from an existing image with the same root count, or, 
in the case of missing data for a class (such as a lack of real data 
of plants with five storage roots), can be synthesized. To generate 
such a novel mask, masks of different root counts were combined 
before being passed into the GAN (see Figure 4).

We set the batch size of the segmentation CNN model to 2 
and the age-prediction and CNN-based count models to 32. The 
input image resolution of the segmentation CNN is 640 × 480 
pixels: large enough to maintain details of young cassava storage 
roots and small enough for the network to train reasonably 
quickly. The input image resolution of the Age-Prediction and 
CNN-based Count models is 256 × 256 pixels, large enough 
to maintain the storage root structure but again small enough 
for the model to train efficiently. Data augmentation applied 
consists of a zoom range of 0.2, brightness scaling ranging 
between 0.2 and 1.0, a rotation range of 10 degrees, and a 
horizontal flip.

We implemented all our models using Python 3.5.3 and Keras 
2.0.6 with a Tensorflow backend, and trained them on a Linux 
server with three GeForce GTX TITAN X GPUs (12 GB memory 
each). Testing was carried out on a Windows 10 computer with 
64GB RAM and a 3.6GHz processor.

Metrics Used
We used the “SegNet-score,” which is similar to the "FCN-score" 
used in Isola et al. (2017) to quantitatively evaluate our generative 

FIgURe 6 | The architecture of our Lite-SegNet model is a typical VGG-16 architecture with only four blocks. The building blocks comprise of a 2D Convolution 
(Conv2D), 2D separable Convolution (SeparableConv2D), Batch Normalization (BN), a ReLU activation, Max Pooling, and Upsampling. This network is used to 
generate a reference root segmentation to help evaluate our Generative Adversarial Network (GAN) and CNN counting models.
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model. The SegNet-scores used in our evaluation include 
Precision, Recall, Pixel Accuracy, and MeanIoU, previously used 
in Atanbori et al. (2018) to evaluate competing segmentation 
models. We have detailed these below:

• Pixel accuracy: This tells us about the overall effectiveness of 
the classifier and is defined in Equation 3.
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• Mean intersection over Union (MeanIoU): This compares 
the similarity and diversity of the complete sample set and is 
defined in Equation 4:
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• Average Precision: This tells us about the class agreement of 
the data labels with the positive labels given by the classifier 
and is defined in Equation 5.
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• Average Recall: This is the effectiveness of classifier to identify 
positive labels and is defined in Equation 6.
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where nij is the number of pixels of class i predicted to belong to 
class j, nji is the number of pixels of class j predicted to belong to 
class i, and c is the total number of classes.

We used the metrics reported in Giuffrida et al. (2015) for 
evaluating the leaf counting challenge to compare our CNN-based 
count model with the count derived from the Seg-Based Model. 
We choose to use these metrics since they have been widely used 
by the plant phenotyping community when evaluating counting 
models. They are:

• PercentAgreement, indicating in how many cases the 
algorithmic estimation agrees with ground truth

• CountDiff, average difference between algorithmic estimation 
of the count and ground truth, reported as mean and SD

• AbsCountDiff, average of absolute count errors, and reported 
as mean (SD)

• Mean Squared Error (MSE), the average squared difference 
between the predicted and ground truth values.

ReSUlTS
As we need to generate synthetic images to fill in classes of root 
numbers which are missing training images, and to augment 
other data-poor classes, we first examine the success of our 
GAN-based synthetic image generation approach. We compared 
our synthetically-generated cassava images (see Figure 7 and 
Supplemental Data for examples) against real images using 
the SegNet-scores, which we have detailed in Metrics Used, and 
present the results in Table 1. The SegNet-scores we considered 
are Precision, Recall, Pixel Accuracy, and MeanIoU.

The results reported were based on using the segmentation 
model trained on real images, for testing real and synthetically 
generated cassava images. The reasoning is that if the synthetic 
images are sufficiently similar to real images, then the model should 
be able to segment the synthetic images with comparable accuracy; 
if the generated images are visually different to the real images, 
segmentation will fail. From Table 1, it can be seen that although 
the SegNet-scores of the synthetically generated cassava images 
are lower than those associated with real images, the difference is 
small—only 4% based on the MeanIoU, and even smaller when 
considering the other metrics. From this, we observe that if the 
synthetic images can be segmented almost as well as the real images, 
they will be suitable as synthetic data to replace missing real images 
in the training data for the counting CNN procedure.

In order to choose an appropriate counting CNN model, we 
must estimate the age of the plant in an image as either young or 
old. Therefore, we next evaluate classifying cassava images from 
each dataset into featuring either old (≥ 2.5 months) or young  
(< 2.5 months) cassava roots using our age-prediction model. Results 
are presented in Table 2. These results are then used as input into 
our CNN-based count model to count storage roots. Storage roots 
of an image predicted as "young" are counted using the CNN-based 
model trained on "young" cassava roots whereas those predicted as 
"old" are counted by the model trained on old cassava roots.

We then evaluated our CNN-based cassava storage roots 
counting model, comparing counts generated by our CNN 
model with counts generated from an image processing pipeline 
deriving from the Seg-Based model. We evaluated using the test-
split (data from train/test split), test data (taken from the field 
after building the models), and combined test data (both test-
split and test data). The results are presented in Tables 3, 4, and 5, 
respectively, and some good quality example outputs are shown 
in Figure 9 (error cases are raised in the discussion).

The CNN-based model (ours) outperformed the Seg-Based 
system based on all metrics and test data splits reported. The 
difference is more than 36% for "old" roots and 25% for "young" roots 
based on the test-split data only. However, based on the combined 
test data (both test and test-splits), this is 39% and 23%. In all cases 
our CNN-based approach outperforms the segmentation-based 
approach. We present a discussion of these results in Discussion.

Discussion
We generated synthetic images for only the "old" cassava storage 
roots (≥2.5 months). We did this since our model requires all 
classes of the dataset (ie. all possible numbers of storage roots) to 
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be present, but this age category had some missing. Based on the 
"SegNet-Scores," our synthetically generated cassava images are 
comparable to real images and therefore should be able to be used 
to train our CNN-based count models. Figure 7 shows the results 
of synthetic images generated using our generative model. Visually 
inspecting these images also show that they are comparable to the 

FIgURe 7 | Our generative model (GAN) results: The first row show results of generated synthetic cassava roots images, all having five storage roots; no images 
of this class are present in the real image dataset, hence requiring synthetic generation. The last row shows results of generated synthetic cassava root images 
featuring a variety of storage root numbers. More examples from our GAN network can be seen in Supplemental Images S1–S3.

TaBle 1 | Comparison of segmenting synthetically generated cassava images 
versus the real images using the SegNet-scores: Precision, Recall, Pixel 
Accuracy, and MeanIoU.

Data Precision Recall Pixel accuracy MeanIOU

Real 99.30% 99.30% 99.30% 70.35%
Synthetic 98.38% 98.36% 98.48% 65.56%

TaBle 2 | Percentage of correctly classified images for young and old root 
classes, using the age-prediction model.

Test-split Test data Combined

Old 95% 71% 83%
Young 99% 100% 100%
Overall 97% 86% 91%

Test-split represents data from the train/test split, test data is taken from the field after 
building the models, and combined data comprises both test-split and test data.

TaBle 3 | Comparison of storage root-counting accuracy for our proposed 
Convolutional Neural Network (CNN)-based approach versus a more traditional 
segmentation-based approach.

% 
agreement

CountDiff aBS 
CountDiff

MSe

CNN-Based Old 90% 0.17 ± 0.79 0.26 ± 0.76 0.65
Young 74% 0.08 ± 0.84 0.38 ± 0.76 0.72

Seg-Based Old 54% 1.39 ± 1.92 1.39 ± 1.92 5.61
Young 49% 1.04 ± 1.54 1.08 ± 1.52 3.45

Results from the Test-split data; this is the data from train/test split that was reserved 
for testing the model. We report: %Agreement: the higher the better, CountDiff and 
ABSCountDiff as mean ± SD: the smaller the better and MSE: the smaller the better.

TaBle 4 | Comparison of storage root-counting accuracy for our proposed 
CNN-based approach versus a more traditional segmentation-based approach.

% 
agreement

CountDiff aBS 
CountDiff

MSe

CNN-Based 
(Ours)

Old 70% 0.27 ± 0.96 0.45 ± 0.89 1.00
Young 62% 0.36 ± 1.59 0.79 ± 1.25 3.18

Seg-Based Old 20% 0.09 ± 1.31 1.00 ± 0.85 1.72
Young 46% 1.14 ± 1.25 1.14 ± 1.25 3.64

Results here are from new isolated test data after the model was built. We report: 
percent agreement: the higher the better, CountDiff and ABSCountDiff as mean ± 
SD: the smaller the better and MSE: the smaller the better.
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real images (c.f. Figure 1). Even though the synthetically generated 
images were high resolution (960 × 720), they were less blurry, 
since our perceptual loss function, which uses the high-level 
feature maps of the VGG network adopted from Ledig et al. (2017) 
has been shown to produce less blurry images than an L1-Loss 
function, for example. We thus effectively use the generated images 
to supplement the real ones for training our count-model.

The correct prediction rate of our age-prediction model on 
our "old" roots is 83%, which by itself can be considered a good 
result. However, we observed that the model performs better in 
correctly predicting "young" cassava roots than the "old" ones. 
This is evidenced in the correct prediction rates reported in 
Table 2. The difference in the correct prediction rate between 
"young" and "old" roots is 4% on the test-split data, 29% on the 
test data collected after training the model, and 17% based on the 
combined test sets. We have also shown results of some correctly 
and incorrectly predicted ages of cassava storage root in Figure 8. 

Most of the incorrect predictions lie closer to the boundary age 
(2.5 months) of "old" and "young" roots. The second and third 
images in row two of Figure 8 shows some of these types of 
incorrect age predictions. Other incorrectly classified images 
were varieties of cassava roots that were poorly represented in 
the training data (images 1 and 4 in row two of Figure 8).

The "old" cassava roots are usually correctly counted by the CNN-
based model (ours) and Seg-Based model. "Young" roots with well-
defined storage roots are also very likely to be correctly counted by 
both models. Figure 9 shows the results of correctly counted storage 
roots. The top row shows images of the "old" cassava roots that are 
correctly counted and the bottom the "young" ones. Clearly, "young" 
roots with well-defined storage roots are correctly counted by both 
models [especially the CNN-Based model (ours)]. However, overall, 
counting the "old" cassava storage roots are more successful than the 
"young" ones as their storage roots are well-defined.

We have observed that our CNN-based counting model 
outperforms the Seg-based model substantially based on 
both datasets. The reason for this difference is that the Seg-
based model uses the masks of cassava storage roots, which 
sometimes overlaps, thus making them difficult to count. 
However, because the CNN-Based model (ours) does not 
rely on segmented masks, it is usually more successful on 
this type of images. Furthermore, the "Seg-Based" model fails 
to correctly count the storage roots when there is incorrect 
segmentation from the segmentation-CNN model. There are 
also additional cases when both our "CNN-Based" and "Seg-
Based" models incorrectly count roots (see Figure 10). Again, 

TaBle 5 | The table shows results from combining the Test and test-split Data.

% 
agreement

CountDiff aBS 
CountDiff

MSe

CNN-Based 
(Ours)

Old 86% 0.12 ± 0.77 0.24 ± 0.74 0.61
Young 71% 0.14 ± 1.06 0.47 ± 0.96 1.14

Seg-Based Old 47% 0.84 ± 1.63 1.04 ± 1.51 3.37
Young 48% 1.08 ± 1.49 1.11 ± 1.47 3.38

We reported %Agreement—the higher the better, CountDiff and ABSCountDiff as 
mean ± SD—the smaller the better and MSE—the smaller the better.

FIgURe 8 | Example results of our age-prediction model. Top row shows images of correctly predicted age; bottom row shows incorrect predictions. More age 
prediction example images can be seen in Supplemental Images S4–S9.
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FIgURe 9 | The figure shows correctly counted storage roots, with the top row showing "old" storage roots and the bottom, "young" ones. More examples of 
outputs for the counting networks can be seen in Supplemental Images S10–S15.

FIgURe 10 | The figure shows incorrectly counted storage roots, with the top row showing results from the CNN-based model and the bottom, the 
Seg-based model.
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this happens more in "young" roots where storage roots are 
visibly harder to pick out, and also varieties of cassava that are 
under-represented in the training set. Perhaps more insight 
could be gained into these errors by building in an explainable 
approach to the deep learning. To elucidate why decisions are 
made by the deep learning system, future systems will attempt 
to reveal to the user regions which are used in the counting 
process. Understanding the exact mechanism of GAN-based 
image generation is more challenging, and is a focus of current 
research.

CONClUSION
We proposed two convolutional network architectures for 
counting "old" and "young" cassava storage roots, which we refer 
to as "old" and "young" CNN-Based count models respectively. 
Since we needed two models, we further proposed a CNN-based 
age-prediction architecture that first classifies storage roots 
as either "old" or "young" and then use the appropriate CNN-
based count model to predict the number of storage roots. In 
our experiments, the age-prediction model achieved a state-of-
the-art prediction accuracy on both datasets. We evaluated our 
CNN-based count model with a similar approach that uses a 
segmentation based method, and it outperformed it considerably.

We generated synthetic images for missing count classes 
in the "old" root dataset since our approach requires data for 
all classes, and found that they are comparable (both visually 
and when automatically segmented) to the real mages. We 
investigated incorrect counting by our model and found they 
were often caused by storage roots lying closer to the boundary 
age (2.5 months) used to separate "old" and "young" roots. We also 
found some incorrect classifications caused by testing varieties of 
cassava roots that were few or missing from the training data. As 
future work, we propose to collect more data for each variety of 
cassava roots in our dataset, which will help improve our models' 
performance. Even though we can generate these images with our 
conditional GAN, this also requires more data to produce realistic 
images. We also propose to design additional CNN-Based models 
that will predict the total length and volume of cassava storage 
roots, which will help us develop a complete image-based cassava 
root phenotyping system. The approach here has been developed 
to support cassava phenotyping work, in particular to support the 

development of a low-cost aeroponic phenotyping system. Future 
work will need to consider the ease of transfer from this system 
to other, similar systems, and a transfer learning approach may be 
required to update models for new image sets.
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