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The orchids (Orchidaceae) constitute one of the largest and most diverse families of
flowering plants. They have evolved a great variety of adaptations to achieve pollination by
a diverse group of pollinators. Many orchids reward their pollinators, typically with nectar,
but the family is also well-known for employing deceptive pollination strategies in which
there is no reward for the pollinator, in the most extreme case by mimicking sexual signals
of pollinators. In the European flora, two examples of these different pollination strategies
are the sexually deceptive genus Ophrys and the rewarding genus Gymnadenia, which
differ in their level of pollinator specialization; Ophrys is typically pollinated by pseudo-
copulation of males of a single insect species, whilst Gymnadenia attracts a broad range
of floral visitors. Here, we present and describe the annotated floral transcriptome of
Ophrys iricolor, an Andrena-pollinated representative of the genus Ophrys that is
widespread throughout the Aegean. Furthermore, we present additional floral
transcriptomes of both sexually deceptive and rewarding orchids, specifically the
deceptive Ophrys insectifera, Ophrys aymoninii, and an updated floral transcriptome of
Ophrys sphegodes, as well as the floral transcriptomes of the rewarding orchids
Gymnadenia conopsea, Gymnadenia densiflora, Gymnadenia odoratissima, and
Gymnadenia rhellicani (syn. Nigritella rhellicani). Comparisons of these novel floral
transcriptomes reveal few annotation differences between deceptive and rewarding
orchids. Since together, these transcriptomes provide a representative sample of the
genus-wide taxonomic diversity within Ophrys and Gymnadenia (Orchidoideae:
Orchidinae), we employ a phylogenomic approach to address open questions of
phylogenetic relationships within the genera. Specifically, this includes the controversial
placement of O. insectifera within the Ophrys phylogeny and the placement of “Nigritella”-
type morphologies within the phylogeny of Gymnadenia. Whereas in Gymnadenia, several
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conflicting topologies are supported by a similar number of gene trees, a majority of
Ophrys gene topologies clearly supports a placement of O. insectifera as sister to a clade

containing O. sphegodes.

Keywords: phylogenomics, orchids, Ophrys, Gymnadenia, transcriptome, pollination strategy

INTRODUCTION

Orchidaceae and Asteraceae constitute the largest families of
flowering plants. Over 800 orchid genera and 25,000 species have
been described, with an average rate of 500 species and 13 genera
described per year (Cribb et al., 2003; Chase et al., 2015). Orchids
have colonized a great variety of geographical ranges, from
Scandinavia to Tierra del Fuego (Antonelli et al., 2009;
Dominguez and Bahamonde, 2013), although the vast majority
of species occur in tropical and neotropical areas (Dressler,
1993). The key to their success has variously been
hypothesized to reside in their epiphytic habitat (for tropical
orchids) or in their high level of pollinator specialization
(Gravendeel et al., 2004; Cozzolino and Widmer, 2005). About
two thirds of orchid species present rewards to their visitors, in
most cases, nectar (Dafni and Ivri, 1979; Bell et al., 2009; Johnson
et al., 2013). These rewarding species are commonly generalized
in their pollination, attracting a wide range of pollinators
(Brantjes, 1981; Claessens and Kleynen, 2017). However, the
ability to produce nectar is missing in one third of species across
the family. Instead, they have developed alternative mechanisms
based on deception (Ackerman, 1986; Jersdkova et al., 2006;
Schiestl and Schliiter, 2009; Johnson and Schiestl, 2016). Some
of these mechanisms target generalist pollinators, e.g., food
deception, where orchids attract pollinators by advertising floral
cues that resemble those from rewarding plants (Salzmann et al.,
2007; Braunschmid et al., 2017). On the other hand, orchids have
also developed mechanisms such as sexual deception to attract
highly specialized pollinators. Sexually deceptive flowers produce
chemical signals that mimic the sexual pheromones of pollinators,
and thus, lead the pollinators to “pseudo-copulate® with the
flowers (Kullenberg and Bergstrom, 1976; Paulus and Gack,
1990; Schiestl et al., 1999). Examples of such behaviour occur in
the Australian Chiloglottis spp. (Mant et al., 2002; Schiestl et al.,
2003), or the recently discovered sexually deceptive Caladenia
abbreviata (Phillips and Peakall, 2018).

In the European flora, one can find representatives of the
aforementioned pollination strategies in the sexually deceptive
genus Ophrys and the rewarding genus Gymnadenia, both within
the subtribe Orchidinae (subfamily Orchidoideae) (Inda et al.,
2012). Orchids from the Mediterranean genus Ophrys attract male
pollinators by means of sexual deception (Paulus and Gack, 1990;
Ayasse et al.,, 2000; Schiestl et al., 2000). Attractiveness to
pollinators in the genus is highly species-specific, that is, each
Ophrys species normally attracts a single pollinator species
(Paulus and Gack, 1990; Paulus, 2018) by releasing chemicals
(for solitary bees, mostly alkenes) mimicking the female sex
pheromones (Schiestl et al., 2000; Schliiter and Schiestl, 2008;
Xu et al,, 2012). This high specificity acts as a pre-zygotic barrier

and facilitates reproductive isolation between orchid species (Xu
et al,, 2011; Xu et al., 2012; Paulus, 2018). Ophrys is a recently
diverged genus (crown age estimated ca. 5 Ma) with ancestral wasp
pollination (Breitkopf et al., 2015), but extant species are
commonly pollinated by solitary bees, e.g. Eucera or Andrena
(Paulus and Gack, 1990; Gaskett, 2011). Successful floral isolation
and species divergence in the genus may easily be achieved by
shifts between similar pollinators, where small changes in genes
involved in the pheromone profiles can lead to attraction of new,
related pollinators (Schliiter et al,, 2011; Sedeek et al., 2014;
Schliiter, 2018). For instance, after two independent shifts to
(mostly) Andrena solitary bee pollination (Breitkopf et al,
2015), two parallel adaptive radiations have taken place
simultaneously within the last ca. 1 Ma, yielding two major
clades, the Ophrys sphegodes and the Ophrys fusca species
complexes. In line with its recent radiation, a large amount of
genetic polymorphism is shared across closely related species
within the O. sphegodes complex, which has been attributed to
common ancestry rather than independent mutations or recent
hybridization, although a hybridization event prior to radiation
seems distinctly possible (Sedeek et al., 2014; Roma et al., 2018;
Cozzolino etal., 2019). Coalescence theory predicts that in the case
of a radiation, the time of coalescence of these polymorphic alleles
will often predate the split of species (Takahata, 1989). Yet, or
maybe because of this, phylogenetic relationships within Ophrys
remain controversial, with different markers in the genome
potentially painting different pictures of relationships
(Cozzolino et al., 2019). Phylogenetically, the ca. 10 main
Ophrys lineages are split into three major clades (where clade o
includes Ophrys insectifera, 3 includes the O. fusca s.1. lineage and y
includes the O. sphegodes s.1. lineage) and the relationships among
major lineages within these clades are relatively clear, although
one major question remains unclear. In particular, the placement
of the wasp-pollinated O. insectifera L. (clade o) within the Ophrys
phylogeny has been suggested to be either the earliest-branching
lineage [topology: (06(3,7))] or more closely related to the O.
sphegodes lineage [topology: (B,(ct7)] (cf. e.g. Breitkopf et al,
2015; Bateman et al., 2018b, and references therein).

The Eurasian genus Gymnadenia is characterized by fragrant,
purpletowhite, resupinate flowers that mainlyattractdiurnaland
nocturnal Lepidoptera species offering nectar as a reward.
Although they attract a wide range of Lepidoptera, and some
species are found in sympatry, pollinator overlap is minimal
between most species (Voth, 2000; Huber et al., 2005; Claessens
and Kleynen,2011) and strong pollinator-mediated reproductive
isolation has been reported between the putative sister species G.
odoratissima (L.) Richard and Gymnadenia conopsea (L.) Brown
(Sun et al,, 2015). The latter species is strongly genetically
differentiated from the morphologically similar taxon G.
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densiflora (Wahlenberg) Dietrich (Stark et al., 2011). Finally,
the Alpine G. rhellicani (Teppner & E. Klein) Teppner & E.
Klein (syn. Nigritella rhelliani) represents a morphologically
distinct lineage within the genus, characterized by extremely
dense inflorescences, generally dark red and without
resupination, i.e. the labellum remains pointing upwards as
opposed to rotated downwards as in other Gymnadenia species.
The former genus Nigritella was merged into Gymnadenia only
following molecular phylogenies (Hedrén et al., 2000).
Previous phylogenetic analysis have shown that Gymnadenia
odoratissima is sister to Gymnadenia conopsea, and
Gymnadenia densiflora forms a clade with Gymnadenia
rhellicani (Bateman et al., 2003; Sun et al., 2015). However,
these relationships remain contentious, since other studies
support a sister-group relationship among Nigritella and the
“classical” genus Gymnadenia (Hedrén et al., 2000; Brandrud
etal.,2019). Hence, further attention is warranted, especially to
clarify the position of Nigritella. The age of the most recent
common ancestor shared among all Gymnadenia/Nigritella
species is estimated to be around 2.5-3 Ma (Inda et al., 2012).

Due to the high taxonomic complexity of Orchidaceae,
reconstructing phylogenetic patterns to understand
relationships in the family remains challenging. In the last
decades, phylogenetic studies in orchids moved from a
morphological (Chittka and Menzel, 1992; Gravendeel et al.,
2004) to a molecular approach aiming to provide a better insight
into orchid relationships (Cameron et al., 1999; Stark et al., 2011;
Inda et al., 2012; Breitkopf et al., 2015; Givnish et al., 2015;
Bateman et al., 2018a). Previously, the focus of these analyses was
at the level of using few genetic markers, e.g. ITS, to reconstruct
phylogenies. However, this approach can be problematic as some
markers are chosen by their relevance or suitability in a certain
taxonomic group, even though they could present low resolution
for certain taxonomic groups (Capella-Gutiérrez et al., 2014).
Moreover, this approach generally focuses on estimating one
coherent tree (e.g. by concatenating sequences), which ignores
the fact that different loci can have different phylogenetic
histories. Especially when dealing with recently diverged
groups with incomplete lineage sorting (Pamilo and Nei,
1988), a genomic approach focusing on understanding patterns
on different gene genealogies, may allow the quantification of the
different phylogenetic scenarios and thus, be more informative
on the evolutionary history of a group (Pease and Hahn, 2015;
Pease et al., 2016). Orthologous genes, described as homologous
genes that originated from a common ancestral gene as a result of
the speciation process (Fitch, 1970), tend to retain the original
function from the common ancestor over evolutionary time
(Jensen, 2001). Thus, groups of orthologous genes within gene
families, together with a genome-wide approach, are perfect
candidates to resolve orchid phylogeny and effectively clarify
their relationships in an evolutionary framework (Li et al., 2003;
Deng et al., 2015).

Here, we present the novel floral transcriptome of the
Mediterranean sexually deceptive orchid Ophrys iricolor Desf.,
a representative of the genus Ophrys in the Aegean area, which is
considered to be a member of the O. fusca group (clade ) and

represents the evolutionarily distinct abdomen-pollinated
members of the genus (previous section Pseudophrys) (Schliiter
et al.,, 2009). In addition, we present several floral transcriptomes
of both rewarding and deceptive orchids of the subtribe
Orchidinae, particularly the rewarding orchids G. conopsea, G.
densiflora, G. odoratissima, and G. rhellicani, together with the
sexually deceptive O. insectifera, Ophrys aymoninii (Breistroffer)
Buttler, and finally, an updated transcriptome of O. sphegodes s.1.
(Sedeek et al., 2013). Using a set of orthologous genes, we employ
a genome-wide approach to phylogenetic analysis of these novel
floral transcriptomes together with published orchid
transcriptomic/genomic data, to compare the transcriptomes of
deceptive and rewarding orchids. Furthermore, as these
transcriptomes cover the genus-wide taxonomic diversity
within Ophrys and Gymnadenia, our objectives are to elucidate
(1) the placement of the O. insectifera complex within the three
major clades in the Ophrys phylogeny, (2) the placement of the
morphologically distinct G. rhellicani (and presumably other
members of subgenus Nigritella) within the phylogeny of
Gymnadenia and (3) whether there is evidence of introgression
due to shared pollinators in distinct Ophrys lineages.

MATERIAL AND METHODS

Plant Material

The novel Ophrys iricolor s.l. (O. iricolor s.s. and Ophrys
mesaritica H.F. Paulus, C. Alibertis & A. Alibertis) cross-
species transcriptome is presented here. Data from the putative
sister species O. iricolor s.s. and O. mesaritica (Schliiter et al.,
2009) were assembled into a single transcriptome due to
expected high levels of allele sharing among the group, as seen
in the O. sphegodes complex (Sedeek et al., 2013; Sedeek et al.,
2014). Sample size (Ophrys iricolor s.l, N = 16 biological
replicates; O. sphegodes s.I, N = 37) and provenance are listed
in Table 1. The previously published cross-species O. sphegodes
s.l. (O. exaltata subsp. archipelagi (Golz & H.R. Reinhard) Del
Prete, O. garganica Nelson ex O. & E. Danesch, and O. sphegodes
Miller) transcriptome (Sedeek et al., 2013) is here updated with
data from additional samples, including from O. incubacea
Bianca (samples from Sedeek et al., 2014) within the same
species complex that is characterized by the aforementioned
high levels of allele and transcript sharing among species (Sedeek
et al., 2013; Sedeek et al., 2014) and is hence covered in a single
cross-species transcriptome assembly. Additionally, O.
insectifera and O. aymoninii transcriptomes are also presented
here. Data from O. insectifera and O. aymoninii (collected in
Gervasi et al., 2017), were assembled into separate
transcriptomes because these species are pollinated by different
types of pollinators (O. insectifera is wasp-pollinated, while O.
aymoninii is Andrena-pollinated) and the assumption of high
levels of within-group allele sharing cannot be made. Finally,
sampled flowers from the clearly distinct species G. conopsea, G.
densiflora, G. odoratissima and G. rhellicani (from Kellenberger
et al, 2019) were used to create individual transcriptome
assemblies for these species to complement the published
cross-species Gymnadenia transcriptome assembly (N = 10,
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Table 1) (Kellenberger et al., 2019). As far as it was possible to
ascertain pollination status (not always possible for Gymnadenia
flowers), all samples used in this study were from unpollinated
flowers of diploid individuals. Flowers were flash-frozen and
stored at -80°C until RNA extraction was conducted as detailed
by Kellenberger et al. (2019). Since polyploids are known from
Gymnadenia and (occasionally) Ophrys and to ensure that all
samples sequenced were diploid, ploidy levels of O. iricolor and
O. mesaritica were checked via flow cytometry of pollinia as
described by Xu et al. (2011) using a Cell Lab Quanta™ SC-MPL
flow cytometer (Beckman Coulter, Fullerton, Canada). Phaseolus
coccineus “Scarlett Emperor” (sativa Rheinau SG, Switzerland)
leaf material was used as internal standard. Ploidy levels were
previously described for O. sphegodes s.I. (Sedeek et al., 2014), O.
insectifera and O. aymoninii (Gervasi et al., 2017) and the four
Gymnadenia species (Kellenberger et al., 2019) used in this study,
including all sequenced individuals.

RNA Extraction, Library Preparation and
Sequencing

Total RNA was extracted separately for each biological
individual and tissue with TRIzol reagent (Thermo Fisher
Scientific, Massachusetts) according to the manufacturer's
protocol followed by a purification step using Qiagen RNeasy
MinElute Cleanup Kit (Qiagen, Netherlands). Quality of the
isolated RNA was determined with a Qubit® (1.0) Fluorometer
(Life Technologies, California, USA) and a Bioanalyzer 2100
(Agilent, Waldbronn, Germany). Paired-end sequencing was
performed on the Illumina HiSeq 2000 or 2500 platforms
(Mumina, Inc, California, USA) for Ophrys and Gymnadenia
samples (Table 1), generating separate files for each
biological sample.

Transcriptome Assemblies and Functional
Annotation

Individual reads were first aligned to PhiX Control library
(Ilumina) sequences using bowtie2 v2.2.4 (Langmead and
Salzberg, 2012) to remove sequencing control reads. Filtered
reads were trimmed using Trimmomatic v. 0.36 (Bolger et al.,
2014) to remove any Illumina adapters. Surviving reads were
then de-novo assembled to transcripts using Trinity 120140717/
v. 2.0.618 (Grabherr et al.,, 2011). In the case of O. sphegodes,
where a previous assembly based on 454, Solexa and Sanger data
was available (Sedeek et al., 2013), additional Illumina HiSeq
reads were assembled with Trinity as described above and then
merged with the published assembly using cd-hit-est (Li and
Godzik, 2006; Fu et al., 2012) (95% sequence identity threshold
with full length alignment coverage for the shorter sequence).
Protein coding regions were analysed using TransDecoder
r20140704 (http://transdecoder.github.io) (Haas et al., 2013).
The assembled contigs were annotated with the standard
Trinotate annotation pipeline (https://trinotate.github.io/)
(Grabherr et al., 2011) against Swissprot (Boeckmann et al.,
2003), Pfam (Finn et al., 2014), TmHMM (Krogh et al., 2001),
Gene Ontology (Ashburner et al., 2000) and SignalP (Petersen et
al,, 2011). Due to high levels of overlap among the four single-
species Gymnadenia transcriptomes (Figure S1B), we annotated
only the cross-species Gymnadenia transcriptome from all four
species. For purposes of comparison, we also updated the
annotation of the previously published, updated (v.2)
transcriptome of O. sphegodes (Sedeek et al., 2013) with
Trinotate. Finally, to estimate the completeness of the
transcriptomes, we performed a BUSCO v3.1.0 assessment
(Simédo et al., 2015) with the lineage databases
embryophyta_odb10 and liliopsida_odb10 (Figures 1A, B).

embryophyta_odb10

0. sphegodes

n=1375

Ed .f‘ v

Gymnadenia

-r I
P

liliopsida_obd10

©. sphegode

O. iricolor

Gymnadenia

d E P Micei
Frag

and singl

results with embryophyta_odb10 and (B) the larger liliopsida_odb10 databases.

FIGURE 1 | BUSCO assessment. Concentric circles show the BUSCO assessment of O. sphegodes v.2, O. iricolor and cross-species Gymnadenia spp.
transcriptomes (from inside to outside), where the first three (blue) categories together are taken as an estimation of transcriptome “completeness”. (A) BUSCO

and dupli
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Phylogenomic Analysis

OrthoMCL v2.0.9 (Li et al,, 2003) was used under the MySQL
v14.14 server to identify orthologous groups based on annotated
coding sequences (CDS) (where no annotated CDS were
available, they were derived by TransDecoder as above) of 15
members of the Orchidaceae family including the above
described Ophrys and the four Gymnadenia single-species
transcriptome assemblies together with the transcriptomes/
genomes of Apostasia shenzhenica and Phalaenopsis equesteris
(Zhang et al., 2017), Dactylorhiza fuchsii (Balao et al., 2017),
Chiloglottis trapeziformis (Wong et al., 2017), Dendrobium
catenatum (Zhang et al., 2016), and Platanthera clavellata and
Goodyera pubescens (retrieved from the 1KP project; http://www.
onekp.com/). Following the TranslatorX pipeline (Abascal et al.,
2010), sequences were aligned using Mafft v7.407 (Katoh and
Standley, 2013). To construct phylogenetic trees, a pipeline as
described in Xu et al. (2017) was followed. In brief, poorly
aligned sequences were removed using trimal v1.2 (Capella-
Gutiérrez et al., 2009). Selection of the best-fit models of
nucleotide substitution was performed with jModelTest 2.1.10
(Santorum et al., 2014), with parameters: -f -i -g 4 -a -AIC -s 3.
This allowed the inclusion of models with unequal base
frequencies, a proportion invariable sites, rate variation among
sites and set 4 categories, model-averaged phylogeny for each
active criterion. Moreover, it used AIC (Akaike Information
Criterion) for model selection and accounted for 3 substitution
schemes. Maximum likelihood trees of the best-fit models were
calculated with phyML 3.3 (Guindon and Gascuel, 2003). For
each taxonomically fully sampled orthologous group, tree
topologies from Ophrys and Gymnadenia single-copy gene
branches were extracted. In addition, we also extracted
topologies where one Ophrys species was missing. The
extraction of tree topologies was automated with an in-house R
script. Moreover, for both Ophrys and Gymnadenia, we extracted
topologies where gene duplications happened only within a
monophyletic group of a given species. In the latter case, all
but one of the duplicate tips was dropped from the phylogeny
(keep.tip function from the package ape for R v3.5.0) (R Core
Team, 2001). After retrieving (rooted) topologies of target
groups, we compared these topologies with Robinson-Foulds
distances, where a distance of 0 indicates that topologies are in
full agreement with each other (Robinson and Foulds, 1981),
using the package phytools (Revell, 2012) for R. Tree
visualization was performed using the Bioconductor package
Ggtree (Yu et al, 2017) for R. Finally, we compared the
annotation, particularly the GO Plant Slim terms, of the
different topologies observed for Ophrys and Gymnadenia.

RESULTS

Transcriptome Assemblies and Functional
Annotation

All Ophrys individuals were diploid (Figure S2 for O. iricolor
s.l.), consistent with previous studies (Xu et al., 2011; Sedeek
etal., 2014). After sequencing, a total of 493.5 million paired-end

(PE) reads from O. iricolor and 191.9 million from Gymnadenia
were produced (Table 1). All the raw sequencing data (totalling
431.8 Gbp from 2111 million PE reads) are available in the
Sequence Read Archive (SRA) of the National Center for
Biotechnology Information (NCBI) under the accession
numbers in Table 1. We successfully produced 131,528 and
589,218 contigs (Table 1) for O. iricolor and for the Gymnadenia
cross-species assembly, respectively, corresponding to 88,664
and 174,633 Coding Sequences (CDSes) (Table 2). The
remaining sequences did not match any known gene from the
databases queried. The annotation tables can be downloaded
from figshare (links in Table 2). Based on the three main
Gene Ontology categories (biological process, cellular
component, and molecular function), we compared the 14
most common GO Plant Slim terms (Clark et al., 2005) in the
Gymnadenia spp. cross-species, O. iricolor and the updated O.
sphegodes transcriptomes (Table 1, Figure 2). To avoid
overrepresentation of general terms such as “metabolic” or
“cellular” processes, we omitted the first 7, 3, and 3 terms for
Biological Process, Cellular Component and Molecular Function,
respectively. Overall, the three transcriptomes are very similar in
GO terms. The main differences between O. sphegodes and O.
iricolor are the lack of terms related to “response to endogenous
stimulus” in O. iricolor, and the presence of terms related to
“vacuole” in O. sphegodes (Figures 2A, B). On the other hand,
the Gymnadenia transcriptome differs from the Ophrys
transcriptome by showing a high number of genes related to
“nucleus” processes and an absence of those related to
"membrane” processes (Figure 2B). Finally, BUSCO
assessments with the embryophyta lineage database indicated
that the completeness of the transcriptomes was 93.4, 91.9, and
94.1% for O. iricolor, O. sphegodes v.2, and cross-species
Gymnadenia transcriptomes, respectively (Figure 1A). These
results therefore suggest a reasonably high assembly quality of
our floral transcriptomes, especially when compared with fully
sequenced orchid genomes (encoding the transcripts of all
tissues), i.e. the Apostasia genome with a 93.62% completeness,
94.45% in Phalaenopsis equestris and 95.49% in Dendrobium
catenatum (all using the embryophyta database) (Zhang et al.,
2017). Also, with 87.6, 85.5, and 87% for the larger BUSCO
liliopsida lineage database (Figure 1B), for O. iricolor, O.

TABLE 2 | Annotation statistics.

Annotation O. iricolor s.1. O. sphegodes s.l. Gymnadenia
v2 cross-species
CDSes 88,664 167,997 174,633
BLASTX 51,706 83,722 193,416
BLASTP 75,825 126,548 275,242
Pfam 52,288 84,592 195,443
SignalP 55,429 88,779 207,377
EggNOG 57,652 92,178 211,305
KEGG 54,457 85,892 201,018
TmHMM 75,781 89,813 208,338
Gene 30,098 79,238 129,578
Ontology
Figshare 10.6084/m9.figshare. 10.6084/m9. 10.6084/m9.
identifier 9944015 figshare.9944018 figshare.9944006
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sphegodes v.2 and cross-species Gymnadenia transcriptomes,
respectively, our transcriptomes appear relatively complete
with respect to monocot-specific genes.

Phylogenomic Analysis

Overall, we found the 15 orchid species included in this study to
share a total of 1,749 gene families. From these gene family
phylogenies, 226 contain Ophrys monophyletic groups with no
gene duplications sampled from all Ophrys species and 160
contain Gymnadenia monophyletic groups with no gene
duplications sampled from all Gymnadenia species separately.
In addition, 116 contain informative topologies with one Ophrys
species missing; and 153 and 318 topologies contain gene
duplications (or alleles) within single-species monophyletic
groups for Ophrys and Gymnadenia, respectively. For Ophrys
and Gymnadenia, we found 5 and 6 of the 15 possible rooted
topologies for four taxa, respectively. In Ophrys, the most
common topology (77% of the trees) suggests that O.
insectifera s.l. (with O. aymoninii) is not the basalmost clade,
but instead places it in a clade with O. sphegodes, whereas O.
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FIGURE 2 | GO Plant Slim functional annotation. GO Plant Slim annotation of the three transcriptomes for the most common (A) Biological Process, (B) Cellular
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iricolor takes the basal position (Figures 3A, B). This is also
evident from the consensus tree over all orthologous gene groups
(Figure 3C) and from all (100%) of the trees missing one Ophrys
species (Figure 3B). In the case of Gymnadenia, the distribution
of topologies is more even. Yet, the most common topology,
supported by 33% of the trees, places G. rhellicani at the basal
position in the Gymnadenia tree (Figure 4). Overall, a total of
48% of evaluated Gymnadenia genes show a topology that places
G. rhellicani as a sister to all other species. Also, strikingly, only
33% of gene topologies support a sister-species relationship
among G. conopsea and G. odoratissima. We compared the
GO annotations of each topology in Ophrys and Gymnadenia,
but despite some annotation differences between topologies,
there is no clear pattern with respect to putatively pollinator-
relevant features (Figures S3 and S4). Although not significant,
the two most common Ophrys topologies also show the highest
average branch length (Figure S5A), whereas two less common
topologies have the longest branch lengths in Gymnadenia
(Figure S5B, non-significant); these are not united by a
common phylogenetic theme (e.g. with respect to G. rhellicani).
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DISCUSSION

This study provides significant new transcriptome sequence
resources aimed to improve our knowledge about the highly
complex Orchidaceae family. Specifically, we present novel floral
transcriptomes of several members of the subtribe Orchidinae of
the Orchidoideae subfamily, covering both sexually deceptive
and rewarding orchids. Overall, there were no striking
differences between sexually deceptive and rewarding orchids
when comparing the most common annotation terms based on
Gene Ontology categories. This is not a surprise, because the GO
Slim categories approach, although providing a large vocabulary
to describe the functional categories, also suffers from a lack of
clarity and too broad definitions, resulting in only a vague
overview of molecular biology (Smith et al., 2003). At the same
time, the phylogenetic proximity of Ophrys and Gymnadenia
provides a plausible explanation for the lack of strong
differentiation in terms of GO categories and suggests that
differences in pollination strategy do not require fundamental
changes in the genome-wide repertoire of florally expressed
genes. This is in line with the phylogenetic lability of
pollination strategies reported within the Orchidinae (Inda
et al., 2012).

However, clear differences between Ophrys and Gymnadenia
are apparent in terms of the transcriptome-wide distribution of
gene tree topologies. For phylogeny reconstructions, rather than
concatenating sequences, we evaluated multiple gene family trees
separately. Trees derived from concatenated sequences do not
reveal discrepancies between individual genes that are expected
under a standard coalescent process, i.e., the more recent a
species split is, the more tree topologies are expected due to
incomplete lineage sorting (Takahata, 1989). Disagreement

between gene trees and species trees has been observed in an
increasing number of studies suggesting that the combination of
a large amount of ancestral polymorphism and post-speciation
gene flow between taxa can lead to large systematic differences
between gene and species trees (Green et al., 2010; Novikova
et al.,, 2016; Filiault et al., 2018; Malinsky et al., 2018).

Interestingly, the two most common gene tree topologies
recovered for Ophrys reflect previous published phylogenetic
reconstructions, our topologies 1 and 2 (Figure 3) corresponding
to the phylogenies published most recently by Bateman et al.
(2018b) and Breitkopf et al. (2015), respectively. Breitkopf et al.'s
reconstruction suggested the O. insectifera group (clade «,
including O. aymoninii) as the basal clade on the tree. By
contrast, the phylogenetic reconstruction by Bateman et al.
places O. insectifera closer to the O. sphegodes group, whereas
a lineage containing the O. fusca complex (clade P, here
represented by O. iricolor) is the earliest diverged. Our results,
with a consensus of 85% of gene topologies, overwhelmingly
support the inner placement of O. insectifera, rather than a basal
position (Figure 3C). However, with the wasp-pollinated O.
insectifera sister to the clade containing O. sphegodes and the
wasp-pollinated O. speculum sister to the clade containing O.
iricolor/O. fusca, the phylogeny's implication for the ancestral
mode of pollination remains unchanged; the inference of
ancestral wasp pollination in the genus Ophrys (Breitkopf
et al, 2015) therefore seems unaffected by our findings.
Nevertheless, it is striking that we found no strong evidence
for discordant phylogenies throughout the genome.

Since the O. insectifera-group member O. aymoninii, a
narrow endemic in southern France, is Andrena-pollinated
(Paulus and Gack, 1990; Gervasi et al, 2017), phylogenies
placing O. aymoninii together with the other Andrena-
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pollinated linages, O. sphegodes and/or O. iricolor could be (but
need not be) an indication of hybridization and introgression via
Andrena pollinators. Although our analysis recovers phylogenies
(Figure 3A, topologies 3 and 5) consistent with this hypothesis,
with only 4% of the gene trees overall, support for pollinator-
mediated introgression is weak at best.

Unlike Ophrys with a clearly predominant phylogeny across
the transcriptome, Gymnadenia presents a much less clear
picture of species relationships. The sister relationship between
G. conopsea and G. odoratissima has been supported in several
previous studies (e.g. Bateman et al., 2003; Sun et al, 2015)
including by a recent genome-wide RAD-Seq (concatenated)
SNP data set (Brandrud et al., 2019). This relationship is here
supported by the most common topology in the transcriptome
(Figure 4, topology 3). Yet this is also the only topology that
supports this relationship, accounting for only 33% of
orthologous gene groups evaluated. We must therefore
conclude that, from a genomic perspective, the sister
relationship of G. conopsea and G. odoratissima is not
beyond doubt.

The genus Gymnadenia now typically includes its former
sister genus Nigritella as a subgenus. Initial hypotheses built on

morphological data (Wucherpfennig, 2002), anthocyanin
pigments (Strack et al., 1989), or AFLP markers (Stahlberg,
1999) suggested the separation of the two genera. Early
molecular phylogenies (usually based solely on ITS) typically
sampled only G. conopsea, G. odoratissima, and a single member
of Nigritella, which was generally the outgroup to the sister
Gymnadenia species (Hedrén et al,, 2000). When additional
species were sampled and added to this basic phylogeny, G.
densiflora (or, depending on the sampling, G. borealis) was
shown to be the sister taxon to members of Nigritella, arguing
for combining the genera (Pridgeon et al., 1997; Bateman et al,,
1997; Bateman et al., 2003; Stark et al., 2011; Efimov, 2013).
Addition of three nuclear genes did not change this topology
(Rey, 2011; Sun et al,, 2015). Interestingly, where authors
considered multiple phylogenetic methods, conflict seems to
arise in tree construction, with parsimony showing Nigritella as
the outgroup to G. conopsea/G. densiflora/G. odoratissimalG.
borealis, while Bayesian and maximum likelihood analyses
demonstrate a sister relationship between Nigritella and either
G. borealis or G. densiflora (Rey, 2011; Inda et al,, 2012). In a
major upgrade to the generic phylogeny, Brandrud et al. (2019)
performed RAD-Seq, with contrasting results to the ITS-based
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phylogenies. Their phylogeny shows four Nigritella species as the
outgroup to five Gymnadenia species, with no sister relation
between G. densiflora and Nigritella, and the relevant nodes show
high support.

Given the often contradictory results of earlier circumscription
attempts, it is perhaps not too surprising that the different
Gymnadenia gene topologies are relatively evenly distributed
and that we see no single Gymnadenia phylogeny standing out
as the best supported tree. However, the most common gene tree
topology shows G. rhellicani as the outgroup to the other three
sampled species (Figure 4, topology 3), in agreement with the
recent RAD-Seq-based concatenated SNP analysis by Brandrud
etal. (2019). Nonetheless, overall support for versus against a basal
position of G. rhellicani is equivocal, at 48% of gene trees for
(topologies 3 and 4) versus 52% against a basal position. The
prevalence of other supported topologies (generally with G.
odoratissima rather than G. rhellicani as the outgroup) suggests
a complex population genetic history within the genus, perhaps
partially due to gene exchange and incomplete lineage sorting.
Neither gene annotation (Figure S4) nor average gene tree branch
lengths (Figure S5) for topologies with basal G. rhellicani
placement stand out as an indication of adaptive processes.
Although Gymnadenia and Nigritella have produced one stable
hybrid offspring, the apomict G. runei (Teppner and Klein, 1989)
and other hybrids may be found, some dispute about their
frequency exists (Claessens and Kleynen, 2011; Brandrud et al.,
2019). Taken together, our analysis of Gymnadenia hints at a
complex relationship among species that we are only beginning to
understand. Whether this apparently more complicated pattern of
genome-wide relationships in Gymnadenia as compared to
Ophrys is due to the difference in pollination systems is
currently unclear, although Gymnadenia's less specialized
pollination strategy would certainly present more opportunities
for hybridization.

Using multiple gene family trees instead of one concatenated
tree has proven to be a useful approach (Boussau et al., 2013; One
Thousand Plant Transcriptomes Initiative, 2019). Concatenation
of sequences implies that loci with a larger number of
phylogenetically informative sites can bias the inference such
that it may not be representative of patterns of unlinked genes
throughout the genome. Also, such an approach holds no explicit
information about the specific other topologies that may be useful
for disentangling more complex evolutionary patterns of
relationships throughout the genome, as would clearly be of
interest in cases such as Gymnadenia. This problem is likely to
be more severe in phylogenies of closely related species
where excessive incomplete linage sorting may be expected and
where a more sophisticated coalescent-based analysis may be
valuable. Additionally, a consensus tree of individual gene trees
(e.g. Figure 3C) is informative of the proportions of those genes in
the genome that support a certain species relationship. Moreover,
it is important to note that unlike a bootstrap pseudoreplicate
approach, this allows for real quantification of proportions of
independently segregating loci and/or functional genes and is thus
more biologically meaningful. So far, our analysis only covers a

small part of the genome. However, given a high-quality genome
reference, future integration of this approach along chromosomes
may be able to reconstruct the ancestry of individual
chromosomal fragments and thereby shed light on the detailed
evolutionary patterns and the role of selection (see Filiault et al.,
2018) in shaping lineage divergence. The significant new sequence
resources provided in this study may be a first step towards
realizing this goal for European orchids in the future.
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