AUTHOR=Buzatti Renata Santiago de Oliveira , Pfeilsticker Thais Ribeiro , Muniz André Carneiro , Ellis Vincenzo A. , Souza Renan Pedra de , Lemos-Filho José Pires , Lovato Maria Bernadete TITLE=Disentangling the Environmental Factors That Shape Genetic and Phenotypic Leaf Trait Variation in the Tree Qualea grandiflora Across the Brazilian Savanna JOURNAL=Frontiers in Plant Science VOLUME=10 YEAR=2019 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2019.01580 DOI=10.3389/fpls.2019.01580 ISSN=1664-462X ABSTRACT=

Identifying the environmental factors that shape intraspecific genetic and phenotypic diversity of species can provide insights into the processes that generate and maintain divergence in highly diverse biomes such as the savannas of the Neotropics. Here, we sampled Qualea grandiflora, the most widely distributed tree species in the Cerrado, a large Neotropical savanna. We analyzed genetic variation with microsatellite markers in 23 populations (418 individuals) and phenotypic variation of 10 metamer traits (internode, petiole and corresponding leaf lamina) in 36 populations (744 individuals). To evaluate the role of geography, soil, climate, and wind speed in shaping the divergence of genetic and phenotypic traits among populations, we used Generalized Dissimilarity Modelling. We also used multiple regressions to further investigate the contributions of those environmental factors on leaf trait diversity. We found high genetic diversity, which was geographically structured. Geographic distance was the main factor shaping genetic divergence in Qualea grandiflora, reflecting isolation by distance. Genetic structure was more related to past climatic changes than to the current climate. We also found high metamer trait variation, which seemed largely influenced by precipitation, soil bulk density and wind speed during the period of metamer development. The high degree of metamer trait variation seems to be due to both, phenotypic plasticity and local adaptation to different environmental conditions, and may explain the success of the species in occupying all the Cerrado biome.