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Plants have to adapt their metabolism to constantly changing environmental conditions, 
among which the availability of light and water is crucial in determining growth and 
development. Proline accumulation is one of the sensitive metabolic responses 
to extreme conditions; it is triggered by salinity or drought and is regulated by light. 
Here we show that red and blue but not far-red light is essential for salt-induced 
proline accumulation, upregulation of Δ1-PYRROLINE-5-CARBOXYLATE SYNTHASE 
1 (P5CS1) and downregulation of PROLINE DEHYDROGENASE 1 (PDH1) genes, 
which control proline biosynthetic and catabolic pathways, respectively. Chromatin 
immunoprecipitation and electrophoretic mobility shift assays demonstrated that the 
transcription factor ELONGATED HYPOCOTYL 5 (HY5) binds to G-box and C-box 
elements of P5CS1 and a C-box motif of PDH1. Salt-induced proline accumulation and 
P5CS1 expression were reduced in the hy5hyh double mutant, suggesting that HY5 
promotes proline biosynthesis through connecting light and stress signals. Our results 
improve our understanding on interactions between stress and light signals, confirming 
HY5 as a key regulator in proline metabolism.

Keywords: ELONGATED HYPOCOTYL 5, proline accumulation, Arabidopsis, light signalling, gene expression 
regulation

INTRODUCTION
Proline accumulates to high levels in plants at low water potential caused by drought, salinity and 
in response to several other abiotic and biotic stresses (Kemble and Macpherson, 1954; Schat et al., 
1997; Fabro et al., 2004; Yang et al., 2009; Szabados and Savoure, 2010; Aleksza et al., 2017). Proline 
was suggested to act as osmoprotectant stabilizing enzymes or maintaining redox equilibrium in 
adverse conditions (Delauney and Verma, 1993; Székely et al., 2008; Szabados and Savoure, 2010; 
Verslues and Sharma, 2010; Kavi Kishor and Sreenivasulu, 2014; Per et al., 2017). Free proline 
content is defined by biosynthesis and degradation, and modulated by transport, protein synthesis, 
and degradation (Lehmann et al., 2010; Verslues and Sharma, 2010; Hildebrandt, 2018). The main 
biosynthetic pathway has two consecutive steps catalyzed by the rate-limiting Δ1-pyrroline-carboxylate 
synthetase (P5CS) enzyme (Hu et al., 1992) followed by P5C reductase (P5CR) (Delauney and Verma, 
1990). Proline biosynthesis takes place in cytosol, although localization of P5CS1-GFP protein 
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in chloroplasts of salt-treated cells suggest that biosynthesis 
may take place in plastids under stress conditions (Székely 
et  al., 2008). Proline degradation is a mitochondrial oxidative 
process, mediated by the rate-limiting proline dehydrogenase 
(PDH) and P5C dehydrogenase (P5CDH) enzymes (Kiyosue 
et al., 1996; Servet et al., 2012). In most plants P5CS is encoded 
by two genes. In Arabidopsis P5CS1 (AT2G39800) responds to 
hyperosmotic stress and is regulated by ABA-dependent and 
independent signals, whereas P5CS2 (AT3G55610) is considered 
to be a housekeeping gene, which can be induced by certain 
pathogens via salicylic acid-dependent signals (Savouré et al., 
1997; Strizhov et al., 1997; Fabro et al., 2004; Székely et al., 2008; 
Sharma and Verslues, 2010). PDH1 (AT3G30775) is repressed in 
high osmotic conditions and is induced by proline during stress 
recovery (Kiyosue et al., 1996). Compared to PDH1, PDH2 has 
a very low expression level, which is however induced during 
phosphate starvation (Aleksza et al., 2017). ABA, reactive 
oxygen species, calcium, and lipid signals were implicated in 
the regulation of proline metabolism (Thiery et al., 2004; Parre 
et al., 2007; Ben Rejeb et al., 2015). Although important progress 
has been made in the last few years, transcription regulation of 
key genes in proline metabolism is far from well understood. 
A number of cis regulatory sequences have been identified in 
promoters or 5′UTRs of key metabolic genes, but direct evidence 
on promoter-binding transcription factors and their function is 
scarce (Fichman et al., 2015; Zarattini and Forlani, 2017). We have 
recently described that PHOSPHATE STARVATION RESPONSE 
1 (PHR1) and PHOSPHATE STARVATION RESPONSE LIKE-1 
(PHL1) transcription factors bind the P1BS motif in the first 
intron of P5CS1, upregulate its expression, and promote proline 
accumulation during phosphate starvation (Aleksza et al., 2017). 
A recent report showed that the transcription factor ANAC55 
(Arabidopsis NAM, ATAF, and CUC) is a positive regulator of 
P5CS1 expression and proline accumulation in high osmotic 
conditions, although direct binding to P5CS1 promoter elements 
was not demonstrated (Fu et al., 2018). Allelic variation in the 
barley P5CS1 gene was recently reported, showing that promoter 
mutations in the abscisic acid-responsive element (ABRE) can 
considerably alter P5CS1 expression, proline accumulation, and 
drought tolerance (Muzammil et al., 2018). Some information is 
available on transcriptional regulation of PDH1. Basic leucine 
zipper (bZIP) transcription factors of the ATB2 subgroup were 
shown to upregulate PDH1 expression during hypoosmolarity 
through binding to the ACTCAT cis-acting promoter element 
(Satoh et al., 2002; Satoh et al., 2004; Weltmeier et al., 2006). 
Chromatin immunoprecipitation (ChIP) analysis confirmed 
that bZIP1 and bZIP53 factors bind to the PDH1 promoter and 
upregulate it in low energy conditions (Dietrich et al., 2011). 
Besides transcriptional control, epigenetic regulation and 
alternative splicing were shown to influence the expression of the 
P5CS1 and PDH1 genes (Kesari et al., 2012; Jimenez-Arias et al., 
2015). Histone methylation was recently shown to control stress 
memory response of P5CS1 in Arabidopsis (Feng et al., 2016).

Light was found to influence proline levels by inducing P5CS1 
and repressing PDH1 expression (Hayashi et al., 2000; Abraham 
et al., 2003; Diaz et al., 2005). While considered as a housekeeping 
gene, P5CS2 was identified as a target of CONSTANS (CO) and 

is therefore also subject to light and flowering time regulation 
(Samach et al., 2000). Datamining of publicly available transcript 
profiling data (Dubois et al., 2017) suggested reciprocal 
fluctuation of the expression of the P5CS1 and PDH1 genes in 
response to light and drought (Figure S1).

Light can influence gene expression in various ways. Light 
perception through photoreceptors is mediated by phytochromes 
(PHYA-E) absorbing red/far-red light, cryptochromes (CRY1-
2) sensing blue light and phototropins (PHOT1-2), which 
absorb blue and additionally UV-A light (Briggs and Christie, 
2002; Franklin and Quail, 2010; Kami et al., 2010; Chaves et al., 
2011). bHLH-type phytochrome-interacting factors repress 
photomorphogenic development and promote the expression of 
light-repressed genes, but are degraded upon interaction with the 
active forms of phytochrome receptors (Leivar and Monte, 2014). 
The bZIP-type transcription factor ELONGATED HYPOCOTYL 
5 (HY5) is a phytochrome-interacting factor antagonist that 
acts downstream of virtually all classes of photoreceptors, and 
promotes photomorphogenesis and the expression of light-
induced genes (Cluis et al., 2004; Toledo-Ortiz et al., 2014). 
Crosstalk between light and several other signaling pathways has 
been demonstrated, in which HY5 can function as a signaling 
hub. HY5 directly interacts with ACGT-containing (ACE) Light-
Responsive Elements in the promoters of light-induced genes 
and upregulates their transcription (Chattopadhyay et al., 1998). 
Signals from photoreceptors promote accumulation of HY5 
at transcriptional and posttranscriptional levels (Binkert et al., 
2014; Sheerin et al., 2015), but apparently do not affect the DNA-
binding affinity or specificity of the HY5 protein (Hajdu et al., 
2018). HY5 lacks any domains with transcriptional regulator 
function, thus it requires co-factors to control gene expression (Li 
et al., 2010) and is supposed to act as a component of multiprotein 
complexes. More recently the role of HY5 in multiple signaling 
systems was uncovered, showing that, together with the closely 
related HY5-HOMOLOG (HYH) factor, it integrates light, 
hormonal, and developmental regulation through multiple 
interactions with other transcription factors and regulatory 
proteins (Gangappa and Botto, 2016). A recent paper described 
that the stress-induced transcription memory of P5CS1 is 
influenced by light and is mediated by HY5, able to bind to 
C/A-box sequence elements in the P5CS1 promoter and 5′ UTR 
region (Feng et  al., 2016). HY5 was also shown to modulate 
ABA signaling by promoting ABI5 expression through binding 
to its promoter (Chen et al., 2008). Light and ABA regulation is 
influenced by the C2H2-type zinc finger protein ZFP3, which 
represses ABA signals and promotes photomorphogenesis 
(Joseph et al., 2014). Responses to light signals can be fine-
tuned by the EREBP-type ABI4 which is implicated in ABA 
and sugar signaling (Wind et al., 2012). Interacting light, ABA 
and stress signals are therefore influenced by different sets of 
transcription factors such as the bZIP-type HY5 and ABI5, the 
C2H2-type ZFP3, or the EREBP-type ABI4.

In addition to perception through photoreceptors, light also 
affects the expression of a set of nuclear genes by chloroplast 
retrograde signaling which depends on light reactions of 
photosynthesis (Gollan et al., 2015). In this regulatory system 
chloroplasts acts as sensors and signaling components include 
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sugar and carotenoid metabolites, reactive oxygen species, 
plastoquinone pool redox state, and various classes of regulatory 
proteins such as protein kinases and transcription factors. 
Chloroplast-derived signals control chloroplast development and 
responses to environmetal stresses (Fey et al., 2005; Fernandez 
and Strand, 2008; Gollan et al., 2015; Kleine and Leister, 2016; 
D’Alessandro et al., 2018).

This communication focuses on the light-dependent control 
of proline metabolism. We show that HY5 binds to conserved 
sequence elements of the P5CS1 and PDH1 genes and can 
positively contribute to salt-induced proline accumulation. HY5 
seems to function as a regulatory hub that integrates light and 
stress signals in the control of proline metabolism. We conclude 
that proline metabolism is controlled by multiple regulatory 
pathways and is influenced by interacting stress and light signals.

RESULTS

Proline Accumulation Is Influenced 
by Light
To characterize light-dependent proline accumulation in 
Arabidopsis, an in vitro experimental system was designed: 
Fourteen-day-old plantlets were treated with high intensity 
light (550 μE m−2 s−1) or deprived of light for up to 5 days, and 
subsequently salt or ABA-triggered proline accumulation was 
monitored periodically (Figure 1A). When plants were irradiated 
with strong light for several days, proline levels accumulated up to 
three times higher as compared to plants kept under standard light 
conditions (Figure 1B). Proline accumulation was compromised 
in the p5cs1-1 mutant (Székely et al., 2008), suggesting that 
the P5CS1 gene controls the rate-limiting step in proline 
accumulation in these conditions. In standard light conditions 
1-day 10 μM ABA and 150 mM NaCl treatments lead to two or 
five times higher proline contents, respectively. When plants were 
deprived of light, proline accumulation was considerably smaller: 
1 day of dark adaptation reduced proline levels from 40% to 60% 
of light cultured plants, whereas 5 days in darkness prevented the 
enhancement of proline content (Figure 1C). The negative effect 
of dark on proline accumulation may derive from the lack of 
adequate light or photoreceptor-derived signals reducing proline 
biosynthesis and/or inducing catabolism. Alternatively, if energy 
shortage prevents proline accumulation in dark, then externally 
added sugar should compensate for the absence of light. To test 
energy dependence, proline concentrations were measured in 
dark-adapted plants in the presence of various concentrations of 
sucrose. Proline contents in dark-adapted plants were similar in 
the presence of 0% and 2% (W/V) sucrose in the culture medium, 
whereas 4% (W/V) sucrose significantly enhanced proline 
accumulation. Proline levels in these conditions were, however, 
still far inferior to those in illuminated plants, which accumulated 
five to ten times more proline (Figure 1D). When proline 
content was compared in plants treated with sucrose, glucose, 
or mannitol, only minor differences were observed (Figure S2). 
These results suggest that sugar-dependent glycolysis cannot 

FIGURE 1 | Light-dependent proline accumulation in wild-type Arabidopsis 
plants. (A) Experimental design. (B) Proline accumulation in plants after 
high-intensity light treatment. Plants were grown in vitro under standard 
conditions for 14 days, then transferred to high-intensity light (white light,  
550 μE m−2 s−1, 8/16 h light/dark cycle) for up to 9 days. LL: low light 
condition, HL: high-intensity light. (C) Proline accumulation in dark-
conditioned plants. Fourteen-day-old plantlets were transferred to dark for 
1, 3, and 5 days, then subjected to salt (150 mM NaCl) or ABA (10 µM ABA) 
treatment in darkness for 24 h. 0 d, 1 d, 3 d, and 5 d indicates the number of 
days in dark. (D) Effect of different sugar concentrations on proline levels in 
dark-conditioned plants. Fourteen-day-old plants were transferred to media 
with different sucrose concentrations [0 to 4% (W/V)] and placed to dark for 
5 days. Plants were subsequently treated with or without 150 mM NaCl and 
the same sugar concentrations, for 48 h. The right diagram shows proline 
accumulation in dark-conditioned and light-grown plants cultured on standard 
culture medium containing 0.5% (W/V) sucrose. Error bars indicate SD (N = 5). 
Significant differences compared to Col-0 plants in low light conditions (B),  
0 day of dark treatment (C) or plants cultured on standard 0.5% (W/V) sucrose 
(D) are shown: * p < 0.05, ** p < 0.01, (one-way ANOVA, Tukey test).
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compensate for the lack of light signals or other photosynthesis-
derived metabolites such as NADPH.

Light generates specific signals, which can trigger biosynthetic 
and/or repress catabolic pathways. Light signals are perceived by 
specific photoreceptors, each of them possessing well-defined 
sensitivity to a particular spectrum of light (Franklin and Quail, 
2010; Chaves et al., 2011). To test the effect of light quality on 
proline metabolism, dark-conditioned plants were transferred 
to white or monochromatic red, far-red or blue lights with or 
without simultaneous salt stress (Figure 2A). The light intensities 
for each light qualities (white light: fluorescent cool white, 4200 
K, 60 μE m−2 s−1, monochromatic blue: 470 nm, 15 μE m−2 s−1, 
red: 660 nm, 15 μE m−2 s−1, or far-red: 730 nm, 5 μE m−2 s−1 light), 
were sufficient to saturate photoreceptors and light signaling 
cascades but not the photosynthetic electron transport (Wolf 
et  al., 2011; Adam et al., 2013). In the absence of salt stress, 
proline levels increased under white, red and blue light, but 
remained unchanged in darkness or under far-red light (Figure 
2B). Proline concentrations increased more than 10-fold in salt-
treated plants under white or red light, whereas under blue light 
5-fold enhancement was measured. Salt stress could only slightly 
augment free proline content in plants kept in dark or illuminated 
by monochromatic far-red light (Figure 2B). The effect of white 
and monochromatic light on proline accumulation was similar 
in Columbia 0 (Col-0) and Wassilewskija (WS) ecotypes (Figure 
S3). These results suggest that to promote proline accumulation, 
red is the most efficient component of the light spectrum followed 
by blue, whereas far-red light is insufficient.

To investigate the molecular background of light-dependent 
proline accumulation, expression patterns of the key metabolic 
genes P5CS1 and PDH1 were monitored under different light 
regimes with or without salt treatment. Transcript levels 
of P5CS1 were significantly higher in plants illuminated 
with white, red, and blue light than in plants kept in dark or 
illuminated by far-red light. Salt treatment enhanced P5CS1 
expression in all light conditions, and transcript levels were 
highest under white and red lights followed by blue, but were 
moderately enhanced in far-red light or in darkness (Figure 
2C, Figure S4). PDH1 expression was downregulated by 
white, red, and blue light and not affected significantly under 
far-red light. Salt treatment repressed PDH1 expression even 
more in most light conditions, including in darkness (Figure 
2C, Figure S4). These results suggest that besides white light, 
red, and blue monochromatic lights are efficient in promoting 
P5CS1 and suppressing PDH1 expression, which ultimately 
leads to high levels of proline accumulation when plants are 
exposed to salt stress.

In order to investigate whether photosynthetic electron 
transport is required for proline accumulation, leaves were treated 
with 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea (DCMU) in 
combination with salt (Figure S5). DCMU binds irreversibly 
to the acceptor side of photosystem II thereby inhibiting linear 
electron transport, which results in altered fast chlorophyll a 
fluorescence (OJIP) kinetics. Upon full inhibition, the J (F2ms) 
step equals the maximum fluorescence (FM or P) intensity (Tóth 
et al., 2007), as seen also in Figure S5C. The DCMU treatment 
alone had no effect on proline levels, whereas NaCl-induced 

proline accumulation was significantly reduced (Figure S5A). In 
the presence of DCMU P5CS1 induction was slightly reduced in 
salt-treated plants, whereas PDH1 was upregulated in both salt-
treated and control plants (Figure S5B).

FIGURE 2 | Proline accumulation in salt-treated wild-type Arabidopsis 
plants under different light regimes. (A) Experimental design. (B) Proline 
accumulation in dark-conditioned plants, which were subsequently kept in 
dark (D), illuminated by white (W), monochromatic blue (B), red (R), or far 
red (Fr) light, with or without salt treatment (150 mM NaCl) for up to 3 days. 
Significant differences to dark samples are shown (N = 6): * p < 0.05, 
** p < 0.01 (one-way ANOVA, Tukey test). (C) Expression of the P5CS1 
and PDH1 genes in dark-conditioned plants treated with or without 150 
mM NaCl for 1 day, under different light conditions (see above). Relative 
transcript levels are shown, normalized to ACT2 and UBQ1 as well as to 
dark-conditioned plants, where 1 corresponds to transcript level at 0 day 
(T0). Error bars indicate SD (N = 3). Significant differences between means 
are shown by different letters (p < 0.05, one-way ANOVA, Tukey test).
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HY5 Binds to Promoter Elements of the 
P5CS1 and PDH1 Genes
The bZIP-type transcription factor HY5 is a key positive regulator 
of light-dependent gene expression that controls transcription of 
thousands of light-induced genes (Cluis et al., 2004; Toledo-Ortiz 
et al., 2014). A recent ChIP-seq analysis of HY5 binding sites 
revealed that this transcription factor recognizes conserved cis-
acting elements in more than three thousand genes, both under 
red and blue light (Hajdu et al., 2018). Genome-wide mapping 
of HY5 binding sites revealed that this TF can recognize the 
promoter regions of the P5CS1 and PDH1 genes (Figures S6, S7). 
While peak of the reads were mapped close to the transcription 
initiation site of P5CS1, maximum reads were localized to 0.5 
kb upstream of the PDH1 transcription initiation site. Another 
recent study revealed binding of HY5 to the 5′ UTR and a distal 
upstream region of P5CS1 (Feng et al., 2016). Promoter and 5′ 
UTR regions of P5CS1 contain a number of predicted regulatory 
sequence motifs, including a G-box (CACGTG) at +172 bp in 
the 5′ UTR and a C-box (GACGTC) in the promoter, at −59 
bp distance from the transcription start site, which can serve 
as binding sites of HY5 (Figure 3A) (Fichman et al., 2015). The 
PDH1 promoter contains one conserved C-box motif in the 
promoter, at −553 bp distance from the transcription start site 
(Figure 3A).

To verify HY5 binding in the identified regulatory regions, 
ChIP followed by quantitative PCR (ChIP-qPCR) assays 
were performed on P5CS1 and PDH1 promoter fragments 
containing the predicted G-box and C-box sequence motifs. 
When compared to intergenic regions, specific enrichment 
in qPCR-amplified C-box- and G-box-containing P5CS1 and 
PDH1 promoter fragments was detected in the HY5-YFP-
immunoprecipitated DNA samples (Figure 3B). Enrichment of 
HY5 binding to P5CS1 G-box and C-box regions was around 14 
to 16 times higher while it was 5 times higher on C-box region of 
the PDH1 promoter than on a control intergenic region (Figure 
3B). ChIP-qPCR experiments therefore confirmed that HY5 
interacts in vivo with the selected 5′ UTR and promoter regions 
of both the P5CS1 and the PDH1 genes. To compare our results 
with previously reported HY5 assays, ChIP assay was performed 
with primers used to amplify Region 2 and Region 5 of P5CS1, 
as defined by Feng et al. (2016). Region 2 is a 140 bp fragment, in 
the 5′ UTR (from −5 to +135 bp), flanked by C-box and G-box 
sequences. Region 5 is a 147 bp fragment in the upstream region 
(from −2129 to −2276 bp), which corresponds the previously 
described “Essential for Memory Fragment” (EMF) (Feng et al., 
2016). In our experimental conditions enrichment of Region 2 
in ChIP assay was similar to fragments containing G-box and 
C-box elements, whereas enrichment was a magnitude lower 
when HY5 binding was tested for Region 5, corresponding to 
EMF (Figure 3B).

To verify that the conserved C-box and G-box motifs are indeed 
the targets of HY5, electrophoretic mobility shift assays (EMSA) 
were performed using 56 bp dsDNA fragments containing the 
native regulatory sequences or their mutated forms in which the 
conserved CACGTG or GACGTC sequence motifs were altered, 
eliminating the core ACGT sequence (Figure 4A). Complex 

formation of HY5 with ds oligonucleotides corresponding to 
wild-type P5CS1 and PDH1 promoter fragments was observed in 
the EMSA assays. Complexes between HY5 and oligoes carrying 
the mutated G-box or C-box sequences were, however, not 
formed or were detected at much lower level (Figure 4B). These 
experiments confirmed that the C-box and G-box sequences are 
indeed responsible for HY5 binding to the P5CS1 promoter (−59 
bp) or the 5′ UTR (+172 bp) regions as well as binding of the 
PDH1 promoter (−553 bp) region.

HY5 Regulates Proline Accumulation and 
Expression of the P5CS1 and PDH1 Genes
To study the function of HY5 in proline metabolism, free proline 
contents and transcript levels of P5CS1 and PDH1 genes were 
compared in wild-type (WS) and hy5hyh mutant plants carrying 
knockout mutations for both HY5 and the closely related HYH 
genes (Hajdu et al., 2018). Wild-type and hy5hyh double mutant 
plants were conditioned to dark as described above, and were 
subsequently treated by salt under white and monochromatic red 
or blue light (Figure 5A). Compared to plants kept in darkness, 
proline levels were enhanced by illumination with both white 
and red or blue monochromatic lights. When compared to wild 
type, proline levels were not affected or were slightly lower in 
illuminated hy5hyh mutants without salt treatment (Figures 5B, 
S8). Salt stress enhanced proline contents three to six times in 
illuminated plants, while proline accumulation was around 50% 
lower in the hy5hyh mutant when compared to wild-type plants 
in the same conditions (Figures 5B, S8). When plants were kept 
in darkness, proline levels were only slightly increased by salt 
treatment, and enhancement was similar in both genotypes.

P5CS1 transcript levels were low in both wild-type and 
hy5hyh mutants without salt treatment with minor induction 
by illumination. P5CS1 expression was clearly induced by 6 h 
of salt treatment in illuminated plants, reaching approximately 
50% lower transcripts in the hy5hyh mutant than in wild-type 
plants (Figures 5C, S9B). In all light conditions transcript 
levels were higher after 6 h of stress than after 24 h (Figure 
5C). PDH1 expression was reduced by illumination and by salt 
stress in all light conditions. Genotype-dependent differences 
in PDH1 transcript levels were however less pronounced and 
downregulation was more variable (Figures 5D, S9C). The 
P5CS1 transcription pattern positively correlated with changes 
in proline levels, indicating that biosynthesis is essential in 
defining proline accumulation in these conditions, while PDH1-
controlled catabolism can fine-tune proline levels. These data 
indicate that HY5 (and possibly HYH) is a positive regulator of 
proline accumulation by contributing to the expression of the 
P5CS1 gene with a minor role in the control of PDH1 expression.

DISCUSSION
In this study we investigated the importance of light in salt-
dependent proline accumulation, focusing on HY5-mediated 
light signals. A model summarizes our results integrating it 
with previous studies (Figure 6). Light was previously shown to 
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promote proline accumulation and inversely influence P5CS1 
and PDH1 expression in Arabidopsis plants (Figure S1, Hayashi 
et al., 2000; Abraham et al., 2003). Here we showed that high light 
enhances, while extended darkness reduces proline levels, and 
absence of light cannot be compensated by externally supplied 
sugar as energy source (Figures 1, S2). Proline metabolism in 
Arabidopsis was found to be controlled by red and blue lights but 
is less influenced by far red light (Figures 2, S3). We showed that 
light-dependent proline accumulation is regulated by HY5, a key 
bZIP-type transcription factor in light signaling which is known to 
be a positive regulator of photomorphogenesis (Figures 5, S8, S9, 

Holm et al., 2002; Toledo-Ortiz et al., 2014). Genome-wide ChIP-
chip or ChIP-seq experiments revealed that HY5 directly controls 
around 10% of the Arabidopsis genes through binding to their 
promoters (Lee et al., 2007; Zhang et al., 2011; Hajdu et al., 2018). 
Datamining of the ChIP-seq supplementary datasets revealed 
that HY5 recognizes the 5′ regions of the P5CS1 and PDH1 genes, 
suggesting that these genes are direct targets of this bZIP factor 
(Hajdu et al., 2018) (Figures S6, S7). HY5 was found to bind 
directly to the promoter or 5′ UTR regions of the key metabolic 
genes P5CS1 and PDH1, which modulate rate-limiting steps in 
proline biosynthesis and degradation. The 5′ regulatory region 

FIGURE 3 | Binding of HY5 on promoter regions of the P5CS1 and PDH1 genes. (A) Schematic structure of the P5CS1 and PDH1 promoters indicating the 
positions of conserved G and C box elements and Region 2 and Region 5, according to (Feng et al., 2016). Color code: black line: promoter, red line: 5′UTR region, 
yellow line: exon. Boxes indicate the positions of predicted basic leucine zipper (bZIP) binding sites: black: “Essential for Memory Fragment” (EMF) (Feng et al., 
2016), green: C-box, blue: G-box (P5CS1 promoter), red box on PDH1 promoter indicate C-box (AthaMap, http://www.athamap.de). Positions indicate distance 
from transcription start site (+1). Double arrows indicate the regions amplified by quantitative PCR (qPCR) after chromatin immunoprecipitation. (B) Result of 
chromatin immunoprecipitation followed by quantitative PCR (ChIP-qPCR) tests on two P5CS1 and one PDH1 promoter region. An intergenic region with no C or 
G-box sequences was used as reference (= 1). Error bars on diagrams indicate SD (N = 3).
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of P5CS1 contains various cis-regulatory elements including a 
well-defined G-box in the 5′UTR region and a C-box motif in 
the promoter, which are conserved in P5CS1 promoters of closely-
related Brassicaceae species (Fichman et al., 2015). Sequence 
analysis revealed one C-box motif in the PDH1 promoter. ChIP-
qPCR experiments demonstrated in vivo binding of HY5 to at 
least three promoter regions of P5CS1, and one region of PDH1, 
which contained G-box or C-box sequence elements (Figure 3). 
EMSA experiments demonstrated that HY5 can directly and 
specifically bind to these sequence motifs in vitro (Figure 4). 
Promoter binding therefore strongly suggest that HY5 is directly 
involved in the control of P5CS1 and PDH1 transcription. G-box 
and C-box sequence motifs have an ACGT core, which is essential 
for binding of bZIP transcription factors, whereas nucleotides 
flanking the core sequence define the specificity of sequence 
recognition (Williams et al., 1992; Izawa et al., 1993). Mutations 
eliminating the ACGT core in the P5CS1 and PDH1 G-box and 
C-box motifs weakened or abolished HY5 binding to these DNA 
fragments, confirming that these promoter elements are indeed 

critical for the complex formation with this transcription factor 
(Figure 4). ACGT-containing sequence motifs are present in 
ABA Response Elements (ABRE), binding sites of bZIP-type 
AREB/ABF type transcription factors, which are key regulators 
of ABA-induced gene activation (Hobo et al., 1999; Fujita et al., 
2005; Yoshida et al., 2010). Polymorphism in ABRE or adjacent 
CE motifs were recently shown to influence P5CS1 expression 
and proline accumulation in barley, although TF binding to these 
motifs was not reported (Muzammil et al., 2018).

Two other HY5 binding regions were previously identified 
in the Arabidopsis P5CS1 promoter, which were implicated 
in maintaining stress memory (Feng et al., 2016). Enhanced 
H3K4me3 levels near the P5CS1 transcription start site were 
associated with light exposure and shown to correlate with 
transcript levels in repeated stresses. The distal EMF (Region 5 
in Figure 3) is located 2.2 kb upstream of the transcription start 
site, and contains a C/A box, which can bind HY5 (Feng et al., 
2016). Region 2 is located in 5′ UTR, which however has no 
recognizable sequence element for HY5 binding, but is flanked 

FIGURE 4 | Confirmation of TF binding sequence motifs with electrophoretic mobility assay (EMSA). (A) Sequences of the oligonucleotides containing wild-type 
and mutated G-box and C-box sequences of the P5CS1 and PDH1 promoters. (B) EMSA assays with wild-type (Wt. oligo) and mutant (Mut. oligo) double stranded 
oligonucleotides and purified HY5 protein. Note complex formation of HY5 protein with wild-type oligonucleotides, which is almost invisible with mutant ones with 
altered ACGT core sequences.
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FIGURE 5 | Proline accumulation and expression of the P5CS1 and PDH1 genes in salt-treated wild-type and hy5hyh double mutant plants. (A) Experimental 
design: 14-day-old in vitro-grown plants were conditioned by dark treatment for 5 days and subsequently treated with or without 150 mM NaCl and illuminated 
with white or monochromatic red or blue light. (B) Proline accumulation in Wassilewskija (WS) wild-type and hy5hyh mutant plants after 3 days of salt treatment. 
Error bars indicate SD (N = 5). (C, D) Transcript levels of the P5CS1 (C) and PDH1 (D) genes after 6 and 24 h of salt treatment. Relative transcript levels are 
shown, which were normalized to ACT2 and UBQ1 reference genes as well as to dark-conditioned plants. Abbreviations: Ctr: control, NaCl: salt treatment. Error 
bars indicate SD (N = 3). Significant differences between wild type and mutant values are: * p < 0.05, ** p < 0.01 (two-way ANOVA, Tukey test, fixed parameters 
were genotypes and treatments).
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by the G-box and C-box sequence motifs, reported in this study. 
In our ChIP-qPCR assay similar degrees of enrichments were 
detected for G-box, C-box motifs and Region 2 of Feng et al. 
(2016) (Figure 3). ChIP technology has 300 to 400 bp resolution 
which can cover Region 2 and the flanking G-box and C-box 
motifs. ChIP-qPCR with primers in Region 2 could therefore 
detect chromatin fragments which were immunoprecipitated by 
the flanking G-box or C-box elements. Similar degrees of ChIP-
qPCR enrichment were reported earlier for both Region 2 and 
Region 5 (Feng et al., 2016). In our ChIP assay binding efficiency 
of HY5 to Region 5 was however a magnitude lower than binding 

to C- or G-boxes (Figure 3). We used functional YFP-tagged 
HY5 and GFP-trap agarose beads for ChIP, whereas Feng et al. 
(2016) employed anti-HY5, which may explain the differences.

One of the key steps in the regulation of light-dependent 
gene expression is the photoreceptor-induced accumulation 
of the HY5 protein. Since this process is affected by virtually 
all photoreceptors, hy5 mutants show photomorphogenic 
phenotypes, such as elongated hypocotyls not only in blue or 
red, but in far-red light as well (Abbas et al., 2014). Our data 
demonstrated that stress-induced proline accumulation did not 
occur in far-red light. One possibility is that far-red-derived 

FIGURE 6 | Model of stress and light regulation of proline metabolism in Arabidopsis. Salt stress and light induces P5CS1 and inhibits PDH1 expression, promoting 
proline biosynthesis and reducing catabolism. Schematic maps of P5CS1 (upper line) and PDH1 (lower line) promoter and 5′ UTR regions are shown. Only HY5 
binding sites are indicated in the schematic maps. HMT corresponds to histone merthyltransferase and TF indicates other transcription factors which can regulate 
transcription of P5CS1 (Feng et al., 2016; Aleksza et al., 2017; Fu et al., 2018) or PDH1 (Satoh et al., 2004; Weltmeier et al., 2006; Dietrich et al., 2011). Light-
controlled HY5 binds to the promoters of both genes and contributes to P5CS1 activation, but has only a minor effect on PDH1 expression. Stress conditions as 
well as red and blue light activate P5CS1 transcription (upper scheme), and inhibits PDH1 activation (lower segment of the scheme). Photosynthesis can promote 
proline accumulation (probably enhancing biosynthesis and reducing catabolism) via an unknown mechanism, which is inhibited by 3-(3′,4′-dichlorophenyl)-1,1-
dimethylurea (DCMU). Solid lines indicate confirmed, dashed lines show unknown/predicted interaction or regulation.
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signals are insufficient for P5CS1 induction and proline 
accumulation during salt stress. PHYA is the sole light receptor 
in Arabidopsis that can be activated by far-red light (Casal et al., 
2014). Although PHYA signaling promotes the accumulation of 
HY5, apparently alone it cannot activate P5CS1 transcription. 
Alternatively, low photosynthetic activity under far red light 
might prevent proline biosynthesis and promote catabolism via 
metabolic regulation (eg. due to low NAPDH pools) (Thapper 
et al., 2009; Pavlou et al., 2018).

Heterodimerization of bZIP transcription factors allows 
combinatorial control of target gene expression (Ehlert et al., 
2006; Yoshida et al., 2010; Dietrich et al., 2011). HY5 and the 
related HYH factors were shown to form homo and heterodimers 
and promote light-induced expression of target genes (Holm 
et  al., 2002). Formation of G-box-binding heteromers of HY5 
with other bZIP factors was reported, suggesting that this 
transcription factor may cooperatively regulate transcription of 
ABA-induced target genes with other bZIP factors such as ABFs 
(Yoshida et al., 2010; Singh et al., 2012). Whether HY5 interacts 
with ABFs or other TFs on P5CS1 and/or PDH1 promoters 
remains to be elucidated.

The functionality of promoter binding by HY5 was tested 
by comparing transcript levels of the P5CS1 and PDH1 genes 
and proline accumulation in hy5hyh double mutant with those 
in wild-type plants under different light regimes (Figures 
5, S8, S9). HY5 and HYH transcription factors are partially 
redundant, therefore the double knockout hy5hyh mutant was 
used in these studies. P5CS1 transcript levels were lower in the 
salt-treated hy5hyh double mutant, suggesting that HY5 and 
perhaps the closely related HYH indeed contribute to high-level 
P5CS1 induction in salt-stressed plants. Lower proline levels in 
salt-treated hy5hyh plants correlated with reduced transcript 
levels of P5CS1. Expression of PDH1 was less influenced in the 
hy5hyh mutant, although minor differences could be detected 
during illumination with monochromatic light. These results 
confirm the positive role of HY5 in proline accumulation, which 
mediates light signals and modulates transcriptional activities of 
key metabolic genes. Complex formation of HY5 with the distal 
EMF region (Feng et al., 2016) and 5′ UTR sequences of P5CS1 
promoter was required for the retention of H3K4me3 levels and 
the maintenance of stress memory (Feng et al., 2016). HY5 seems 
to functions as a regulatory hub, which transmits light signals 
and connects them to stress and/or ABA signals and histone 
methylation and regulates the transcription of key metabolic 
genes by directly binding to conserved cis regulatory elements of 
their promoters (Figure 6).

In addition to photoreceptor-mediated signaling, light 
may modulate proline biosynthesis in other ways. Light can 
provide energy and reducing agents such as NADPH through 
photosynthesis, and light can modulate gene expression by 
specific signals, such as the redox state of the plastoquinone 
pool. The decline of proline levels in darkness could not be 
compensated by externally added sugars, suggesting that energy 
limitation is not a principal reason of light dependency (Figures 
1, S2). Inhibition of photosynthetic electron transport with 
DCMU, however, reduced salt-dependent proline accumulation, 
P5CS1 activation, and considerably promoted PDH1 expression, 

demonstrating that photosynthesis itself can influence proline 
metabolism (Figure S5). Previously P5CS1-GFP was localized 
in chloroplasts in salt-treated cells, supporting the assumption 
that proline biosynthesis can be associated with photosynthesis 
in stress conditions (Székely et al., 2008; Szabados and 
Savoure, 2010; Sharma et al., 2011). Glutamate-derived proline 
biosynthesis is a reductive metabolic pathway, which could be 
stimulated by photosynthetic NADPH in osmotically stressed 
Lotus corniculatus leaves (Diaz et al., 2005). Alternatively, 
chloroplast to nucleus retrograde signaling could be implicated 
in light control of P5CS1 and PDH1 genes (Gollan et al., 2015; 
Kleine and Leister, 2016). Deciphering the exact mechanism how 
light and photosynthesis regulates proline metabolism, however 
needs further investigation.

MATERIALS AND METHODS

Plant Material and Growth Conditions
Arabidopsis thaliana plants were either Col-0 or WS ecotype. The 
hy5hyh double mutant (Holm et al., 2002) has WS background. 
Basic conditions of plant growth were described before (Aleksza 
et al., 2017). Briefly: seeds were surface sterilized and germinated 
on 1/2MS culture medium containing 0.5% (W/V) sucrose. 
Plants were grown in vitro in growth chambers under 120 μE m−2 
s−1 illumination (white light) using a 8 h light/16 h dark cycle, 
and 22°C/18°C temperature cycle for 14 days.

For high-intensity light treatment 14-day-old plants were 
illuminated with white light with 550 μE m−2 s−1 light intensity 
in growth chambers. For dark conditioning, 14-day-old plantlets 
were transferred to dark, and incubated in the absence of light 
for up to 5 days in the same conditions (medium, temperature). 
For subsequent light induction, plants were transferred to either 
white light (fluorescent cool white, 4200 K, 60 μE m−2 s−1), or 
monochromatic blue (470 nm, 15 μE m−2 s−1), red (660 nm, 15 μE 
m−2 s−1), or far-red (730 nm, 5 μE m−2 s−1) light, or kept in dark 
for up to three further days. The primary criteria for setting the 
fluence rate of light was to reach saturation of signaling cascades 
triggered by phytochrome and cryptochrome photoreceptors. 
The most studied light responses are saturated at the light 
intensities described above (Wolf et al., 2011; Adam et al., 2013). 
Dark-conditioned plants (including those kept in constant 
darkness) were transferred and handled under green light.

To induce proline accumulation, plants were cultured on the 
surface of thin-layer liquid culture medium (10 ml medium/13 cm 
diameter Petri dish), using nylon mesh to prevent submergence. 
For stress, liquid media were supplemented with 150 mM NaCl 
or treated with 10 μM ABA. Proline levels were determined in 
plants for up to 3 days as described.

Proline Measurements
Proline content was determined by the ninhydrin-based 
coloritmetric method as described (Abraham et al., 2010). 
Alternatively, a microtiter-scale colorimetric reaction was 
used, which was based on a recent paper (Lee et al., 2018) with 
some modifications. Plant material (approximately 50 mg fresh 
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weight/sample) was ground and 20 µl of 1% (W/V) sulfosalicylic 
acid was added per mg FW tissue. After centrifugation at top 
speed (15.000 rpm) for 5 min at 4°C in a microcentrifuge, the 
supernatant was removed and mixed with acidic ninhydrin 
[1,25% (W/V) ninhydrin in 80% (V/V) acetic acid] in 1:2 ratio, 
and incubated at 95°C for 30 min. The reaction was terminated 
on ice, and absorbance was measured at 510 nm in a plate reader 
(MULTISKAN GO, Thermo Scientific) using a 1:2 mixture of 
sulfosalicylic acid and acidic ninhydrin as reference. The system 
was calibrated with standard curves with known concentrations 
of proline. Anthocyanine accumulation was not visible in the 
plants after these treatments. Experiments were repeated three 
times and four to six replicates were used to determine proline 
levels in a treatment.

Fast Chl A Fluorescence (OJIP) 
Measurements
Fluorescence measurements were carried out at room temperature 
with a Handy-PEA instrument (Hansatech Instruments Ltd, UK). 
Plants were dark-adapted for 30 min and detached leaves were 
then placed in a modified Handy-PEA leaf clip. The leaf sample 
was illuminated with continuous red light (3500 μE m−2 s−1, 650 
nm peak wavelength; the spectral half-width was 22 nm; the light 
emitted by the LEDs is cut off at 700 nm by a NIR short-pass 
filter). The light was provided by an array of three light-emitting 
diodes focused on the sample surface. The first reliably measured 
point of the fluorescence transient is at 20 µs, which can be taken 
as F0 (O). The length of the measurements was 1 s.

DCMU Treatment
Fourteen-day-old in vitro-grown plants (Col-0 ecotype) were 
transferred to 150 mM NaCl and/or sprayed with 50 µM DCMU 
solution. OJIP fluorescence was measured 3 and 24 h after 
DCMU and salt treatments. Proline accumulation was measured 
24, 48, and 72 h after DCMU treatment, whereas gene expression 
was measured after 24 h.

Gene Expression Studies
To test transcript levels of selected genes, quantitative RT-PCR 
(qRT-PCR) was performed on cDNA templates obtained from 
total RNA samples. RNA isolation was performed with Nucleo 
Spin RNA isolation kit (Macherei-Nagel). Total RNA was DNase 
treated with TURBO DNA-free™ Kit (Invitrogen by Thermo 
Fisher Scientific). First-strand cDNA synthesis of 1.5 μg of 
total RNA was carried out with RevertAid M-MuLV Reverse 
Transcriptase (Fermentas), using random hexamers. Real-time 
PCR was carried out with the ABI 7900 Fast Real Time System 
(Applied Biosystems). The protocol in 45 cycles was 15 s at 95°C, 
followed by 1 min at 60°C. The specificity of the amplifications 
was verified using the ABI SDS software. Expression of the P5CS1 
(AT2G39800) and PDH1 (AT3G30775) genes was monitored 
by qRT-PCR as described (Aleksza et al., 2017). Normalized 
transcript levels were calculated by the modified 2−ΔΔCt method 
using averages of actin2 (AT2G37620) and UBQ1 (AT3G52590) Ct 
values as reference (Livak and Schmittgen, 2001; Vandesompele 

et al., 2002). In relative expression data of the figures, reference 
was obtained on non-treated plants at the start of the experiment 
(e.g. dark-adapted plants, just before light and stress treatments). 
Statistical analysis was made on 2−ΔΔCt values of three replicates 
corresponding to cDNA templates and RNA samples isolated 
from three different Petri plates. Experiments were repeated at 
least twice. Primers used in qRT-PCR experiments are listed in 
Table S1.

The average amplification efficiencies of each primer pair used 
in the qRT-PCR experiments were derived from the slope of the 
amplification curve in the exponential phase of three different 
reactions from three different samples. The corresponding PCR 
efficiency was calculated according to the formula: E = 10 (1/
slope) (Svec et al., 2015). Each primer showed high amplification 
efficiency from 1.99 to 2.03. Sequences of the PCR primers are 
available in Table S1.

Chip Followed by Quantitative PCR
The ChIP protocol by Werner Aufsatz (http://www.epigenome-
noe.net/researchtools/protocol.php?protid=13) was applied with 
the following modifications. Fourteen-day-old hy5 mutant plants 
expressing HY5-YFP fusion proteins from the HY5 promoter 
(Hajdu et al., 2018) were fixed in 1% (V/V) formaldehyde 
solution. Chromatin samples were sonicated on ice six times 
for 10 s using a Vibra Cell sonicator (SONICS & MATERIALS 
Inc., Danbury, CT, USA) at 10% power. Sonicated and diluted 
chromatin samples were pre-cleared by 20 µl (bed volume) of 
binding control agarose beads (Chromotek GmbH, Germany) 
for 1 h at 4°C. An aliquot of the pre-cleared chromatin solution 
was saved for the input sample and the rest of the material was 
precipitated using 12.5 µl (bed volume) of GFP-Trap agarose 
beads (Chromotek GmbH, Germany) for 16 h at 4°C. Precipitated 
chromatin was eluted from the beads, and along with the input 
sample, it was de-crosslinked and DNA was extracted using the 
Silica Bead DNA Gel Extraction Kit (Thermo Scientific). The final 
volume of purified DNA samples was about 45 µl. 1.5 µl of the 
eluate was analyzed in qPCR reactions. Primers were designed to 
amplify genomic regions around the putative HY5 binding sites. 
Standard series were prepared from 10-fold dilutions of the input 
DNA samples. ChIP-related qPCR primers are listed in . ChIP 
data were analyzed and presented according to the “percent of 
input” method (Haring et al., 2007). Experiments were repeated 
three times.

Electrophoretic Mobility Assay
The pET28a vector carrying the full-length HY5 cDNA fragment 
(Hajdu et al., 2018) was introduced into Escherichia coli BL21 
DE3 Rosetta cells (New England 513 Biolabs). Proteins were 
purified on His-Select Nickel affinity gel (SIGMA). 2 μg of purified 
protein was incubated for 30 min with 2 pmol biotin-labeled 
DNA (respective P5CS1 and PDH1 oligonucleotide sequences are 
available in ). DNA fragments and complexes were separated in 
4% (W/V) native polyacrylamide gel, then blotted to HyBond-N+ 
nucleic acid transfer membrane (Amersham). DNA fragments 
were crosslinked to the membrane with UV light (UV Stratalinker, 
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Stratagene). DNA fragments were detected by an immune 
reaction with Streptavidin-conjugated horseradish-peroxidase 
(Thermo Scientific) using the LightShift Chemiluminescent 
EMSA Kit (Thermo Scientific). Signals were developed with a 
chemiluminescent substrate (Supersignal West-Thermo Scientific) 
and detected in Fusion FX western blot and gel documentation 
imaging device (Vilber). Experiments were repeated twice.

Informatics, Statistical Analysis
Promoter sequence analysis was performed with AthaMap tool 
(http://www.athamap.de). Oligonucleotides were designed and 
analyzed by IDT OligoAnalyzer (https://eu.idtdna.com/calc/
analyzer). Oligonucleotides used in this study are listed in Table S1.

Statistical analyses (one-way and two-way ANOVA, means 
comparisons by Tukey tests) were performed using the OriginPro 
2018 software version 9.5 (OriginLab Corporation, Northampton, 
MA, USA). In case of one-way ANOVA the differences between 
means were determined Tukey test or by Duncan’s multiple range 
test and labeled in all diagrams by different letters. When two-way 
ANOVA was used, the means comparison were made with Tukey 
test. Data were processed and in some experiments Diagrams 
were prepared with MS Excel 14.7.7, and figures were assembled 
with MS Powerpoint 14.7.7 and Adobe Photoshop CS5.1.
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