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Strigolactones (SLs) are known to mediate plant acclimation to environmental stress. We
recently reported that SLs acted as prominent regulators in promotion of stomatal closure.
However, the detailed mechanism by which SLs induce stomatal closure requires further
investigation. Here we studied the essential role of the calcium (Ca®*) signal mediating by
the calcium-dependent protein kinase (CPK) in SL-induced stomatal closure. SL-induced
stomatal closure was strongly inhibited by a Ca®* chelator and Ca®* channel blockers,
indicating that Ca®* functions in SL promotion of stomatal closure. Through examining a
collection of cok mutants, we identified CPK33, potentially acting as a Ca* transducer,
which is implicated in guard cell SL signaling. SL- and Ca®*-induced stomatal closure
were impaired in cpk33 mutants. CPK33 kinase activity is essential for SL induction of
stomatal closure as SL-induced stomatal closure is blocked in the dead kinase mutant of
CPK38. The cpk33 mutant is impaired in H,O»-induced stomatal closure, but not in SL-
mediated H,O, production. Our study thus uncovers an important player CPK33 which
functions as an essential Ca®* signals mediator in Arabidopsis guard cell SL signaling.

Keywords: Ca2+, calcium-dependent protein kinase, guard cell, stomatal closure, strigolactones

INTRODUCTION

Plants are sessile organisms that confront with a wide range of biotic and abiotic stress conditions
during their life cycle. As a strategy to cope with environmental stress, plants utilize stomatal pores,
each consisting of a pair of guard cells, that open and close to modulate gas exchange for
photosynthesis, transpirational water loss, and stomatal immunity, thereby allowing plants to
respond properly to diverse environmental stress (Hetherington and Woodward, 2003; Ruszala
et al., 2011; Blatt et al, 2017; Melotto et al, 2017). Guard cells have developed sophisticated
mechanisms which enable plants to appropriately control of stomatal apertures in mediating
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response of environmental stimuli such as light, drought, and
external calcium ion (Ca®") (Kim et al, 2010; Murata et al,
2015). Particularly, phytohormones, including abscisic acid
(ABA), ethylene, brassinosteroids, strigolactones (SLs), salicylic
acid (SA), jasmonic acid (JA), and small signaling peptides have
been found to play pivotal roles through their coordination with
various key guard cell signaling components to modulate
stomatal apertures in response to fluctuating environmental
stress (Kim et al., 2010; Daszkowska-Golec and Szarejko, 2013;
Munemasa et al., 2015; Murata et al., 2015; Cardinale et al., 2018;
Mostofa et al., 2018; Qu et al., 2019; Zhang et al., 2019).

Other than their notable roles in shoot branching (Al-Babili
and Bouwmeester, 2015), SLs have been found to be implicated
in many plant developmental processes such as primary root
development (Kapulnik et al., 2011; Ruyter-Spira et al., 2011),
adventitious root formation (Rasmussen et al., 2012; Sun
et al.,, 2015), secondary growth (Agusti et al., 2011),
photomorphogenesis (Shen et al., 2007; Shen et al., 2012),
flower development (Snowden et al., 2005; Kohlen et al., 2012;
Liu et al,, 2013), and hypocotyl elongation (Tsuchiya et al., 2010;
Jia et al., 2014). Notably, accumulating data indicated that SLs are
also involved in mediating plant responses to environmental
stress, rendering plants to defend against abiotic stress as well as
against specific bacterial and fungal species (Marzec, 2016;
Cardinale et al., 2018; Mostofa et al., 2018). Specifically, SL-
deficient and SL-signaling mutants exhibited drought
hypersensitivity, whereas SLs application rescued drought-
sensitive phenotypes of SL-deficient mutants and strengthened
drought tolerance of wild-type (WT) plants (Bu et al., 2014; Ha
etal., 2014; Liu et al., 2015; Li et al., 2017; Zhang et al., 2018). We
recently revealed that SLs could induce stomatal closure through
enhancing hydrogen peroxide (H,0,) and nitric oxide
production in an ABA-independent manner, possibly
preventing water loss and pathogen invasion and thereby
resulting in plant acclimation to environmental stress (Lv
et al., 2018; Zhang et al., 2018). However, the detail molecular
mechanism, especially the intracellular events that are initiated
by SLs in guard cells, remains largely unclear. To this end, the
potential downstream component(s) that transduces guard cell
SL signaling is thus required to be determined.

It has long been known that calcium functions as a secondary
messenger in stomatal closure (Blatt, 2000; Bowler and Fluhr,
2000; Kim et al., 2010; Murata et al, 2015; Ray, 2017). For
instance, through H,0, activation of Ca**-permeable cation
channels, ABA triggers an increment of cytosolic Ca** [(Ca®")y]
that includes Ca** influx elevation from extracellular spaces and
Ca®* release from intracellular stores (Pei et al., 2000). In
addition, JA-induced stomatal closure is mediated by cytosolic
Ca®" since JA signaling in guard cells is inhibited by Ca®"
channel blockers (Suhita et al., 2003; Suhita et al., 2004).
Likewise, Ca*" signaling is found to be implicated in SA
induction of stomatal closure in a mode of action similar to
studies of ABA- and JA-mediated stomatal closure (Prodhan
et al, 2018). Eventually, the resultant guard cell cytosolic Ca®*
elevation promotes stomatal closure by stimulation of SLOW

ANION CHANNEL-ASSOCIATED 1 (SLAC1) anion channels
and/or the GATED OUTWARDLY-RECTIFYING K" (GORK)
channel (Kim et al.,, 2010; Murata et al., 2015; Roux and
Leonhardt, 2018).

Calcium-dependent protein kinases (CPKs) function as Ca**
signal transducers involving in various biological processes
including Ca**-dependent guard cell signaling (Boudsocq and
Sheen, 2013; Schulz et al., 2013; Simeunovic et al., 2016).
Mechanically, CPKs are known to activate SLAC1 and GORK
channels to induce stomatal closure (Kim et al., 2010; Boudsocq
and Sheen, 2013; Schulz et al., 2013; Simeunovic et al., 2016;
Corratgé-Faillie et al., 2017). To date, a number of CPKs have
been identified to be implicated in guard cell signaling to mediate
stomatal movement. Several CPKs, including CPK3, CPK4,
CPK6, CPK8, CPK9, CPK10, CPK11, and CPK33, are involved
in ABA-mediated stomatal closure through distinct modes of
action (Boudsocq and Sheen, 2013; Schulz et al., 2013; Li C.L
et al,, 2016; Chen et al,, 2019). For instance, CPK3 and CPK6
activated ABA-induced stomatal closure and slow-type (S-type)
anion channel activity (Mori et al., 2006). Disruption of CPK6
impaired JA-mediated stomatal closure and S-type anion
channels activation, implying that CPK6 acted as a positive
regulator in guard cell MeJA signaling (Munemasa et al,
2011). CPK3 and CPK6 functioned additively in SA-induced
stomatal closure and SA activation of S-type anion channels
(Prodhan et al., 2018). CPK33 suppressed ABA-induced stomatal
closure and S-type anion channel activity (Li C.L et al., 2016;
Chen et al,, 2019), whereas CPK33 stimulated GORK activity to
promote stomatal closure (Corratgé-Faillie et al., 2017). It was
reported that CPK10, possibly association with HEAT SHOCK
PROTEIN 20-LIKE PROTEIN 1 (HSP1), functioned in ABA-
and Ca*'-mediated stomatal closure in response to drought
stress (Zou et al.,, 2010). Altogether, these findings underscore
the importance of CPKs in the modulation of stomatal closure.
CPKs and Ca**-independent kinases [e.g. SnRK2-type protein
kinase OPEN STOMATALI (OST1)] have long been recognized
to be involved in activating ion channels and stimulating
stomatal closure (Geiger et al., 2009; Lee et al., 2009; Geiger
et al, 2010; Geiger et al, 2011; Brandt et al., 2012; Brandt
et al., 2015).

In this study, the importance of Ca®" in SL-induced stomatal
closure was firstly determined by performing pharmacological
studies, which indicate that Ca®" acts as a prominent mediator
functions in SL induction of stomatal closure. Through
examining a collection of cpk mutants, we identified CPK33
(and possibly CPK10) which is implicated in guard cell SL
signaling. SL activation of stomatal closure, as well as Ca**-induced
stomatal closure, was greatly impaired in cpk33 mutants.
Additionally, CPK33 kinase activity is essential for SL
induction of stomatal closure. We further found that H,O,-
induced stomatal closure was moderately impaired in cpk33
mutants whereas SL-mediated H,O, production was
maintained in cpk33 mutants. Taken together, our study
uncovers an important player CPK33 that functions as an
important mediator in SL signaling in Arabidopsis guard cells.
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MATERIALS AND METHODS

Plant Growth Conditions and Mutants
Isolation

The Arabidopsis ecotype Columbia-0 (Col-0) was used as wild-
type (WT) plants in this study. The following mutants have been
described previously: maxI-1, max2-1, max2-2, max3-9, and
max4-1 (Stirnberg et al., 2002; Umehara et al, 2008), di4-5
(Yao et al., 2016), cpk4-1 and cpkl1-2 (Zhu et al., 2007), cpk8
(Zou et al., 2015), ¢pkl10 (Zou et al., 2010), cpk23 (Ma and Wu,
2007), cpk33-1, cpk33-2, 358:CPK33 and 35S:CPK33"'%*F (Li
C.Letal, 2016), cpk3 cpk5 cpk6 cpkll (Guzel Deger et al., 2015),
and cpk5 cpk6 cpkll cpk23 (Wang et al., 2018).

To obtain the double mutant cpk10 cpk33, the cpkl10 mutant
and cpk33 mutants (cpk33-1 and cpk33-2) were crossed.
Homozygous double mutants were determined by PCRs using
a combination of a gene-specific primer and a T-DNA border
primer. The primers used were listed in Table S1.

Seeds were sterilized and sown for germination in 1/2
Murashige and Skoog (MS) medium supplemented with 0.8%
(w/v) agar and 1% sucrose (w/v). Seedlings were transplanted
into pots and subsequently kept in a growth chamber with a 16h/
8h (light/darkness) regime at 21°C. Fully expanded rosette leaves
detached from 4- to 6-week-old healthy plants were harvested for
immediate use.

Stomatal Aperture Bioassay

Stomatal apertures were measured as described previously (Lv
et al., 2018; Zhang et al., 2019). In brief, epidermal strips of fully
expanded leaves were incubated in the MES-KCI buffer (10 mM
MES-KOH/50 mM KCl, pH 6.15) to promote stomatal opening
following treatments as described in each experiment. Finally,
stomatal apertures on the abaxial epidermis were measured and
presented as mean * SE of three replicates.

Chemicals

The preparation of synthetic SL analog GR24 (Chiralix
Nijmegen, the Netherlands) and 2’,7'-dichlorofluorescein
diacetate (H,DCF-DA; Biotium Hayward, USA) were
performed as described previously (Lv et al, 2018; Zhang et al,
2019). The ethylene glycol-bis(3-aminoethyl ether)-N,N,N’,N’-tetra
acetic acid (EGTA; Sigma, USA), lanthanum chloride (LaCl,;
Solarbio, China), aluminum chloride (AICI;, Solarbio, China),
trifluoperazine (TFP), and trifluoperazine dihydrochloride (TFP;
Santa Cruz, USA) were dissolved appropriately according to the
supplier information and prepared stock solutions for further
use. Other chemicals used in this study, including H,O,, 2-(N-
morpholino) ethanesulphonic acid (MES), and calcium chloride
(CaCl,), were purchased from Sigma-Aldrich. All chemicals used
are of the highest analytical grade.

H,0, Content Detection in Guard Cells

H,DCF-DA was utilized to determine H,O, content in stomata.
The measurement of H,O, content was performed according to
Lv et al. (2018) and Zhang et al. (2019). Briefly, epidermal strips
with open stomata were incubated in the Tris-KCl solution
containing 50 uM H,DCF-DA for 10 min of darkness at 25°C

in the absence or presence of GR24. Epidermal strips were
washed three times with Tris-KCl buffer to remove excess dye
under darkness. The fluorescence in stomata was visualized using
a TCS SP2 confocal laser scanning microscope (Leica
Lasertechnik GmbH, Germany). The fluorescence intensity
representing the endogenous H,O, content was determined
using Image] software. Fluorescence intensities were
normalized to those of controls. The data for fluorescence
intensities represent the mean + SE of three replicates.

Statistical Analyses

Statistical analyses were performed using a one-way ANOVA to
discriminate significant differences followed by the least
significant difference test.

RESULTS

Ca?* Is Required for SL-Induced Stomatal
Closure in Arabidopsis

Calcium is known to act as a key secondary messenger in
mediating stomatal closure (Blatt, 2000; Bowler and Fluhr,
20005 Pei et al., 2000; Kim et al., 2010; Murata et al., 2015; Ray,
2017). We therefore took a pharmacological approach to
determine whether Ca®" is required for SL-triggered stomatal
closure. To this end, we examined the effects of ethylene glycol-
bis(B-aminoethyl ether)-N,N,N’,N’-tetra acetic acid (EGTA; a
Ca*" chelator), and LaCl; and AICl; (Ca** channel blockers) on
SL-induced stomatal closure (Schwartz, 1985; Zhao et al., 2007;
Li Y et al, 2016). As expected, the synthetic SL analog GR24
could significantly induce stomatal closure (Figure 1; Lv et al.,
2018). However, SL-induced stomatal closure was inhibited by
EGTA, LaCl;, and AICl;, respectively (Figure 1). These results
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0.0 I I T T
GR24 — — — —
EGTA — + — —
LaCly — — + — — — + —
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FIGURE 1 | The effects of Ca®* chelator and channel inhibitors on
strigolactone-induced stomatal closure. Leaf epidermal peels of WT plants
with open stomata were exposed to either the MES-KCI buffer with (+) or
without () 1 uM GR24, 2 mM EGTA, 1 mM LaCls, or 1 uM AICl5. The
stomatal apertures were measured for different treatments. Data are means +
SE of three independent experiments Bars with different letters represent
statistically significant differences.

Frontiers in Plant Science | www.frontiersin.org

December 2019 | Volume 10 | Article 1630


https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Wang et al.

CPK33 Mediates Strigolactones Signaling

indicate that Ca®* and Ca** channels are involved in SL-induced
stomatal closure.

It was reported that exogenous Ca** could promote stomatal
closure (Blatt, 2000; Ray, 2017). Since we have shown that Ca**
plays a crucial role in SL-induced stomatal closure, we further
examined the stomatal response of SL-related mutants in
response to Ca**. We found that addition of Ca** (CaCl,)
induced a similar stomatal closure in SL-related mutants as in
WT plants, whereas SL-signaling mutants max2 and d14 were
insensitive to GR24 as reported previously (Figure S1; Lv et al,
2018). This result indicates that Ca®" might act as a signaling
molecule downstream of SL-signaling and SL-biosynthetic genes.

SL- and Ca**-Induced Stomatal Closure
Were Impaired in the Cpk33 Mutant

Given that Ca®" is essential for SL-induced stomatal closure
(Figure 1), we sought to identify the specific Ca*" sensor(s) that
is involved in guard-cell SL signaling. CPKs, as Ca** sensors, are
important in the regulation of ABA-mediated and Ca®"-mediated
stomatal closure (Kim et al., 2010; Boudsocq and Sheen, 2013;
Schulz et al., 2013; Simeunovic et al., 2016). To determine
whether any CPK is required for SL signaling in guard cells,
we firstly examined SL-induced stomatal closure in the absence
and presence of CPK inhibitors TFP and staurosporine (ST) (Li
et al., 1998). TFP and ST significantly inhibited GR24-induced
stomatal closure (Figure S2), suggesting that CPK(s) is truly
indispensable for SL-induced stomatal closure.

Furthermore, to identify CPK(s) that might be involved in SL
signaling in guard cells, the effect of GR24 on stomatal aperture was
examined in a collection of cpk mutants, including cpk4, cpks,
cpkl10, cpkll, cpk23, cpk33-1, cpk33-2, cpk3 cpk5 cpk6 cpkll, and
cpk5 cpk6 cpkll cpk23 (Figure 2). GR24 significantly induced
stomatal closure in most of examined cpk mutants. Conversely,
SL-induced stomatal closure is greatly impaired in cpk33-1 and
cpk33-2 mutants, and marginally impaired in cpkI0 mutants
(Figure 2). To overcome the potential redundant function

between CPK10 and CPK33, we generated double mutants cpk10
cpk33-1 and cpkl0 cpk33-2. The double mutants cpkl0 cpk33
exhibited insensitivity to SL-induced stomatal closure to a similar
extent to that of the ¢pk33 mutants (Figure 2), suggesting that
CPK10 exerted slight effect on SL-induced stomatal closure.
Nevertheless, we found that CPK33 is predominantly involved in
guard cell SL signaling, and we thus concentrated on CPK33 in
subsequent studies.

Because SL promotion of stomatal closure depends on Ca®",
we hypothesized that disruption of CPK33 would impair Ca**
signaling transduction. To test this hypothesis, we investigated
the stomatal response following exogenous Ca** application in
cpk33-1 and cpk33-2 mutants. Exogenous Ca®" stimulated
stomatal closure in WT plants, but not in ¢pk33-1 and cpk33-2
mutants (Figure 3). Taken together, our results indicate that
CPK33 acts as an important Ca®" sensor that is involved in
guard-cell SL signaling.

CPK33 Kinase Activity Is Essential for
SL-Induced Stomatal Closure

Previous studies have shown that the kinase activity of CPK33 is
essential for SLAC1 channels and GORK channels activities and
ABA-induced stomatal movement (Li C.L et al., 2016; Corratgé-
Faillie et al., 2017). To investigate whether the in vivo kinase
activity of CPK33 is also required for SL-induced stomatal
closure, we performed stomatal bioassay analysis upon GR24
treatment using cpk33-1 and cpk33-2 mutants, two independent
cpk33-1 complementation lines (35:CPK33 cpk33 #1 and #2),
and two independent lines expressing a kinase-inactive
CPK33"'%® construct in cpk33-1 (35:CPK33"'%%® cpk33 #1
and #2). Two 35:CPK33 cpk33 lines exhibited GR24-sensitive
phenotype similar to that of WT plants, while we found that 35::
CPK33%1%?R ¢pk33 plants, as well as cpk33-1 and cpk33-2
mutants, failed to close stomata in response to GR24 (Figure
4). Thus, this result suggests that CPK33 kinase activity is
essential for stomatal closure induced by SLs.
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FIGURE 2 | Strigolactone-stimulated stomatal closure is mediated by CPK33. Leaf epidermal peels of WT plants and a collection of cpk mutants were exposed to
the MES-KCI buffer in the absence and presence of 1 uM GR24. Stomatal apertures were measured and presented as means + SE of three independent

experiments. Bars with different letters represent statistically significant differences.
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FIGURE 3 | Ca?*-induced stomatal closure is significantly impaired in cpk33
mutants. Leaves of WT plants, cpk33-17, and cpk33-2 mutants with open
stomata were exposed to the MES-KCI buffer containing different
concentrations of CaCl,. Stomatal apertures were subsequently measured
and presented as means + SE of three independent experiments. Bars with
different letters represent statistically significant differences.
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FIGURE 4 | CPK33 kinase activity is essential for strigolactone-induced
stomatal closure. Leaves of WT, cpk33-1, cpk33-2, 35::CPK33 cpk33 #1,
35::CPK33 cpk33 #2, 35::CPK33"192F cpk33 #1, and 35::CPK33"%2R cpk33
#2 plants with open stomata were exposed to the MES-KCI buffer in the
absence or presence of 1 M GR24. Stomatal apertures were measured and
presented as means + SE of three independent experiments. Bars with
different letters represent statistically significant differences.

Effects of the cpk33 Mutation on SL-
Induced H>,0, Production and H,0--
Mediated Stomatal Closure in Guard Cells
It was reported previously that SLs stimulate H,O, accumulation,
and the resultant H,O, acts as an early signal component in the
induction of stomatal closure triggered by SLs (Lv et al., 2018). To
investigate the genetic relationship between H,0, and CPK33 in
guard cell SL signaling, we examined the SL effect on H,0,

production in cpk33 mutants using the H,O, fluorescent probe
H,DCF-DA. In line with previous data, GR24 stimulated H,O,
production in WT plants. Similarly, GR24 also stimulated H,0,
production in cpk33 mutants (Figure 5A), suggesting that CPK33
disruption did not affect SL-induced H,O, production.

To further investigate the position of H,O, production and
CPK33 in guard cell SL signaling pathway, we next examined the
stomatal aperture upon exogenous H,O, in c¢pk33 mutants.
Exogenous application of H,O, significantly stimulated stomatal
closure in WT plants, but H,O,-induced stomatal closure is
partially impaired in cpk33 mutants in comparison with WT
plants (Figure 5B). Altogether, our results indicate that CPK33
possibly functions downstream of H,O, production in guard-cell
SL signaling. It appears that, as a paradigm, H,O, activates CPK(s)
that function as signal mediator(s) in guard cells. However, it
remains to be explored whether and how CPK33 is activated by
SL-induced H,O,

DISCUSSION

It has been shown that SLs were implicated in various
developmental processes of plants and mediate their responses to
environmental stress (Al-Babili and Bouwmeester, 2015; Marzec,
2016; Cardinale et al., 2018; Mostofa et al., 2018). Recently we found
that SLs function as common regulators to induce stomatal closure
(Lv et al,, 2018; Zhang et al., 2018). We further elucidated that SL-
induced stomatal closure is accomplished through enhancing
production of H,0, and nitric oxide, eventually promoting plant
resilience to environmental stress (Lv etal., 2018; Zhang etal., 2018).
However, no significant effect on stomatal aperture was observed
when spraying GR24 onto intact plants, although SL-related
mutants were genetically confirmed to display higher stomatal
conductance (Kalliola et al., 2019). The discrepancy in SL-
induced stomatal closure may be due to the different materials
used, intact plants and epidermal strips, which possibly results in
different efficacy of GR24 such as permeability problem. It has been
reported that Ca®" and its sensors CPKs are crucial for stomatal
closing (Blatt, 2000; Bowler and Fluhr, 2000; Pei et al., 2000; Kim
et al, 2010; Murata et al., 2015; Ray, 2017). OST1, a Ca®
"-independent kinase, was found to be dispensable for SL-
induced stomatal closure (Lv et al., 2018). Based on these
observations, we thus hypothesize that Ca®" as well as its
transducers CPK(s) is implicated in SL-triggered stomatal closure.

In this study we found that Ca>* chelator EGTA, and Ca®" channel
blockers LaCl; and AlCl; significantly suppressed SL-induced stomatal
closure (Figure 1), suggesting the requirement of extracellular free Ca**
and Ca®" channels in the modulation of SL-induced stomatal closure.
Our pharmacological and further genetic analyses suggest that SL
requires cytosolic Ca>* signals to promote stomatal closure (Figures 1
and 3). It is possible that SLs stimulate either Ca** sensitivity priming
or cytosolic Ca** elevation to perturb Ca®" signals, thereby resulting
in stomatal closure. It is thus demanded to detect the alteration of Ca**
signals through Ca®* detection fluorescence dyes and/or different Ca**
biosensors in the future analyses.

It has long been known that CPKs, acting as Ca®" sensors, are
important mediators of Ca**-dependent stomatal closure and ion
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FIGURE 5 | The role of CPK33 in strigolactone-induced H,O, production and H,O,-mediated stomatal closure in guard cells. (A) Effects of GR24 on H,0, production
in guard cells of WT plants, cpk33-1 and cpk33-2 mutants. Fluorescence intensities were normalized to those of controls that were taken as 100% for the indicated
experiments. (B) Epidermal strips of WT plants with open stomata were exposed to the MES-KCI buffer containing different concentrations of H.O,. The stomatal
apertures were measured and presented as means + SE of three independent experiments. Bars with different letters represent statistically significant differences.

channel activation (Kim et al, 2010; Boudsocq and Sheen, 2013;
Schulz et al., 2013; Simeunovic et al, 2016). We identified a
potential Ca®" transducer CPK33 acting as an intermediate
component downstream of H,0, in guard cell SL signaling
pathway. SL activation of stomatal closure, as well as Ca’
“-induced stomatal closure, were impaired in ¢pk33 mutants
(Figures 2 and 3). Interestingly, CPK10 disruption slightly
impaired SL-induced stomatal closure (Figure 2). The double
mutant ¢pkl0 cpk33 exhibited insensitivity to SL-induced
stomatal closure to a similar extent to that of the ¢pk33 mutant
(Figure 2), suggesting a prime role of CPK33 and a differential
contribution of CPK10 and CPK33 in SL-induced stomatal closure.
It was found previously that CPK10 was involved in plant responses
to drought stress via modulation of ABA- and Ca**-mediated
stomatal closure (Zou et al., 2010). Considering the complexity of
crosstalk of distinct signaling pathways, it is plausible that CPK10
might indirectly impact on the SL activation of stomatal closure.
Alternatively, given that there are 34 CPKs in Arabidopsis
(Boudsocq and Sheen, 2013), a yet unidentified CPK, rather than

CPK33, may function redundant with CPK10 in modulation of SL-
induced stomatal closure. Nevertheless, the role of CPK10 (possible
with another redundant CPK) in SL promotion of stomatal closure
needs to be investigated.

Intriguingly, guard cell outward potassium channel GORK is
specifically stimulated by CPK33 to active outward potassium ion
currents, showing that, unlike its negative regulation of anion
channels (Li C.L et al., 2016), CPK33 positively modulates the
GORK channel activity to promote stomatal closure (Corratgé-
Faillie et al., 2017). Consequently, cpk33 mutants were delayed in
stomatal closure under normal conditions (Corratgé-Faillie et al.,
2017). In this regard, it is possible that SLs could exploit CPK33-
activated GORK channels to promote stomatal closure. It thus
remains to be investigated whether SLs could stimulate CPK33-
activated GORK channel activity. CPK33 was reported as a negative
regulator in ABA-modulated stomatal closure (Li C.L et al., 2016).
SL activation of stomatal closure, however, were inhibited in cpk33
mutants (Figure 2), indicating that CPK33 positively functions in
SL-induced stomatal closure. Taken together, our results and

Frontiers in Plant Science | www.frontiersin.org

December 2019 | Volume 10 | Article 1630


https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Wang et al.

CPK33 Mediates Strigolactones Signaling

SLs
D14/MAX2

[Ca?,,, |

CPK33

I
1 ?

v
Stomatal closure

FIGURE 6 | A working model for CPK33-mediated strigolactone (SL) signaling
in guard cells. Following perception by D14 and MAX2, SLs stimulate the
production of H,O, that possibly activates the Ca®* transducer CPK33 which
likely modulates anion and potassium channels to promote stomatal closure.
The question mark stands for an unknown molecule(s) that is downstream of
CPK33 in SL-mediated stomatal closure. It remains to be explored whether
and how SLs and/or SL-induced H,O, could promote cytosolic Ca®* which is
presumably sensed by CPK33 in SL-mediated guard cell signaling.

previous reports suggest that the CPK-dependent Ca®* recognition
conveying by CPK33 could be essential for SL signaling, as well as
ABA signalingin guard cells. Nevertheless, the role of opposite effect
of CPK33 on anion and potassium channels, as well as the
discrepant role of CPK33 in guard cell ABA and SL signaling, is
required to be further studied.

Integrated previous studies with our present genetic and
physiological analyses, we propose that CPK33, as a Ca®*
transducer, acts downstream of H,O, and Ca** (Figure 6). In
guard cells, following perception by D14 and MAX2, SLs stimulate
the production of H,O, that possibly activates CPK33, which likely
modulates anion and potassium channels to promote stomatal
closure (Li C.L et al., 2016; Corratgé-Faillie et al., 2017; Figure 6).
Indeed, it has been reported that CPK33 positively stimulates the
GORK channels while negatively regulates SLAC1 channels to
promote stomatal closure (Li C.L et al., 2016; Corratgé-Faillie

et al., 2017). However, it remains to be examined whether and
how CPK33 is activated by SL-induced H,O,. It has been reported
that H,O,-stimulated cytosolic Ca*" elevation is crucial for stomatal
closure (Pei et al., 2000). CPK33 was confirmed to be a typical Ca?
"-dependent kinase (Corratgé-Faillie et al., 2017), indicating that
CPK33 activity requires cytosolic Ca®* increase. Therefore, it will be
intriguing to investigate whether SLs and/or SL-induced H,O, are
able to promote cytosolic Ca®" which presumably is sensed by
CPK33 in SL-mediated guard cell signaling. The finding that the
stomata of ¢pk33 mutants remain considerable response to H,0,
indicates that other factor(s) might also required for SL-triggered
stomatal closure. In the meanwhile, our results emphasizes the
essential role of H,O, serving as a hub in the complicated hormone-
mediated stomatal closure. Altogether, our study reinforces the
understanding of the molecular mechanism by which SLs induce
stomatal closure and provides new insights to improve stress
acclimatization of plants.
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