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The apoplast, i.e. the cellular compartment external to the plasma membrane, undergoes
important changes during senescence. Apoplastic fluid volume increases quite
significantly in senescing leaves, thereby diluting its contents. Its pH elevates by about
0.8 units, similar to the apoplast alkalization in response to abiotic stresses. The levels of
159 proteins decrease, whereas 24 proteins increase in relative abundance in the
apoplast of senescing leaves. Around half of the apoplastic proteins of non-senescent
leaves contain a N-terminal signal peptide for secretion, while all the identified
senescence-associated apoplastic proteins contain the signal peptide. Several of the
apoplastic proteins that accumulate during senescence also accumulate in stress
responses, suggesting that the apoplast may constitute a compartment where
developmental and stress-related programs overlap. Other senescence-related
apoplastic proteins are involved in cell wall modifications, proteolysis, carbohydrate,
ROS and amino acid metabolism, signaling, lipid transport, etc. The most abundant
senescence-associated apoplastic proteins, PR2 and PR5 (e.g. pathogenesis related
proteins PR2 and PR5) are related to leaf aging rather than to the chloroplast degradation
program, as their levels increase only in leaves undergoing developmental senescence,
but not in dark-induced senescent leaves. Changes in the apoplastic space may be
relevant for signaling and molecular trafficking underlying senescence.

Keywords: apoplast, senescence, apoplastic fluid, secretome, extracellular pH, pathogenesis-related protein, PR
INTRODUCTION

At the leaf level, senescence represents a degenerative process, but, at the same time it constitutes an
efficient nutrient recycling mechanism for the plant. Most of the nitrogen released from senescing
leaves comes from Rubisco and other plastid proteins degradation; therefore a major focus of
senescence research has been to elucidate the mechanism for chloroplast dismantling (Noodén et al.,
1997; Guiamet et al., 2002; Otegui, 2018). Other cellular changes occurring in senescing leaves are
less characterized, and even less is known about the adjustments taking place outside the plasma
membrane as leaf senescence progresses.
Abbreviations: AF, apoplastic fluid; AWF, apoplastic wash fluid; AFS2–AFS3, apoplastic fluid protein pattern from S2 and S3
leaves, respectively; AFSP, apoplastic fluid senescence-related protein.
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Borniego et al. Apoplast Changes During Leaf Senescence
The apoplast is the space external to the plasma membrane that
includes cell walls, middle lamella, intercellular spaces, and the fluid
that moves freely within the walls and intercellular spaces, known as
extracellularfluid or apoplasticfluid (AF). TheAF represents around
4%to11%ofthetotal leaffreshweight(SattelmacherandHorst,2007).
Its composition consists of molecules related to metabolism and
signaling, such as amino acids, polysaccharides, secondary
metabolites, ions, and secreted mRNA and proteins with several
functions, particularly enzymes related to defense and proteolysis
(Sattelmacher and Horst, 2007; Martínez‐González et al., 2018). The
apoplast plays a critical role in plant development, as it provides the
environment for cell expansion and cell wall maintenance, ion and
molecule trafficking, source-to-sink translocation of nutrients,
intercellular and systemic signaling, stress perception, and response
(Hoson, 1998; O'Leary et al., 2016; Rodríguez-Celma et al., 2016).
Stress-elicitedchangesintheapoplasthavebeenextensivelyexamined,
and these include modulation of the pH and fine tuning of protein
abundanceandcomposition(Felle, 2001;Danietal., 2005;Floerl etal.,
2012; Geilfus, 2017). Apoplastic pH (pHapo) transiently increased
under drought and salinity becoming more alkaline as the stresses
intensify (Geilfus et al., 2015; Zörb et al., 2015; Geilfus, 2017). Also,
pathogen and peptide signals, such as systemin and RALF (rapid
alkanilization factor), trigger apoplast alkalization (Felle et al., 2004;
Higgins et al., 2007; Masachis et al., 2016). The pHapo varies along
ontogeny(MattssonandSchjoerring,2003;Wuetal.,2016),andalong
withpHapo, theextracellular spacevolumemightadjustas the leafages
(HustedandSchjoerring,1995;Lohausetal.,2001;Nouchietal.,2012).
Apoplast conditions influence chloroplast metabolism and leaf
physiology (Karpinska et al., 2018) and therefore might influence
senescence-related processes, for instance the regulation of intra to
extracellular exchange ofmolecules and long distance remobilization
ofnutrients. Transcription analysis ofArabidopsisplasmamembrane
transporters suggest that molecule trafficking across the plasma
membrane might increase during leaf senescence (Van Der Graaff
et al., 2006).

Proteomic approaches identified chitinases, pathogenesis
related proteins (PR), and other defense related enzymes, as
the mayor leaf apoplastic proteins (Boudart et al., 2005; Rutter
and Innes, 2017; Soares et al., 2017). The extracellular
accumulation of these enzymes along with the transient
alkalinization of pHapo as signature of different biotic and
abiotic stress responses suggest either a cross-talk between
stress pathways or a common apoplastic signal-transducing
element or node (Geilfus, 2017).

Many of the stress-related extracellular enzymes are
constitutive members in the AF that activate and/or accumulate
upon specific signals, some of them are also up-regulated during
senescence (Grudkowska and Zagdanska, 2004; Goulet et al.,
2010). Other stress-related enzymes relocate inside/outside the
cell in response to external stimulus. Caspase-like serine proteases
from Avena sativa relocate from the cytosol to the apoplast upon
programmed cell death (PCD) induction (Coffeen and Wolpert,
2004), whereas some apoplastic subtilisin proteases re-enter cells
committed to PCD (Trusova et al., 2019).

Similar intra-extracellular pathways might be involved in the
regulation and/or execution of leaf senescence.
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Compared to stress-related broad analysis of AF proteomes
(Kosová et al., 2011; Gupta et al., 2015), there is not enough
information on the AF proteome dynamics in senescing leaves,
however different studies evidence relevant roles for apoplastic
proteins during this leaf stage. By regulating long-distance
movement of sucrose, the extracellular invertase (cwINV) and
its inhibitor (INVINH) probably play a crucial role in the
regulation of senescence by controlling source-sink relations
(Lara et al., 2004; Jin et al., 2009). The apoplastic subtilisin
protease SASP is highly up-regulated during senescence, and
whereas at-sasp plants do not differ from wild type plants at
vegetative stage, they produce more branched inflorescences,
siliques, and seeds (Martinez et al., 2015). The Arabidopsis
extracellular metalloprotease At2-MMP is up-regulated as the
plant ages, and at2-mmp-1 plants show accelerated chlorophyll
(Chl) degradation and delayed flowering (Delorme et al., 2000;
Golldack et al., 2002). Other apoplastic proteases from different
mechanistic classes (cysteine-, metallo-, and serine- proteases)
are up-regulated during leaf senescence (Martínez and
Guiamet, 2014).

This study aimed to shed light on the dynamics of the
extracellular space during leaf senescence by analyzing
physiological parameters of the apoplast space and the AF,
including a large-scale quantitative proteomic approach to
compare the AF proteomes of senescent and non-senescent leaves.
MATERIALS AND METHODS

Plant Material and Growth Conditions
Arabidopsis thaliana Col-0, wild type, and the transgenic line
apo-pHusion (Gjetting et al., 2012) were used. Apo-pHusion
plants express the chimeric apo-mRFP1-EGFP protein targeted
to the apoplast, where it functions as a pH sensor (Gjetting et al.,
2012). The plants were cultivated in 550 mL pots filled with soil
and vermiculite (2:1 v/v). Nitrofoska® was applied (30 mL, 1 g/L
per pot) every 30 days. The plants were grown in growth
chambers, at 24°C and 120 mmol m−2 s−1 photosynthetic
photon flux density under a 10 h light/14 h dark photoperiod.

Each rosette was separated in groups of leaves based on the
phyllotaxis and leaf size. Vegetative rosettes were separated in
two groups of leaves, the youngest named S1 (Stage 1), whereas
rosettes at reproductive stages were separated in three, four, or
five groups of leaves, according to the rosette age and leaf
number (stages S2, S3, and S4). Around six to eight
consecutive leaves representing one stage (S1, 2, 3, or 4) were
sampled per plant. Each plant was harvested only once and for
one particular Stage only.

Physiological Parameters
Leaf chlorophyll content was measured non-destructively with
the SPAD 502 Portable Chlorophyll Meter (Konica-Minolta®).

Maximum quantum yield of photosystem II (Fv/Fm)
measurements were taken with a modulated pulse fluorimeter
FMS 2 (Hansatech®). The leaves were acclimated for 30 min in
the dark before the measurements.
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Leaf water content, LWC, was determined as:

LWC  =   (FW  − DW)=FW½ � � 100

Relative water content, RWC, was determined as:

RWC  =   (FW − DW)=(SW − DW)½ � � 100

where FW = fresh weight, DW = dry weight, SW = water
saturated weight.

Water potential (Yw) of 5 mm diameter leaf discs was
measured with a dew point psychrometer and C-52 chambers
(Wescor®) . Sodium chloride solut ions of different
concentrations were absorbed in filter paper discs and used
for calibration.

Solute potential (Ys): measurements were carried out in a
vapor pressure micro osmometer Vapro 5520 (Wescor®), using
10 mL per sample. To measure leaf Ys, leaves without the
midrib were frozen in liquid nitrogen and placed in a 1 mL
syringe containing glass wool at the bottom. Pressure was
applied pushing the plunger and the resulting leaf macerates
were analyzed. The Ys of the AF was estimated measuring the
Ys of the apoplastic wash fluids (AWFs), and correcting the
obtained values by their corresponding dilution factors (Fdil)
(See below).

Leaf AWF Extraction
Leaf infiltration was performed with cold deionized water using a
60 mL syringe as described in O'Leary et al. (2014). Infiltrated
leaves were stuck, with petioles facing up into a 50-mL centrifuge
tube and centrifuged at 600 g for 40 min at 4°C. For protein
analysis, 5 mL of 300 mM phenylmethylsulfonyl fluoride (PMSF)
was added at the bottom of the tube prior to centrifugation.

Estimation of the Apoplast Volume
Occupied by Fluid (VAF) and Air (Vair)
and of AWF Dilution Factor
Estimations of Vair and VAF were carried out by the Indigo
Carmine (indigo-5.5′disulfonic acid, disodium salt, IC) method
(Husted and Schjoerring, 1995) with modifications. Fully
hydrated leaves were excised from Arabidopsis plants, weighed,
and vacuum infiltrated, as described above, but with 50 mM IC, in
10 mM sodium phosphate buffer pH 6.2. Once infiltrated, leaf
surfaces were blotted, immediately re-weighed, and centrifuged.
The difference in the leaf weight before and after infiltration
(corrected by the density of IC solution) was used for calculation
of the apoplastic air volume (Vair) (Lohaus et al., 2001).

The IC infiltration solution and AWFs were measured
spectrophotometrically at 610 nm to calculate the IC
concentration. The volume of AF (VAF) was calculated using
the following equation:

VAF = Vair � Abs610ICð Þ=Abs610AWF) − Vair

The dilution factor (Fdil) of AWF was calculated based on VAF

and Vair:

Fdil(VAF + Vair)=VAF
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The physiological concentration of solutes and metabolites in
the AF was calculated by multiplying the solute or metabolite
concentration in the AWF by its dilution factor, Fdil.

Cytoplasmic Contamination in Apoplast
Fluids
The cytosolic marker glucose-6-phosphate dehydrogenase
(G6PDH, EC 1.1.1.49) was assayed at room temperature in 100
µL 100 mM Tris-HCl pH 8, 6.7 mMMgCl2, 12 mM glucose-6-P,
0.4 mM NADP+ and AWF or leaf extracts. NADP+ reduction
was followed at 340 nm. Leaf extracts were obtained by
homogenizing leaves at 4°C in 100 mM Tris-HCl pH 8, 4 mM
PMSF; and centrifuging for 15 min at 15,000 g, 4°C.

In Vivo Estimation of Leaf Apoplast pH by
Confocal Fluorescence Microscopy
Ex Vivo Calibration of pHusion
Aliquots of AWF extracted from apo-pHusion plants were
incubated with 300 mM Tris-HCl or 300 mM MES buffers
adjusted with HCl or KOH to different pH values, placed in
microscope slides with cavities, and detected by confocal
microscopy. Confocal data acquisition was performed with a
Leica TCS SP5 II CLSM with the following setting: Ex 488/Em
524–550 nm for EGFP, and Ex 543/Em 566–634 nm for
mRFP1. For each pH value, pixel intensity of the
fluorescence ratio EGFP/mRFP1 in a region of interest (ROI)
was calculated using the software ImageJ. A non-linear fitting
of average pixel intensities was calculated using ImageJ
software, and the software GraphPad Prism was used to
generate a sigmoid curve.

In Vivo Observation of Apoplastic Apo-pHusion
Images of apo-pHusion S2 and S3 leaves were acquired by
confocal microscopy, with the setting described above. Ratio
images EGFP/mRFP1 were generated using the software ImageJ
and the average pixel intensities EGFP/mRFP1 for each ROI
were calculated. PH values were estimated by extrapolation on
the calibration curve. LAS AF software version 2.2.1 was used for
image acquisition. For visual presentation of ratio images, a
pseudocolor look-up table was designed using the
software ImageJ.

Isolation of Cell Wall Polysaccharides
and Cell Wall Quantitation
Cell wall polysaccharides were obtained from alcohol insoluble
residues (AIR) according to Nardi et al. (2015). To estimate the
amount of cell wall, the starch was subtracted from each AIR
with Dimethyl sulfoxide (DMSO) according to Carpita and
Kanabus (1987). After removing the starch, the resulting AIR
was incubated with 0.01 M HCl in a boiling water bath for 2 h
and filtered for polyuronide extraction. The obtained solution
was used for pectin quantification (see below).

Hydrolysis and Quantification of Pectins
100 mL of the polyuronide filtrate was mixed with 600 mL of
0.0125 M sodium tetraborate in saturated H2SO4, incubated in a
January 2020 | Volume 10 | Article 1635
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water bath for 20 min. and cooled down. Uronic acid
concentrations were estimated by the m-hydroxydiphenyl
method (Blumenkrantz and Asboe-Hansen, 1973) using
galacturonic acid as standard.

Starch Quantification
Around 0.1 mL of DMSO extract was mixed with 1 mL of 0.05%
w/v anthrone in 66% v/v H2SO4 and incubated at 100°C for 10
min and cooled down. The starch content was measured
spectrophotometrically at 620 nm using glucose as standard.

Transmission Electron Microscopy
Around 2 mm2 pieces were sectioned from the middle region of
the leaf and fixed by immersion in 2% glutaraldehyde, post fixed
in 1% osmium tetroxide and dehydrated through a graded series
of ethanol and embedded in epoxy resin. Ultrathin sections were
cut with a Super Nova Reichert–Jung Ultra-microtome (Wien
Austria), and examined with a JEM 1200 EX II transmission
electron microscope (JEOL Ltd., Tokio, Japan). Cell wall analysis
was performed with Image J software on at least three different
leaves of each stage.

Protein Analysis
Leaves were homogenized in 50 mM Tris-HCl pH 8, 20 mM
ethylenediaminetetraacetic acid (EDTA), 10 mM PMSF and 1%
insoluble polyvinylpyrrolidone, and cleared at 15,000 g, 4°C for
15 min. Laemmli's Sample Buffer, LSB, was added before
electrophoresis. Aliquots of AWF were lyophilized in a vacuum
freeze-dryer (Scientz®-10 N) and the pellets were re-suspended
in LSB.

SDS-PAGE gels (12% w/v acrylamide) were run in a Mini-
PROTEAN® III cell (Bio-Rad), and stained with Coomassie-
Brilliant Blue R-250 (CBB) or with Coomassie Blue Colloidal G-
250 (G-250).

Densitometric quantification of protein bands in CBB-stained
gels was performed by using the ImageJ 1.6 software (National
Institutes of Health, USA).

Peptide and Protein Quantification
The Pierce® BCA Protein Assay Kit (Thermo Scientific) using
bovine serum albumin as standard was used with AWFs and
leaf extracts

Western Blot and Immunodetection
SDS-PAGE gels were transferred to nitrocellulose membranes using
a Bio Rad Miniprotean System. The membrane was blocked with
10% milk in PBST buffer, incubated with a polyclonal antibody
against Rubisco Large Subunit, and developed with a horseradish
peroxidase-conjugated secondary antibody.

Protein Identification and Quantification
by LC-MS/MS and Bioinformatics
For the identification of proteins in SDS-PAGE gels the bands
were excised from G-250 stained gels, washed, dried, reduced,
alkylated, and trypsin digested. Peptides were extracted with
three steps of 50% acetonitrile/0.5% trifluoroacetic acid, and
Frontiers in Plant Science | www.frontiersin.org 4
desalted with a Zip-Tip C18. Samples were analyzed by LC-
MSMS using a Q Exactive™ nano HPLC-ESI-Orbitrap mass
spectrometer (Thermo Fisher Scientific). Protein identification
was performed with Proteome Discoverer 1.4 (Thermo Fisher
Scientific) connected to a Mascot search engine server (Matrix
Science, London, UK). Only proteins identified with at least two
unique peptides with 0.99 confidence (FDR = 0.01)
were considered.

For large-scale protein analysis by shotgun proteomics,
lyophilized AWF aliquots were resuspended in 8 M urea;
aliquots containing 20 µg of protein were reduced, alkylated,
trypsin digested, and desalted. LC-MSMS analysis was
performed as described previously. A label-free-quantification
method was performed using Proteome Discoverer 1.4. Four
biological replicas for each leaf stage were analyzed. Identified
proteins were submitted to a Student's t-test (P ≤ 0.05) with
Perseus 1.6.1.3 (Max Planck Institute of Biochemistry). Only
proteins exhibiting at least a ±100% fold change in their amount
were considered.

Statistical Analysis
Data from parameters (Chl, protein content) were tested either
with one-way ANOVA and Tukey tests (P ≤ 0.05), with two-way
ANOVA and Holm-Sidak test (p ≤ 0.05), or with Dunnett's
multiple comparisons test. For paired analysis of S2 and S3 leaf
stages, means were compared using the Student's t-test (p ≤
0.05). Statistical analysis was plotted using the GraphPad Prism
6.01 software (GraphPad Software, San Diego, CA, USA). The
number of independent replicates, i.e, biological samples (n), and
the corresponding technical replicates are indicated in each table
and figure caption.

Cell wall thickness was analyzed by one-way ANOVA, and
univariate tests of significance, Sigma-restricted parameterization
Effective hypothesis decomposition (P ≤ 0.0001).
RESULTS AND DISCUSSION

Leaf Developmental Stages and
Apoplastic Fluid Isolation
In order to characterize changes in the apoplast accompanying
senescence, leaf developmental stages were defined and apoplast
fluids (AFs) were isolated. Four leaf stages were characterized:
non-senescent leaves from plants at vegetative (S1) and early
reproductive stages (S2), and senescing leaves from plants at mid
(S3) and late reproductive stages (S4) (Figures 1A, B). Chl and
protein content per leaf area and Photosystem II maximum
photochemical efficiency (Fv/Fm) were determined. S1 and S2
leaves showed no difference in Rubisco and total leaf protein
content (Figure 1C), PSII integrity, as assessed by Fv/Fm, (Figure
1E), and S2 Chl concentration was slightly higher than in S1 leaves
(Figure 1D). S3 and S4 leaves showed clear signs of senescence,
i.e. Chl and protein levels and Fv/Fm decreased in S3 and S4
compared to S1 and S2. Particularly, the amount of leaf protein
dropped down to 40 and 20% in S3 and S4 respectively, compared
to non-senescing S1 and S2 leaves. AF isolation was performed
January 2020 | Volume 10 | Article 1635
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following the vacuum infiltration–centrifugation method (Lohaus
et al., 2001; O'Leary et al., 2014) and obtained AF fractions (from
here on AWFs) were tested for potential contamination with
intracellular compounds. AWFs and whole leaf extracts were
assayed for the cytosol marker Glucose 6P Dehydrogenase
(G6PDH), which was expressed as G6PDH activity in AWF as a
percentage of the whole leaf extract activity (Figures 1F, G). AWF
from S1 to S3 leaves were devoid of detectable G6PDH activity,
whereas AWF S4 showed high activity of the cytosolic enzyme,
indicating the presence of intracellular compounds in the AWF,
probably due to age-related loss of cell membrane integrity
(Figure 1G). Based on whole-leaf and AWF analysis (Figures
1A–G), S3 leaves show clear signs of senescence while still
retaining cell integrity, whereas S4 leaves would represent the
culmination of the remobilization process followed by membrane
permeabilization and cell death. S1 and S2 showed no difference in
senescence-related parameters; therefore S2 was selected as non
Frontiers in Plant Science | www.frontiersin.org 5
senescent leaf stage to compare its apoplastic space and AF with
that of senescing S3 leaves. Both S2 and S3 leaves belong to plants
at reproductive stage and that would avoid or minimize any
variation in the apoplast related to different phases of
plant development.

Water Relations of Non Senescing and
Senescing Leaves. Relative Water
Content and Water Potential in S2 and S3
Leaf Stages
Leaf water status directly affects the apoplast water content and
therefore its metabolite concentration (Tyree, 1976; Andersen
et al., 1991; Wardlaw, 2005). Water relations vary throughout
Arabidopsis leaf development, particularly right after the leaf
reaches its maximum extension and starts yellowing (Breeze
et al., 2011). Relative water content (RWC), moisture, and water
FIGURE 1 | Physiological characteristics of S1, S2, S3, and S4 leaves. (A) Leaf stages, marked with red arrows, DAE: Days after emergency. (B) Mature, non-
senescent leaves (S1 and S2) and senescent leaves (S3 and S4), scale bar 2 cm. (C) Leaf protein content: Representative SDS-PAGE showing a total protein profile
loaded per unit leaf area, and immunodetection of Rubisco Large Subunit (RLS), in the left upper and lower panel, respectively. Relative leaf protein content,
considering S1 as maximum, was estimated by densitometric analysis of the SDS-PAGE, and it is shown on the right panel. (D) Chlorophyll content per unit leaf area
expressed in SPAD units. (E) Maximum quantum yield of Photosystem II (Fv/Fm). (F) Enzymatic activity (U) of the cytosolic enzyme G6PDH in apoplastic fluid (AF)
and total leaf extracts (Ext) expressed on the basis of total protein (prot) content. (G) Percentage of G6PDH activity in AF as a function of G6PDH activity in Ext.
Values in the graphs show the average ± standard error, SEM, of independent measurements. Data were normally distributed. SPAD readings were taken in 10 to
15 different leaves for each stage, two readings per leaf blade. Fv/Fm values are the average of 16 leaves (S1), 30 leaves (S2 and S3), and six different S4 leaves,
one reading per leaf blade. G6PDH activity (D and E) represents the average of biological samples (n), where each FA and Ext biological sample was made up of at
least 4 leaves. S1: n = 6 FA and Ext n = 6, S2: n = 4 FA and n = 3 Ext, S3: n = 9 FA and n = 5 Ext, S4: n = 3 FA and 3 Ext. Significant differences were calculated
at P ≤ 0.05 between the conditions using the Tukey test; letters indicate significant differences between stages. Asterisks indicate significant differences between AF
and Ext; ****, P < 0.0001, calculated using a two-way ANOVA test.
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potential (Yw) were determined in S2 and S3 leaves. RWC
remained constant between S2 and S3 stages (S2 RWC =
0.949 ± 0.002 and S3 RWC = 0.955 ± 0.004) (Figure 2A).
However, percentage leaf water content decreased and leaf
fresh weight per area (LFWA) increased in S3 compared to S2
leaves (Figures 2B, C). A higher LFWA might relate to starch
Frontiers in Plant Science | www.frontiersin.org 6
accumulation during senescence (Oda-Yamamizo et al., 2016).
The 3-fold increase in starch content detected from S2 to S3
leaves (Figure 2D) might explain the higher LFWA in S3 leaves.

Leaf water potential dropped from S2 to S3 (Yw = −1.00 ±
0.21 to −1.26 ± 0.25 MPa, respectively), whereas the solute
potential remained stable between stages (Ys S2 = −0.94 ±
0.03 and Ys S3 = −1.01 ± 0.08) (Figure 2E, left and middle
parts of the graph). Intriguingly, experimentalYs values were the
same or higher than Yw values. Since extracts from frozen-
thawed squeezed leaves are composed of cellular, AF and xylem
contents, it would be plausible that AF and xylem fluids diluted
the cellular sap, leading to higher Ys than expected based on leaf
disk Yw values. Yet, a methodological artifact cannot be
dismissed since Yw was measured in fresh leaf disks with a
dew point psychrometer, whereas Ys was measured in frozen-
squeezed leaves using a vapor pressure micro-osmometer.

S2 and S3 AF solute potential (YSAF) was estimated
measuring AWFs with the vapor pressure microosmometer,
and correcting the obtained AWF YS values by the
corresponding dilution factor (see Materials and Methods, Leaf
AWF Extraction). Estimated apoplastic YS was significantly
higher than leaf Ys, and differs between leaf stages; YSAF
values were higher in S3 with respect to S2, thus evidencing a
more diluted AF in senescing leaves (Figure 2E, right side of
the graph).
Leaf Senescence–Related Changes in the
Apoplast Volume, Apoplastic Air-Fluid
Ratio, and Cell Wall Properties
To explore potential changes in the extracellular space volume
along leaf senescence the apoplastic air (Vair) and AF (VAF)
volumes were determined in S2 and S3 leaves (Table 1).

Volume determinations were performed with the Indigo
carmine, IC, technique (Husted and Schjoerring, 1995;
Lohaus et al., 2001) in multiple independent assays.
Determined Vair and VAF values were similar to those
reported for other species, in the range between 40 and
200 µL per gr of leaf FW (Dietz, 1997; Lohaus et al., 2001;
Nouchi et al., 2012). The Vair remained stable between S2 and
S3 stages, whereas Vair was shown to increase with age in
Brassica napus and Vicia faba (Husted and Schjoerring, 1995;
Lohaus et al., 2001). When expressed on a leaf fresh weight,
LFW, basis there was a slight decrease of 4.6% Vair in S3
compared to S2 (303.50 ± 4.17 mL g−1 LFW in S2 and
289.60 ± 2.05 mL g−1 LFW in S3) whereas when the Vair was
expressed per unit leaf area there was no significant difference
between S2 and S3. On the other hand, VAF increased
significantly as leaves aged. S3 leaves contained 157% more
AF than S2 leaves (21.40 ± 1.57 mL g−1 LFW in S2 and 55.01 ±
1.95 mL g−1 LFW in S3). When VAF was expressed per unit leaf
area S3 leaves showed a 173% increase compared to S2 (0.49 ±
0.04 mL cm−2 and 1.34 ± 0.04 mL cm−2 in S2 and S3,
respectively). The higher fresh weight per unit area in S3 with
respect to S2 leaves (Figure 2B) might explain the differences
observed when apoplast volumes (VAF or Vair) are expressed on
a leaf area or on a LFW basis. The increased VAF in S3 leaves is
FIGURE 2 | Water relations in S2 and S3 leaves. (A) Relative water content
(RWC). (B) Leaf fresh weight per unit of leaf area (LFWA). (C) Leaf water
content (LWC), expressed as percentage of water per leaf FW. (D) Starch
content expressed as mg of glucose per unit leaf area. (E) Leaf water
potential (Yw) measured on leaf disks, solute potential of freeze-thaw
squeezed leaves (Ys) and AF solute potential (YS AF). Data represents the
average of biological samples (n). (A) RWC: n = 6 (S2) and n = 6 (S3), (B)
LFWA: n = 11 (S2) and n = 13 (S3), (C) LWC: n = 6 (S2) and n = 6 (S3), (D)
starch: n = 5 (S2) and n = 6 (S3), (E) Yw: n = 13 (S2) and n = 13 (S3), Ys: n =
4 (S2) and n = 6 (S3), YS AF: n = 4 (S2) and n = 4 (S3). Values were normally
distributed and significant differences were calculated between S2 and S3 at
P ≤ 0.05 using the Student's t test: *, P < 0.05; **, P < 0.01; ***, P < 0.001.
Values in the graphs show the average ± SEM.
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consistent with their higher YSAF (Figure 2G). An age-related
increase in VAF was also observed in leaves of B. napus and V.
faba (Husted and Schjoerring, 1995; Lohaus et al., 2001),
whereas VAF was reported to decrease during rice leaf
senescence (Nouchi et al., 2012). An increase in VAF has also
been observed in plants under different types of stress (Rascio
et al., 1992; Tetlow and Farrar, 1993; Lohaus et al., 2001;
Hamouda et al., 2016).

It has been proposed that cell wall mass and structure,
particularly the type and content of pectin polymers that affect
the water retention potential of the cell walls (Levesque-Tremblay
Frontiers in Plant Science | www.frontiersin.org 7
et al., 2015) influence the VAF. (Boyer, 1967; Tyree, 1976). We
surmised that the steep increase in VAF in S3 leaves would be due
to differences in the cell wall properties between leaf stages. To test
this hypothesis, the amount of cell wall and pectins, quantified as
AIR without starch, and uronic acid concentration, respectively, as
well as cell wall thickness were compared between S2 and S3 leaves.
Cell wall and pectin content did not differ significantly between S2
and S3, even though there was a slight increase in the pectin
content in S3 leaves (Table 2). It has been demonstrated that cell-
wall components continue to be deposited into the wall even after
the cell no longer expands leading to an increase in cell wall
thickness (Wei and Lintilhac, 2007), however the cell wall content
is similar in S2 and S3. Interestingly, senescing leaves showed
slightly thicker spongy mesophyll cell walls compared to those of
non-senescing leaves (247.9 ± 3.0 and 278.8 ± 2.9 nm in S2 and S3,
respectively) (Figure 3). Water retained inside the wall might lead
to increased thickness (Forouzesh et al., 2013). Also, modifications
such as methylesterifications and ion cross-links directly affect the
water binding capacity of pectins, and these changes occur in
response to abiotic stress and along leaf development (Levesque-
Tremblay et al., 2015). Forouzesh et al. (2013) showed that cell wall
thickness increases with plant age, and the oldest leaves have
thinner walls compared to the newer ones. The results presented
here can be reconciled with those of Forouzesh et al. (2013) since
TABLE 1 | Apoplastic volumes occupied by fluid (AF) and air in S2 and S3 leaves.

Apoplastic fluid volume
(VAF)

Apoplastic air volume
(Vair)

Fdil

µL cm−2 µL g−1 LFW µL cm−2 µL g−1 LFW

S2 0.49 ± 0.04 21.40 ± 1.57 7.03 ± 0.15 303.50 ± 4.17 18.25 ± 1.38
S3 1.34 ± 0.04 **** 55.01 ± 1.95 **** 7.13 ± 0.11 289.60 ± 2.05 *** 6.54 ± 0.22 ****
January 2020 | Volume 10
Apoplastic volumes were expressed in mL per gram of leaf fresh weight (LFW) and in mL per unit leaf area. Obtained Vair and VAF values were used to estimate AWF dilution factor
(Fdil, see equation in Materials and Methods). Data were normally distributed and significant differences were calculated at P ≤ 0.05 between leaf stages using the Student's t test.
Each value represents the mean of 35 to 55 biological samples, n, where each sample was made up of at least four leaves. Asterisks indicate significant differences: ***, P < 0.001;
****, P < 0.0001.
TABLE 2 | Cell wall and pectin content in S2 and S3 leaves.

Leaf Cell wall Pectin

mg cm−2 mg g−1 LFW mg cm−2 mg g−1 LFW

S2 1.09 ± 0.02 48.16 ± 1.00 0.06 ± 0.00 5.06 ± 0.24
S3 1.20 ± 0.09 48.86 ± 2.88 0.08 ± 0.01 6.65 ± 0.54
Values were expressed in mg per gram of leaf fresh weight (LFW) and in mg per unit leaf
area. The amount of pectin was expressed as mg of uronic acids. Mean values ± SEM are
given. Data were normally distributed and significant differences were calculated at P ≤

0.05 between the stages using the Student's t-test. Each value represents the mean of
biological samples, n. S2: n = 3, S3: n = 4, where each sample was made up of a group of
S2 or S3 leaves.
FIGURE 3 | Cell wall thickness of spongy mesophyll cells. (A) Transverse section of the middle part of the leaf, showing the areas examined for cell wall thickness.
(B) Electron microscopy of the selected areas in panel A. Upper panel: S2 leaves, lower panel: S3 leaves. Scale bar 500 nm. Cell wall thickness was examined in
different cells of at least three different leaves of each Stage. Measurements were taken at different points on the images, the number of total measurements for S2
and S3 were: n = 639 and n = 739, respectively. Obtained values were analyzed by one-way ANOVA, and Univariate Tests of Significance: n (S2 = 639, S3 = 739),
mean ± SEM (S2 = 247.9 ± 3.0 nm, S3 = 278.8 ± 2.9), F = 63.02, P ≤ 0.0001.
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these authors examined cell wall thickness in young and older
leaves in the plant, whereas the present study compares non-
senescing and senescing leaves that represent the same cohort at
two different times of plant development.
Apoplastic Alkalinization Accompanies
Developmental Leaf Senescence
Transient oscillations and long term changes in apoplastic pH
(pHApo) trigger and/or modulate a myriad of signaling and
metabolic pathways (Felle, 2001). Possible fluctuations in the
pHApo between S2 and S3 leaves were evaluated by in vivo
imaging using the genetically encoded pH sensor Apo-pHusion.
Apo-pHusion plants stably express the mRFP1-EGFP tandem
targeted to the apoplast (Gjetting et al., 2012). Confocal images
Frontiers in Plant Science | www.frontiersin.org 8
were acquired at the center of the leaf blade, from epidermal cells,
where the fluorescence signal is strong enough to be quantified
(Figure 4). The pH for each region of interest (ROI) was
estimated based on the ratio between EGFP and mRFP1
fluorescence intensities, according to a calibration curve
(Figures 4C, D). Estimated pHApo shifted around 0.8 units
between S2 and S3, from pH 5.43 ± 0.03 in S2 leaves to 6.26 ±
0.05 in S3 leaves (Figures 4A, B). These pHApo values are in the
range of pH 5 to 6 expected for leaf pHApo (Felle, 2001), although
absolute pH values may be difficult to estimate as they might be
influenced by different factors, i.e. calibration. A pHApo shift of
around 1 unit has been reported associated to electrical waves
related to long distance signaling triggered by stress (Felle and
Zimmermann, 2007). Different types of stress lead to a rise in
pHApo and in extracellular ABA level, a promoter of leaf
FIGURE 4 | Apoplastic pH of S2 and S3 leaves. In vivo analysis of apoplastic pH using the Arabidopsis transgenic line apo-mRFP1-EGFP (Gjetting et al., 2012). The
pH was estimated according to the fluorescence intensity ratio EGFP/mRFP for each region of interest (ROI). (A) Left panels show representative ratio images of the
leaf epidermis in S2 and S3 leaves, right panels show the merge of ratio images with their corresponding light field. (B) EGFP/mRFP ratio of leaf S2 and S3
epidermal cells. The values shown correspond to the mean ± SEM of 39 and 119 ROIs from S2 and S3 leaves, respectively, taken from at least three different leaves
for each stage. A Student t test (P ≤ 0.05) was performed, asterisks indicate significant differences: ****, P < 0.0001. (C, D). Ex vivo calibration of the apo-pHusion
sensor. (C) Ratio images of AWF incubated at different pH units, used to construct the calibration curve. For visual image presentation of ratio images, a pseudocolor
look-up table was designed. (D) Calibration curve. PH was estimated according to the intensities of GFP and RFP fluorescence. Confocal data acquisition was
performed on a Leica TCS SP5 II confocal laser scanning microscope. Image data were analyzed using the ImageJ software. Scale bar = 20 mm.
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senescence (Zhao et al., 2016; Geilfus, 2017). It is controversial
whether apoplast alkalinization acts as an upstream signal
triggering stress responses, or it is a consequence or secondary
effect of the stress response (Geilfus, 2017), this controversy could
be extended to the senescence-related scenario. Changes in ApopH
affect the activity of extracellular enzymes and transporters,
modulating different metabolic pathways (Hothorn et al., 2010).

The NH3 released to the extracellular space during
developmental and dark-induced senescence converts into
NH4

+, that alkalinizes the apoplast (Mattsson and Schjoerring,
2003). NH4

+ accumulation and pHApo alkalinization rates
correlate with the progress of senescence in tobacco (Wu et al.,
2016). A rise in pHApo leads to the ionization of wall molecules,
i.e. pectin carboxyl groups, therefore more molecules of water are
able to interact with these moieties, which could lead to an
increase of cell wall thickness and VAF.
Frontiers in Plant Science | www.frontiersin.org 9
Protein Profile of Apoplastic Fluids.
Pathogenesis Related Proteins, PR,
Accumulate in the Apoplast of
Senescing Leaves
AWFs along with the corresponding whole leaf extracts from S2
and S3 leaves were examined in SDS-PAGE gels. In the range of
14 to 100 kDa, the AF protein patterns from S2 and S3 leaves
(AFS2 and AFS3) displayed clear quantitative and qualitative
differences (Figure 5). The AFS2 profile shows less protein per
unit leaf area than the AFS3, and it is composed of several
uniformly distributed protein bands. Few bands from 45 to 97
kDa are distinguished in AFS2 but not in AFS3 (Figure 5A,
small arrowheads). The AFS3 protein profile is characterized by
two conspicuous bands, one of apparent molecular mass of 25
kDa and another of 37 kDa, that are not clearly recognizable in
AFS2 or in total leaf protein profiles (Figures 5A, B, big
FIGURE 5 | Protein profile of AF S2 and AF S3. (A, B) Representative SDS-PAGE of total soluble leaf proteins (Ext) and apoplastic fluid (AF). (A) Lanes 1 and 3,
proteins from 8.64 cm2 of leaf; lanes 2 and 4, proteins from 0.196 cm2 of leaf. Arrowheads mark bands in AF that differ between S2 and S3. (B) Each lane
contains ~20 mg of protein. MW: molecular weight markers (masses in kDa). Red rectangles show the bands excised and analyzed by mass spectrometry.
(C) Densitometric quantification of lanes 1 and 3 from gel A. (D, E) Total protein and peptide content in AF S2 and AF S3, expressed as µg of proteins and peptides
per unit of leaf area (D) and as µg of proteins and peptides per gram of leaf fresh weight (LFW), respectively. Mean values ± SEM of biological samples, n. S2 n = 28,
S3 n = 30. For each biological sample two technical replicates were taken. Significant differences were calculated at P ≤ 0.05 between leaf stages using the
Student's t-test: *, P < 0.05; **, P < 0.01.
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arrowheads). The densitometric analysis of SDS-PAGE gels
measured a higher protein content per unit leaf area in AFS3
than in AFS2 (Figure 5C) whereas, on the other hand, a
colorimetric absorbance assay (Pierce™ BCA Protein Assay
Kit), that detects all molecular weight proteins and peptides,
reveals a higher protein and peptide content in AFS2 than
inAFS3 either on a leaf area or LFW basis (Figures 5D, E). The
discrepancy between methods might indicate a decline in the
relative abundance of low molecular weight proteins (<14 kDa)
and peptides in AFS3.

To identify the proteins corresponding to the two main bands
detected in AFS3 protein profiles (Figure 5A) equal amounts of
AFS2 and AFS3 proteins were loaded on an SDS-PAGE gel
(Figure 5B), and the 25 and 37 kDa bands from S2 and S3 were
cut off the gel and eluted for mass spectrometry analysis.

Peptide sequences identified different proteins in each band.
According to the total number of peptide sequences for each
identified protein (#PSM), the most abundant proteins were
Pathogenesis-related protein 5 (PR5, At1g75040) in the 25 kDa
band and endo-1,3 Glucan-beta-glucosidase, acidic isoform
(PR2, At3g57260) in the 37 kDa band. Other less represented
proteins co-migrating with PR2 and PR5 in the SDS-PAGE were
also identified (Supplemental Tables S1 and S2). Both PR2 and
PR5 contain an N-terminal signal peptide (SP) for secretion, and
PR5 was previously detected in the N-glycosylated sub-proteome
Frontiers in Plant Science | www.frontiersin.org 10
of Arabidopsis mature stems (Wei et al., 2015). According to
sequence homology, PR5 is a thaumatin-like protein (TLP)
(Uknes et al., 1992). TLP have antifungal and antifreeze
properties and accumulate in response to stress (Velazhahan
et al., 1999). PR2 is a cell wall b-1,3-glucanase that hydrolyses the
b-1,3 glucosidic bonds of b-1,3-glucans (callose) (Uknes et al.,
1992). Besides being found in plant cells, b-1,3-glucans
constitute the main structural components of fungal cell walls,
hence the antifungal properties of PR2 (Doxey et al., 2007). PR5
and PR2 expression is associated with the hypersensitive
response (HR), and systemic acquired resistance (SAR)
(Geraats et al., 2007; Mishina and Zeier, 2007), and are widely
considered hallmark genes for Salicylic acid (SA)–mediated
defense and PCD (Uknes et al., 1992; Van Loon and Van
Strien, 1999; Sävenstrand et al., 2004; Seo et al., 2008).
However, PR2 and PR5, along with other PR genes are also
induced in a SA partially independent manner, for instance, as
part of signaling pathways mediated by the protein Di19 in
Arabidopsis under drought-stress (Liu et al., 2013) and by the
plasma membrane-localized, dark induced senescence associated
Receptor-Like Kinase, OsSIK2, in rice (Chen et al., 2013).

PR2 and PR5 genes are up regulated during leaf senescence
(Winter et al., 2007). PR5 expression is induced by the
senescence-age related transcription factor WRKY75 in a SA
mediated pathway (Guo et al., 2017). WRKY75 also represses
FIGURE 6 | Dark induced senescence of S2 leaves. (A) Attached S2 leaves (AS2) were wrapped in aluminum foil, and detached S2 leaves (DS2) were placed on
moist filter paper in dark boxes, until their chlorophyll content reached S3 values (Figure 1). (B) Leaf chlorophyll content was measured non-destructively with the
SPAD meter in different leaves, each of them represents a biological sample (n). S2: n = 29, AS2: n = 22, DS2: n = 5, S3: n = 18. For each biological sample, two
SPAD readings were taken. Asterisks represent statistical differences between S2 vs. AS2, DS2 and S3 SPAD values (Dunnett's multiple comparisons test). (C)
SDS-PAGE of AF from S2, dark induced attached and detached S2 (AS2 and DS2, respectively) and S3 leaves, compared per leaf area. Arrowheads show AF S3-
associated bands.
January 2020 | Volume 10 | Article 1635

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Borniego et al. Apoplast Changes During Leaf Senescence
catalase activity, a down regulator of PR2 expression (Jing
et al., 2009).

To dissect whether the accumulation pattern of PR2 and PR5
in the apoplast, is associated to the senescence syndrome or age-
related, S2 leaves were induced to senesce in the dark for further
AF evaluation. To this end, attached and detached S2 leaves
where exposed to dark until their Chl content dropped down to
S3 leaf values (Figures 6A, B). Dark-induced senescent S2 leaves
attached and detached from the plant show lower AF protein
content than that of control S2 leaves, and no accumulation of
PR2 and PR5 (Figure 6C), suggesting that PR2 and PR5 proteins
accumulate in the apoplast as part of developmental senescence,
but not when senescence is imposed by dark incubation.

Apoplastic Fluid Proteome Dynamics
During Developmental Leaf Senescence
For a more comprehensive repertoire of senescence related AF
proteins, AWFs of S2 and S3 leaves were compared by shotgun
proteomics. As a result, 212 proteins were identified, 183 of them
showed a significant change (at least twofold difference between
AFS2 and AFS3), and were considered AF senescence-related
proteins, AFSP. Around 13% (24 proteins) of AFSP increased in
the apoplast fluid of senescent leaves, S3 (Table 3), whereas 87%
(159 proteins) of AFSP decreased during senescence
(Supplemental Table S3).

Approximately half of the identified AFSP proteins lack of
N-terminal signal peptide (SP), as described in extracellular
proteomes before (Agrawal et al., 2010). All the 24 proteins
that increased in AFS3 contain SP, whereas only 41.5% of the
proteins that decreased in AFS3 contain SP (Figure 7A),
sugges t ing tha t unconvent iona l pro te in secre t ion
mechanisms that locate leaderless secreted proteins to the
apoplast might be less active during leaf senescence. N-
glycosylations are posttranslational modifications required
for proper folding, transport and/or function of secreted
proteins (Song et al., 2013), and the extent and type of N-
glycan structure varies as leaf ages (Elbers et al., 2001).
Potential glycosylation sites are slightly more represented in
proteins that increased in AFS3 compared to those that decline
during senescence (Figure 7B).

AFSPs were classified into thirteen functional classes (Figure
7C), those proteins with several known functions were assigned
to more than one functional group. AFS3 proteins relate to the
main stress-response group, whereas AFS2 proteins relate mainly
to two groups: stress-response and photosynthesis/
carbohydrate metabolism.

Proteins That Accumulate in the Apoplast
of Senescent Leaves
PR2 and PR5 were identified among the proteins that
accumulate in AFS3. Other 14 proteins significantly
accumulate in AFS3 with respect to AFS2: peroxidases:
PRX34 (At3g49120), PRX53 (At5g06720), and PRX54
(At5g06730), lectin-like proteins, LLP, (At3g16530 and
At3g15356), a cysteine protease (CP1A-5, At3g49340), a
serine protease inhibitor (At2g43510), a phosphodiesterase
Frontiers in Plant Science | www.frontiersin.org 11
At4g36945, one amylase (AMY1, At4g25000), chitinases
(At2g43580, At2g43570, and At3g54420), and ribonucleases
(PR4, At3g04720, and RNS1, At2g02990). Eight proteins were
specifically detected in AFS3 (not in AFS2): the peroxidases
PRX52 (At5g05340) and PRX58 (At5g19880), one lipid transfer
protein LTP4 (At5g59310), a serine/threonine kinase
(At1g51890), a nodulin-like protein (At5g53870), one
glucanase (At4g16260), a germin-like protein (GLP6,
At5g39100), and the metallo-protease (3-MMP, At1g24140).
According to the information retrieved from the gene
expression analysis platform EFP-Browser (Winter et al.,
2007), all the identified AFS3 corresponding genes are up-
regulated in senescing leaves, with the exception of chitinase
At2g43580, whose expression remains unchanged.

Interestingly, all the AFS3 identified proteins have been
related to stress responses, in particular to biotic stress, with
the exception of ENODL1 like protein At5g53870, that was
shown to be promoted by drought and heat (Rizhsky et al.,
2004); and only few AFS3 proteins have been previously related
to leaf senescence. One of them is the amylase AMY1, that
locates to the apoplast where it might degrade cell wall associated
carbohydrates during Arabidopsis senescence (Doyle et al., 2007;
Kamranfar et al., 2018), AMY1 expression is also induced by
ABA, heat, and pathogen-related stresses (Doyle et al., 2007).
Arabidopsis amy1 plants show early flowering (Jie et al., 2009).
The ribunoclease RNS1 has also been associated to senescence,
with a potential role in Pi recycling (Bariola et al., 1994; Bariola
et al., 1999). RNS1 is markedly promoted by Pi deficit and RNS1
protein accumulates in the secretome of Pi starved cells (Tran
and Plaxton, 2008). RNS1 expression is also associated to
wounding induced local and systemic signaling (Lebrasseur
et al., 2002), and correlates with the accumulation of specific
tRNA fragments (Megel et al., 2019). The role of the other
identified ribonuclease, PR4, is less known, its expression is
associated with SAR (Mishina and Zeier, 2007), and its
induced by ethylene and SA (Potter et al., 1993; Camargo-
Ramírez et al., 2018).

The five AFS3 peroxidases have been related to pathogen
responses. PRX34 is sharply up regulated during senescence
(Winter et al., 2007). PRX34 was identified in the N-glycan
secretome of Arabidopsis mature stems (Wei et al., 2015) and is
also over accumulated under abiotic stress (Mano et al., 2014).
Arabidopsis knock down plants for PRX34 and its homolog
PRX33 (prx34/prx33) produce less apoplastic H2O2 as MAMPs
(Microbe-associated molecular patterns) compared to wild type
plants (Daudi et al., 2012) and are more sensitive to pathogen
attack (O'Brien et al., 2012; Mammarella et al., 2015). PRX34
along with PRX52 accumulate in the leaf apoplast upon
Verticillium longisporum infection (Floerl et al., 2012). The
expression of PRX54, is also upregulated in response to fungal
infection (Zhao et al., 2007), whereas AtPRX53 is up regulated in
response to nematodes, at their penetration sites, and also in
response to wounding and jasmonic acid treatments (Jin et al.,
2011). The lipid transfer protein LTP4 accumulates in the AF,
along with PR5 and other PR genes, as part of the systemic
resistance response induced by Trichoderma sp. and P. syringae
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TABLE 3 | AF proteins with two fold increased levels during leaf senescence.

Protein Protein
ID

Gen ID MW
(kDa)

SL
SUBA4

Biological process
Gene Ontology

Biotic (B)/
(A) abiotic
associated

gene
expression

during
senescence

SP N-g.s. CL Fold
change

Probable LRR
receptor-like protein
kinase

C0LGG6 At1g51890 98.5 Ap, M, PM,
N, ER, G

Protein phosphorylation, defense
response to bacterium

B ↑ Yes Yes **

PLC-like
phosphodiesterases
superfamily protein.

F4JQJ7 At4g36945 44.3 Ap, PM, ER,
N, G, V

Lipid metabolism B
Chakraborty
et al. (2016)

No inf. Yes Yes *** 2.26

Endochitinase
At2g43580

O24598 At2g43580 28.8 Ap, ER, G, V Cell wall macromolecule catabolic
process, response to fungus

B ─ Yes Yes *** 4.75

Endochitinase (CHI,
LSC222)

O24603 At2g43570 29.8 Ap, Mit,
PM, ER, G,
V

Cell wall macromolecule catabolic
process, leaf senescence,
response to virus, systemic
acquired resistance

B ↑ Yes Yes **** 4.12

Pathogenesis-related
protein 5 (PR5)

P28493 At1g75040 25.2 Ap, V, Mit,
ER, G, Cyt

Regulation of anthocyanin
biosynthetic process, response to
cadmium ion, response to UV-B,
response to biotic stimuli, response
to virus, systemic acquired
resistance

B ↑ Yes Yes **** 2.42

Glucan endo-1,3-beta-
glucosidase, acidic
isoform (PR2, BGL2)

P33157 At3g57260 37.3 Ap, PM, ER,
V, G, Cyt,
Chl

Carbohydrate metabolic process,
response to cold, systemic
acquired resistance, response to
biotic stimuli

B-A ↑ Yes Yes **** 4.06

Ribonuclease 1 (RNS1) P42813 At2g02990 25.4 Ap, PM, ER,
V, G

Aging, anthocyanin-containing
compound biosynthetic process,
cellular response to phosphate
starvation, response to wounding

B-A
Lebrasseur
et al. (2002)

↑ Yes Yes **** 6.44

Hevein-like
preproprotein (HEL,
PR4)

P43082 At3g04720 22.9 Ap, ER, G,
V, Chl

Defense response to bacteria and
fungi, killing of cells of other
organism, response to ethylene,
response to salicylic acid, response
to herbivore, response to salt
stress, response to virus, systemic
acquired resistance

B ↑ Yes No *** 2.83

Peroxidase 58 (PRX58) P59120 At5g19880 35.4 Ap, Cyt, ER,
G, PM, Chl

H2O2 catabolic process, oxidation-
reduction, response to ethylene,
response to oxidative stress,
response to pathogens

B ↑ Yes Yes **

Germin-like protein
subfamily 1 member
13 (GLP6)

P92997 At5g39100 24.1 Ap, Cyt, ER,
G, Mit, N,
Chl

Unknown B
Fuller et al.
(2007)

↑ Yes Yes **

Peroxidase 53 (PRX53) Q42578 At5g06720 35.0 Ap, G, Cyt,
ER, N, Chl, V

H2O2 catabolic process, oxidation-
reduction, defense response to
nematodes, response to oxidative
stress, flower development

B ─ Yes Yes **** 4.81

Metalloendoproteinase
3-MMP (At3-MMP)

Q5XF51 At1g24140 43.0 Ap, PM, M,
G, ER, Mit,
PX, Chl

Proteolysis, stress response B-A ↑ Yes Yes **

Alpha-amylase 1
(AMY1)

Q8VZ56 At4g25000 47.3 Ap, Cyt, ER,
G, Chl

Carbohydrate metabolic process,
response to ABA, response to
gibberellins, stress response

B-A ↑ Yes Yes *** 2.78

Probable glucan endo-
1,3-beta-glucosidase

Q8VZJ2 At4g16260 37.7 Ap, T, PM,
ER, G, Chl

Carbohydrate metabolic process,
defense response to fungus,
defense response to nematodes,
response to salt stress

B-A ↑ Yes No ***

Peroxidase 54 (PRX54) Q9FG34 At5g06730 37.3 Ap, T, V,
ER, Cyt, G,
N, PM, Chl

H2O2 catabolic process, oxidation-
reduction, response to oxidative
stress

B-A
Zhao et al.
(2007)

↑ Yes Yes *** 5.06

Peroxidase 52 (PRX52) Q9FLC0 At5g05340 34.2 Ap,Cyt, G,
ER, N,

H2O2 catabolic process, lignin
biosynthetic process, oxidation-

B
Chakraborty
et al. (2016)

↑ Yes Yes **

(Continued)
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in Arabidopsis (Brotman et al., 2012).Two proteases with
unknown function accumulate in the AF of S3 leaves. The
metallo-protease 3-MMP belongs to the At-MMP family,
predicted to be extracellular and related to pathogen responses
(Zhao et al., 2017), though at2-mmp plants exhibited early
senescence and late flowering (Golldack et al., 2002). The
cysteine protease At3g49340 is up regulated in response to
butterfly egg deposition, causing localized cell death at the site
of oviposition (Little et al., 2007). Extracellular cysteine proteases
have been shown to mediate defense responses by processing an
apoplast immune signaling peptide (Ziemann et al., 2018).
At3g49340 might play a similar role in senescence related
signaling pathways.
Frontiers in Plant Science | www.frontiersin.org 13
The Germin like protein GLP6, is the only of the identified
AFS3 proteins whose expression is down regulated under stress,
either abiotic stress, like salt treatment (He et al., 2005), and
biotic stress, for example at the galls formed in Arabidopsis roots
upon infection with parasitic nematodes (Fuller et al., 2007).

Proteins That Decrease in the Apoplast of
Senescent Leaves
The transcript levels of most of the identified proteins that
decrease in AFS3 leaves remains unchanged or is down
regulated during senescence, except for the aldolase FBA6
(At2g36460), the acid phosphatase AtPAP26 (At5g34850), and
the peroxidase PRX51 (At4g37530), that remain constant or are
TABLE 3 | Continued

Protein Protein
ID

Gen ID MW
(kDa)

SL
SUBA4

Biological process
Gene Ontology

Biotic (B)/
(A) abiotic
associated

gene
expression

during
senescence

SP N-g.s. CL Fold
change

reduction, response to oxidative
stress, xylem development

Early nodulin-like
protein 1 (ENoDL1)

Q9FN39 At5g53870 38.4 Ap, PM, M,
ER, G, N, V

Electron transport chain, stress
response

A
Rizhsky
et al. (2004)

↑ Yes Yes **

Lectin-like protein LEC
(LEC)

Q9LJR2 At3g15356 29.7 Ap, Mit,
PM, Chl, G,
ER, Cyt, N

Response to chitin, response to
ethylene, response to jasmonic
acid, defense response to fungus,
ethylene-activated signaling
pathway, response to wounding

B No inf. Yes Yes ** 2.93

Lectin-like protein Q9LK72 At3g16530 30.5 Ap, N, PM,
ER, Cyt, G

Response to oomycetes, response
to chitin

B ─ Yes Yes *** 5.20

Non-specific lipid-
transfer protein 4
(LTP4)

Q9LLR6 At5g59310 11.4 Ap, M, ER,
G, Mit, Chl

Lipid transport, response to ABA,
response to salt stress, water
deprivation, pathogen

B-A ↑ Yes No **

Cysteine protease-like
protein

Q9SG15 At3g49340 37.7 Ap, ER, Cyt,
G, Chl, V

Proteolysis B
Little et al.
(2007)

↑ Yes Yes ** 4.66

Peroxidase 34 (PRX34) Q9SMU8 At3g49120 38.8 Ap, G, T, V,
ER, Mit, N,
PM, Chl

Defense response to bacterium,
defense response to fungus, H2O2
catabolic process, oxidation-
reduction, response to cytokinin,
response to light stimuli, response
to oxidative stress, unidimensional
cell growth

B –A ↑ Yes Yes *** 4.03

Defensin-like protein
195 (ATTI-1)

Q42328 At2g43510 9.9 Ap, G, Cyt,
V, ER

Defense response, defense
response to fungus, killing of cells
of other organism

B ↑ Yes No *** 2.36

Endochitinase EP3
(EP3)

Q9M2U5 At3g54420 29.4 Ap, G, Chl,
V, ER

Cell wall macromolecule catabolic
process, chitin catabolic process,
defense response, hypersensitive
response, polysaccharide catabolic
process, response to bacterium,
response to wounding, somatic
embryogenesis

B-A ↑ Yes Yes ** 2.00
January 2020
 | Vo
lume 10
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Four samples (biological replicates) for each leaf stage were analyzed. A confidence level (CL) was assigned to each protein based on the number of biological replicates in which it appears:
**, present in two biological replicas; ***, present in three biological replicas and ****, present in the four biological replicas. Rows highlighted in gray: proteins detected only in AF S3.
Gene expression patterns associated with senescence (column “gene expression during senescence”) were examined using the eFP Browser software (Winter et al., 2007).
Subcellular locations and protein functions were determined using the SUBA4 (Hooper et al., 2016) and Gene Ontology (Ashburner et al., 2000; Consortium, 2016) databases. In bold,
manually-assigned locations and in normal font, locations that were inferred from electronic annotation (IEA) or predicted. Biotic (B) or abiotic (A) stress related function were assigned
according to Gene Ontology, or otherwise experimental data from literature. Presence of SP was determined by the SignalP 4.1 software (Petersen et al., 2011), and presence of potential
N-glycosylation sites was determined with the ScanProsite tool (De Castro et al., 2006).
ID, identification; SL, subcellular localization; SP, signal peptide; N-g.s, potential N-glycosylation sites; CL, confidence level; M, membrane; PM, plasma membrane; G, Golgi; N, Nucleo;
Cyt, cytoplasm; Chl, chloroplast; Mit, mitochondrion; Ap, apoplast; ER, endoplasmic reticulum; PX, peroxisome; V, vacuole; T, tonoplast; EV, extracellular vesicles (Rutter and Innes, 2017)
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slightly up regulated during leaf senescence (Winter et al., 2007).
Based on Gene Ontology (Ashburner et al., 2000) some of the
AFSP that decrease in senescing leaves are also stress related,
even though no prevalence of biotic stress over abiotic was
observed as in ASF3 (Supplemental Table S3).

Among ASF2 proteins, the lipid transfer protein LTP6
(At1g55260) was shown to be involved in pathogen elicited
responses, and its loss of function increases the susceptibility to
penetration of the epidermal cell wall by powdery mildew
(Fahlberg et al., 2019). Another LTP (At5g48490), identified
only in AFS2, has also been related to SAR responses
(Champigny et al., 2013).
Frontiers in Plant Science | www.frontiersin.org 14
The b-glucanase BG3 (At3g57240), the aspartic protease AED
(At1g09750, Apoplastic, EDS1-Dependent), and the subtilase
SBT 1.7 At5g67360 have also been described as part of
pathogen responses, particularly associated to virus infection
and to wounding (Golldack et al., 2003; Zavaliev et al., 2013;
Breitenbach et al., 2014). The b galactosidase bG60 (At3g13750)
was only detected in the AF of S2 leaves; its expression is up
regulated by MBF1c (stress-response transcriptional coactivator
multiprotein bridging factor) that enhances the tolerance to
bacterial infection, heat, and osmotic stress (Suzuki et al., 2005).

Other abiotic stress inducible proteins specifically identified
in AFS2 (absent in AFS3), are KIN2 (At5g15970), that responds
FIGURE 7 | Classification of AF proteins. Presence of signal peptide, SP, (A) and potential glycosylation sites (B). Numbers inside and outside the bars indicate the
number of proteins. (C) Functional classification of AF proteins. Proteins with several known functions were assigned to more than one functional group. Values refer
to the percentage of each functional group within the group of proteins that decrease in S3 and within the group of proteins that increase in S3. SP, signal peptide;
N-g.s, potential N-glycosylation sites; CW, cell wall; ROS, reactive oxygen species; modif., modification; metab, metabolism; CHO, carbohydrate.
January 2020 | Volume 10 | Article 1635
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strongly to ABA, drought and salinity stresses (Kurkela and
Borg-Franck, 1992; Zhang et al., 2018), and the pectin methyl
esterase At2g46930, that is up regulated under cold stress
(Provart et al., 2003).

Few of the identified AFS3 down regulated proteins have been
linked to senescence, however, some of them might play specific
roles related to senescence. For instance, the chaperone CPN-60 b1
(At1g55490) was previously detected in the apoplast (Bindschedler
et al., 2008), and the lack of its activity leads to growth rate
reduction and cell death in Arabidopsis (Ishikawa et al., 2003) and
tobacco (Zabaleta et al., 1994). Anexin AnnAt1 (At1g35720) was
detected before in the apoplast (Clark et al., 2005; Bindschedler
et al., 2008; Ge et al., 2011), and at1g35720 plants show early
senescence and hypersensitivity to osmotic stress (Lee et al., 2004).
Ectopic expression of AnnBj1, the homolog of AnnAt1 in Brassica
juncea, in tobacco and cotton leads to delayed senescence and
increased H2O2 levels (Jami et al., 2008; Divya et al., 2010).

Some identified enzymes related to ROS (Reactive oxygen
species) synthesis and catabolism decrease in AFS3. The
superoxide dismutases CSD1 (At1g08830) and CSD2
(At2g28190) are plastidic, but have also been detected in the
apoplast (Cheng et al., 2009; Nguyen-Kim et al., 2016). The
glyoxylate oxidases GOX1 (At3g14420) and GOX2 (At3g14415)
are involved in ROS production. These enzymes lack a SP, but
were detected in the apoplast of Arabidopsis exposed to oxidative
stress (Bindschedler et al., 2008). Double mutant plants amiRgox1/
2 display accelerated leaf senescence (Dellero et al., 2016).
AtPAP26 expression is mildly up regulated during senescence
(Winter et al., 2007), however its protein level decreases in AFS3.
AtPAP26 localized to the apoplast and to the central vacuole is
involved in vacuolar Pi recycling and extracellular Pi recruitment
(Hurley et al., 2010; Tran et al., 2010). Mutant atpap26 plants show
severe reduction in P recycling, seeds with low P content, and
delayed senescence (Robinson et al., 2012).

Interestingly, all of the enzymes related to amino acid
metabolism identified in this study decrease in AFS3
(Supplemental Table S3). Among them glutamate synthase Fd-
GOGAT1 (GLU1, At5g04140) and glutamine synthetase 2
(At5g35630) localize to chloroplast and mitochondria but also to
the apoplast (Taira et al., 2004; Bindschedler et al., 2008). Glycine
decarboxylase GDCH (At2g35370) also localizes to chloroplast and
mitochondria (Kleffmann et al., 2004; Huang et al., 2015), but has
not been reported in the apoplast before. GDCH deficiency causes
premature senescence in rice (Zhou et al., 2013). The cysteine
synthase OASA1 (At4g14880) was previously detected in
extracellular vesicles in Arabidopsis exposed to oxidative stress
(Bindschedler et al., 2008; Rutter and Innes, 2017), and at4g14880
plants show accelerated leaf senescence (Jing et al., 2002).

The Cyclofilin CYP20-3 (At3g62030) participates in protein
folding and cysteine synthesis during stress (Lippuner et al., 1994;
Dominguez-Solis et al., 2008; Park et al., 2013), and cyp20-3 plants
senesce faster under oxidative stress (Dominguez-Solis et al., 2008).
CYP20-3 is chloroplast located (Lippuner et al., 1994; Hooper et al.,
2016), though it was found in the apoplast (Bindschedler et al.,
2008), and it would be secreted according to Plant-mPLoc software
in silico simulations (Chou and Shen, 2010).
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CONCLUSIONS

The two most abundant proteins in the apoplast of senescing
leaves, PR2 and PR5, along with all the identified apoplastic
proteins that increase during senescence, have been previously
linked to stress responses.

Leaf senescence-related changes in the secretome, along with
variations in the AF volume and pH resemble pathogen attack
responses, that in turn involve the induction of many Senescence
Associated Genes, SAGs genes (Little et al., 2007; Schippers et al.,
2015). PR5 markedly accumulates in the apoplast in response to
a variety of biotic and abiotic stresses (Piofczyk et al., 2015;
Lambertucci et al., 2019), suggesting a role in a possible universal
stress response, or in a crosstalk point where different stress
responses converge. It would be plausible that stress-related and
senescence programs trigger common mechanisms under
conditions requiring recycling. Biotic and abiotic responses are
differentially prioritized in a leaf dependent manner in
Arabidopsis (Berens et al., 2019). Leaves of different ages
differentially control responses to stress, allowing for a balance
to maintain growth or survival at the organism level (Farber and
Mundt, 2017; Berens et al., 2019).

Dark induced-senescence genes are up regulated in
Arabidopsis infected with tobacco rattle virus, TRV
(Fernandez-Calvino et al., 2016), however PR2 and PR5
showed no accumulation in the apoplast of mature healthy
leaves (S2) induced to senesce in darkness (Figure 6). The
specific accumulation of PR2 and PR5 in the apoplast during
natural senescence, but not during dark induced senescence
suggests that age-related signals, independently of the sink-
source status of the leaf, might be priming the apoplast for
stress responses in an as yet undamaged leaf. Salicylic Acid, SA,
accumulates in an age- related way, and under SA basal levels
defense responses are promoted and PR proteins accumulate.

Comparative proteomics of vascular sap reveals a common
theme among apoplast fluid, xylem, and phloem sap proteomes
collected from stressed plants, that is the accumulation of PR
proteins including thaumatin-like proteins, chitinases, and
glucanases (Rodríguez-Celma et al., 2016).

The extracellular space might thus represent an up-to-date
dismissed scenario where developmental senescence and stress
related pathways overlap and integrate.
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