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The ability to sense environmental temperature and to coordinate growth and
development accordingly, is critical to the reproductive success of plants. Flowering
time is regulated at the level of gene expression by a complex network of factors that
integrate environmental and developmental cues. One of the main players, involved in
modulating flowering time in response to changes in ambient temperature is FLOWERING
LOCUS M (FLM). FLM transcripts can undergo extensive alternative splicing producing
multiple variants, of which FLM-b and FLM-d are the most representative. While FLM-b
codes for the flowering repressor FLM protein, translation of FLM-d has the opposite effect
on flowering. Here we show that the cyclin-dependent kinase G2 (CDKG2), together with
its cognate cyclin, CYCLYN L1 (CYCL1) affects the alternative splicing of FLM, balancing
the levels of FLM-b and FLM-d across the ambient temperature range. In the absence of
the CDKG2/CYCL1 complex, FLM-b expression is reduced while FLM-d is increased in a
temperature dependent manner and these changes are associated with an early flowering
phenotype in the cdkg2 mutant lines. In addition, we found that transcript variants
retaining the full FLM intron 1 are sequestered in the cell nucleus. Strikingly, FLM intron
1 splicing is also regulated by CDKG2/CYCL1. Our results provide evidence that
temperature and CDKs regulate the alternative splicing of FLM, contributing to
flowering time definition.

Keywords: alternative splicing, cyclin-dependent kinase, temperature, FLOWERING LOCUS M, flowering time,
Arabidopsis thaliana
INTRODUCTION

Reproductive success in a constantly changing environment is a major challenge for all kingdoms of
life and often involves adjusting behavior or development according to prevailing conditions.
Higher plants, for example, can maximize their reproductive chances by timing their flowering to
suit geographic location and seasonal weather patterns (Amasino, 2010).
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While light is considered a master input in the transition to
flowering (Liu, 2001; Weller et al., 2001; Searle and Coupland,
2004; Mattson and Erwin, 2005), temperature is also critical and
can promote or delay flowering according to the species
(Balasubramanian et al., 2006; Nakano et al., 2013; Romera-
Branchat et al., 2014). Moreover, heat pulses can have mixed
effects (Bouché et al., 2015) while prolonged cold exposure (a
process called vernalization) has been long known to accelerate
flowering in many species adapted to post-winter flowering
(Chouard, 1960).

The switch from the vegetative to reproductive phase is
coordinated by a large number of genes scattered across several
pathways but a few loci can have a wide effect (Srikanth and
Schmid, 2011; Strange et al., 2011; Song et al., 2013; Susila et al.,
2018). FLOWERING LOCUS C (FLC), for example, has a major
role in vernalization, ensuring that flowering does not occur until
after winter, and variation at this locus has been implicated in
determining fitness across geographic locations and plant
lineages (Nordborg and Bergelson, 1999; Caicedo et al., 2004;
Reeves et al., 2007). In this case, transition to flowering demands
antisense-mediated chromatin silencing at the FLC locus and
involves a complex regulatory array composed of FLC activators,
like FRIGIDA, as well as repressors, the autonomous pathway,
and cold (Whittaker and Dean, 2017).

Many Arabidopsis ecotypes require several weeks of
vernalization to accelerate flowering (Lempe et al., 2005;
Shindo et al., 2006), while commonly used accessions flower
without prior exposure to cold (Johanson et al., 2000).
Consequently, species-specific mechanisms regulate flowering
time at ambient temperature and few have been reported at a
detailed molecular level (Samach and Wigge, 2005; Lee et al.,
2008; Wigge, 2013).

Unlike mammals (Vriens et al., 2014), plants lack a clear class
of thermoreceptors but phytochrome B (phyB) and phototropins
have been shown to fulfill dual roles as both thermo- and light-
sensors (Jung et al., 2016; Legris et al., 2016; Fujii et al., 2017). In
addition, many of the factors involved in temperature sensitive
decisions in plants are still unknown and, therefore, our
understanding of the molecular correlations in the temperature
sensing/response pathways remains sketchy.

Increasing evidence points to a role of messenger RNA
(mRNA) splicing as an endogenous “molecular thermometer”
in temperature adaptations (Capovilla et al., 2015). Splicing is the
removal of intronic (mostly non-coding) sequences from a
primary transcript (pre-mRNA) to form the mature messenger
RNA (mRNA) by a multi-megadalton complex called the
spliceosome (Will and Luhrmann, 2011; Lee and Rio, 2015).
Combinatorial recognition and usage of distinct nucleotide
sequences (splice sites) on the pre-mRNA can lead to the
assembly of multiple different transcripts in a process called
alternative splicing (AS).

In higher plants, AS affects 60–70% of intron-containing
genes (Chamala et al., 2015; Zhang et al., 2015). Hence, AS is a
transcriptome-wide mechanism that has the potential to
profoundly affect the level of gene expression in response to
environmental stimuli. Indeed, generation of nonproductive
transcript isoforms, targeted for non-sense-mediated mRNA
Frontiers in Plant Science | www.frontiersin.org 2
decay (NMD) (Kalyna et al., 2012), or translation of protein
variants with altered amino acid sequence and function can
quickly modify the cell proteome (Marquez et al., 2015).

Several reports exploring different temperature ranges and
environments have shown that AS plays a critical role in
response to extreme (Mastrangelo et al., 2012; Leviatan et al.,
2013; Staiger and Brown, 2013; Hartmann et al., 2016; Klepikova
et al., 2016; Calixto et al., 2018; Laloum et al., 2018) as well as to
very small variations in ambient temperature (Streitner et al.,
2013; Capovilla et al., 2015; Pajoro et al., 2017; Verhage et al.,
2017; Capovilla et al., 2018; James et al., 2018).

In Arabidopsis, ambient temperature modulation of flowering
time involves the FLC-related MADS-box transcription factor
FLOWERING LOCUS M (FLM, MAF1). Loss-of-function
mutations in FLM reduce the temperature dependency of
flowering suggesting its role as a repressor (Scortecci et al.,
2001; Werner et al., 2005). Indeed, FLM modulates flowering
time over a wide temperature range (from 5 to 23°C) and can
bind, like FLC (Lee et al., 2007), to the SHORT VEGETATIVE
PHASE protein (SVP), to form a potent FLM-SVP repressor
complex (Lee et al., 2013; Posé et al., 2013). Besides FLM,
flowering time is also regulated by the other FLC-clade
proteins, MAF2–MAF5 (Ratcliffe, 2003; Li et al., 2008; Gu
et al., 2013; Lee et al., 2013; Airoldi et al., 2015; Theißen
et al., 2018).

Temperature information on FLM gene expression is
integrated at the post-transcriptional level by the interplay of AS
events leading to the production of several FLM mRNA forms
(Capovilla et al., 2017). In the reference accession, Columbia-0
(Col-0), two of these variants, FLM-b and FLM-d, are the
predominant transcripts, which result from the alternative usage
of the mutually exclusive exons 2 (FLM-b) and 3 (FLM-d) (Lee
et al., 2013; Posé et al., 2013).

The resulting proteins FLM-b and FLM-d have been
implicated in repressing or promoting flowering respectively.
In particular, FLM-b was found to bind both SVP and to
promoter regions of regulated target genes (Posé et al., 2013).
Hence, FLM-b has been recognized as the real protagonist in the
temperature dependent repressor complex while the function of
FLM-d as flowering promoter has been much debated (Capovilla
et al., 2017). The effect of other FLM isoforms in flowering is also
poorly understood.

Recently, specific splicing factors have been reported to
modulate flowering time by affecting the balance between
FLM-b and FLM-d, like the U2 auxiliary factors ATU2AF65A
and ATU2AF65B, the glycine rich proteins ATGRP7 and
ATGRP8 and Splicing Factor 1 ATSF1 (Lee et al., 2017; Park
et al., 2019; Steffen et al., 2019).

Cyclin-dependent kinases (CDKs), an evolutionarily
conserved group of serine/threonine kinases initially implicated
in cell cycle control (Strausfeld et al., 1996; Rane et al., 1999;
Sherr and Roberts, 1999), are involved in pre-mRNA processing
through interaction with the spliceosome components (Ko et al.,
2001; Hu et al., 2003; Loyer et al., 2005; Even et al., 2006; Cheng
et al., 2012). In plants, CDKs regulate a myriad of developmental
processes including flowering time. CDKC, for instance is part of
the positive transcription elongation factor b (P-TEFb) that
January 2020 | Volume 10 | Article 1680
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phosphorylates the C-terminal domain of RNA polymerase II
(PolII) (Cui et al., 2007), modulates the localization of
spliceosome components (Kitsios et al., 2008) and can
regulates flowering time through promoting expression of an
FLC antisense transcript called COOLAIR (Wang et al., 2014).
The CDKG group is the most closely related to mammalian
CDKs (Menges et al., 2005; Umeda, 2005) that are involved in
mRNA processing (Bartkowiak et al., 2010; Chen et al., 2006;
Loyer et al., 2005; Even et al., 2006) and have been also shown to
regulate splicing (Huang et al., 2013; Cavallari et al., 2018),
meiosis (Zheng et al., 2014) and flowering responses (Ma
et al., 2015).

In Arabidopsis, two closely related genes, CDKG1 and
CDKG2, encode for the catalytic subunit of the kinase, which
physically interacts with the regulatory subunit, CYCLIN L1
(CYCL1) (Van Leene et al., 2010). CDKG1, CDKG2, and CYCL1
have a role in mRNA splicing (Xu et al., 2012; Huang et al., 2013)
forming part of an ambient temperature responsive AS cascade
targeting genes involved in splicing (Cavallari et al., 2018).
Moreover, CDKG1 is required for chromosome pairing and
recombination at high ambient temperature (Zheng et al.,
2014) while CDKG2 was reported as a negative regulator of
flowering (Ma et al., 2015) although the molecular pathway
involved was not identified.

Here, we show that the early flowering phenotype in cdkg2-1
as well as in the double cdkg2-1;cycL1-1 mutant lines is
maintained across the ambient temperature range and under
different light conditions (both long and short day). Early
flowering is associated with impaired AS of FLM transcripts as
mutants in both the kinase and cyclin genes showed differential
integration of temperature cues into FLM mRNA. Specifically,
CDKG2 and CYCL1, but not CDKG1, are required for balancing
FLM-b and FLM-d levels across the ambient temperature range.
Moreover, lack of CDKG2 and CYCL1 also affect the correct
processing of the alternative introns 1 and 4 in FLM mRNAs. In
addition, we report that mRNA variants retaining FLM intron 1
are sequestered in the cell nucleus.

Taken together our data provide evidence that the
temperature pathways and the CDKG2/CYCL1 complex
converge on the regulation of FLM AS to fine tune the
flowering process.
MATERIALS AND METHODS

Plant Materials and Growth Conditions
The wild type Columbia (Col-0) and mutant stocks cdkg1-1
(SALK_075762), cdkg2-1 (SALK_012428), and cycL1-1
(SAIL_285_G10) used in this study were obtained from the
Nottingham Arabidopsis Stock Centre and have previously been
described (Zheng et al., 2014; Ma et al., 2015; Cavallari et al., 2018).

For analysis of the splicing events, plants were grown in Petri-
plates containing plant medium (0.5x MS salts and vitamins, pH
5.8, 0.7% plant agar) for 2 weeks at 23°C under either long day
(LD) conditions (16 h light, 8 h dark) or short day (SD)
conditions (8 h light, 16 h dark). Plants in LD or SD were then
Frontiers in Plant Science | www.frontiersin.org 3
transferred to 15, 23, or 27°C for 2 days and collected for mRNA
isolation. For the experiments listed above, Philips GreenPower
LED production modules were used to provide a combination of
red (660 nm)/far red (720 nm)/blue (455 nm), light with a
photon density of about 140 µmolm−2s−1 +/−20%.

For the flowering experiments, seeds were sown in pots
containing soil mix (80% Levington F2 and 20% sand) and
placed at 15, 23, or 27°C either in LD (16 h light, 8 h dark) or
SD (8 h light, 16 h dark). The light was provided by Sylvania 840
lamps and the light intensity 150 µmolm−2s−1 for LD and 250
µmolm−2s−1 for SD. Flowering was scored by counting the
number of rosette leaves at bolting for each genotype.

Ribonucleic Acid Extraction, Real Time,
and Quantitative Polymerase Chain
Reaction
Total RNA (3–5 seedlings per sample) was extracted from whole
rosettes using the RNeasy Plant Mini kit (Qiagen). One
microgram of total mRNA was used to generate cDNA using
iScript™ cDNA Synthesis Kit (Bio-Rad). The primers used for
the analysis of the AS of the different genes are listed in
Supplementary Table 2. Three hundred eighty-four-well plates
(Roche) were loaded using a JANUS Automated Workstation
(PerkinElmer) with a 5 µl reaction containing 2.5 µl Luna®

Universal qPCR Master Mix (New England Biolabs).
Quantitative PCRs (qPCRs) were performed using the
LightCycler 480 (Roche). Samples (n≥3) were measured in
technical triplicates and expression of PP2AA3 (AT1G13320)
was used as a reference (Czechowski, 2005). Data were analyzed
using the LightCycler® 480 Software (Roche).

Construct Generation and Plant
Transformation
For transient expression in Nicotiana benthamiana leaves, the
CDKG2-GFP (Cavallari et al., 2018) and RSp34-RFP (Lorković
et al., 2004) cassettes were cloned into the pEAQ-HT-DEST2
vector (Sainsbury et al., 2009) and transformed into
Agrobacterium tumefaciens strain LBA4404. Leaf infiltration
was performed as described (Sainsbury et al., 2009). After 5
days, leaves were harvested for confocal imaging using a Leica
TCS SP5 II confocal laser scanning microscope (CLSM)
controlled by Leica LAS-AF software.

Protoplast Isolation and Subsequent Cell
Fractionation
Mesophyll protoplasts were isolated from 3-week-old Col-0 plants
as described by Wu et al. (Wu et al., 2009). Subsequent cell
fractions were prepared as described by Goehring et al. (Gohring
et al., 2014) with slight modifications. Briefly, 2×106 Arabidopsis
thaliana mesophyll protoplasts were resuspended in 1 ml NIB
lysis buffer [10 mM 2-(N-morpholino) ethanesulfonic acid-
potassium hydroxide pH 5.5, 200 mM sucrose, 2.5 mM
ethylenediaminetetraacetic acid, 2.5 mM dithiothreitol, 0.1 mM
spermine, 10 mM NaCl, 0.2% Triton X-100, 1 U/µl RNasin
(Promega)] and lysed using a 25 G gauge needle (6 to
10 passages). Complete lysis was confirmed by light microscopy.
January 2020 | Volume 10 | Article 1680
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For the total fraction, 100 µl of lysed cells were immediately
resuspended in 1 ml TRIzol (Ambion) and kept on ice until the
remaining fractions were processed. The lysate was pelleted for
10 min at 500 g and 1 ml of supernatant, which represents the
cytoplasmic fraction, was removed, and centrifuged for another
15 min at 10,000 g. Eight hundred µl of supernatant was
resuspended in 8 ml TRIzol and the pellet, which represents the
nuclear fraction, resuspended in 4 ml NRBT (20 mMTris-HCl pH
7.5, 25% glycerol, 2.5 mMMgCl2, 0.2% Triton X-100), centrifuged
at 500 g for 10 min and washed three times. After washing, the
nuclear pellet was resuspended in 500 µl NRB2 (20 mM Tris-HCl
pH 7.5, 250 mM sucrose, 10 mM MgCl2, 0.5% Triton X-100,
5 mM b-mercaptoethanol) and carefully overlaid on top of 500 µl
NRB3 (20 mM Tris-HCl pH 7.5, 1.7 M sucrose, 10 mM MgCl2,
0.5% Triton X-100, 5 mM b-mercaptoethanol) and centrifuged at
16,000 g for 45 min. Finally, the nuclear pellet was resuspended in
1 ml TRIzol and RNA was isolated following the manufacturer’s
instructions. Samples for protein analysis [total (whole
protoplasts), cytoplasmic, and nuclear] were also kept.

Protein Extraction and Western Blotting
Protein samples from the fractionation experiments (total,
cytoplasmic, and nuclear) were resuspended in sample loading
buffer and heated up at 65°C for 10 min before loading in a
10–20% polyacrylamide gradient gel (Bio-Rad) and transferred
to polyvinylidene fluoride membranes. Membranes were
probed with anti-H3 antibody (Abcam 1791) or anti-alcohol
dehydrogenase (Agrisera AS10 685) at a dilution of 1:5,000
and the secondary antibody used was goat anti-rabbit
immunoglobulin G coupled to unmodified horseradish
peroxidase (Sigma) at a 1:10,000 dilution. Detection was done
using the ECL Western Blotting Detection Reagent (Amersham)
and signal detected with Image Quant LAS4000 (GE).

Statistical Analysis
Statistical analyses were performed using PRISM 8 (GraphPad
Software) or Excel (Microsoft Office, Microsoft). P-values were
calculated using an unpaired, two-tailed Student’s t-test (***p <
0.001; **p < 0.01; *p < 0.05; ns, not significant). Unless otherwise
indicated in the figure legend, data represent mean ±
standard deviation.
RESULTS

CKDG2 Regulates the Alternative Splicing
of the Flowering Regulator FLM
It has been previously shown that the CDKG group of kinases
and their cognate cyclin, CYCLIN L1 (CYCL1), are important
regulators of temperature dependent AS in Arabidopsis (Huang
et al., 2013; Cavallari et al., 2018). Moreover, plants lacking
CDKG2 display an early flowering phenotype when grown at
ambient temperature (Ma et al., 2015). This led us to hypothesize
that the early flowering phenotype in cdkg2-1 mutant lines could
be maintained along the ambient temperature range as a result of
defective AS in genes involved in the temperature transduction
Frontiers in Plant Science | www.frontiersin.org 4
pathway. To test this possibility, we grew wild type, single cdkg2-1
and cycL1-1, and the double cdkg2-1;cycL1-1mutant lines at 23°C
under a LD light regime. Under these conditions, both the single
cdkg2-1 and cycL1-1 and the double cdkg2-1;cycL1-1 mutants
flowered significantly earlier than the wild type (Figures 1A, B).
On the contrary, no flowering phenotype was observed in the
cdkg1-1 mutant line (Supplementary Figure 1A).

Subsequently, we conducted a reverse transcriptase-
polymerase chain reaction (RT-PCR) screen in cdkg mutant
lines to test AS and expression levels of a small panel of genes
including splicing factors, clock genes, and flowering regulators
(Supplementary Table 1). Remarkably, among the investigated
targets we found that in the single cdkg2-1, cycL1-1 and in the
double cdkg2-1;cycL1-1 mutant lines, the processing of FLM
(MAF1), a master regulator of the ambient temperature
flowering pathway, was altered in terms of the relative levels of
FLM-b and FLM-d transcripts (Supplementary Figure 1B). In
contrast the AS of MAF2 (Airoldi et al., 2015), a close FLM
paralogue was not affected in the different lines (Supplementary
Figure 1C). In addition, no differences in the splicing of FLM or
MAF2 were observed in the single cdkg1-1 mutant
(Supplementary Figures 1B, C). The double cdkg1-1;cdkg2-1
loss of function line could not be assessed as this genotype cannot
be recovered and is assumed to be lethal (Zheng et al., 2014).

In order to investigate the changes in AS in more detail we
quantified the levels of FLM-b and FLM-d transcripts in the
different mutants grown at 23°C by quantitative RT-PCR (RT-
qPCR, see Figure 1C and Supplemental Figure 2A for FLM
gene structure, AS events, and primer position). As observed by
RT-PCR, lower levels of FLM-b (coding for the flowering
repressor isoform) and increased expression of FLM-d were
observed in the single cdkg2-1 and cycL1-1 and in the double
cdkg2-1;cycL1-1 mutant lines (Figures 1D, E). Specifically, FLM-
b expression was severely reduced in cdkg2-1 (0.52 ± 0.10 fold)
and in cycL1-1 (0.70 ± 0.09 fold) and further impaired in the
double cdkg2-1;cycL1-1 (0.36 ± 0.03 fold) mutant lines in
comparison to Col-0 (Figure 1D). The levels of FLM-d were
instead found significantly higher (up to 1.8 fold) in both cdkg2-1
and cdkg2-1;cycL1-1 mutants compared to wild type (Figure 1E)
suggesting that CDKG2 together with CYCL1 maintains the
balance between these two mutually exclusive isoforms. No
significant change in FLM-b and FLM-d expression were found
between Col-0 and the cdkg1-1 mutant lines (Supplementary
Figures 3A, B).

Analysis of other flowering regulators involved in the
temperature pathway showed that while there were no
differences in the expression levels for FLC and the
TEMPRANILLO genes (TEM1 and TEM2; Supplementary
Figures 4A, B), total SVP transcripts were reduced in all the
mutant lines in comparison to Col-0 (Supplementary Figure
4C). This was mostly due to a reduction in the expression of one
of two major SVP isoforms, SVP2, in mutant lines as determined
by RT-PCR. Moreover, the lack of CDKG2 did not affect the AS
of FLM regulatory genes like ATU2AF65A (Cavallari et al., 2018),
ATSF1, or ATGRP7 (Supplementary Figure 4D).

Consistent with its role in splicing, the CDKG2-GFP protein
localizes to the nucleus of plant cells where it co-localizes with
January 2020 | Volume 10 | Article 1680
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the spliceosome component RSp34-RFP (Supplementary
Figures 5A, B).

Altered FLM Splicing in cdkg2 Mutants Is
Associated With Early Flowering Across
Different Temperatures
We have previously shown that the CDKG group is actively
involved in maintaining plant homeostasis along the ambient
temperature range (Zheng et al., 2014; Cavallari et al., 2018). This
Frontiers in Plant Science | www.frontiersin.org 5
led us to test the possibility that the lack of CDKG2 or of its co-
factor CYCL1 may regulate flowering along the ambient
temperature range. For this, plants were grown at both 15 and
27°C under LD conditions (LD, 16 h light/8 h dark). As observed
at 23°C, the early flowering phenotype of the single cdkg2-1 and
double cdkg2-1;cycL1-1 was maintained at the different
temperatures tested (Figures 2A, B) albeit with some small
differences. At 15°C the double mutant lines flowered slightly
earlier than the single cdkg2-1 and cycL1-1 lines (Figures 2A, B).
FIGURE 1 | Lack of CDKG2 and CYCL1 is associated to early flowering and alters the alternative splicing of FLM. (A) Flowering phenotype of Col-0, cdkg2-1,
cycL1-1, and cdkg2-1;cycL1-1 mutants grown at 23°C under long day (LD) conditions. (B) Flowering time of the plants shown in (A) quantified by counting the
number of rosette leaves present at bolting (n ≥ 30). Boxes represent 2nd and 3rd quartiles, bars minimum to maximum values, and crosses average of the groups.
(C) Schematic representation of FLM locus and messenger RNA (mRNA) variants, including exons (boxes) and introns (lines). White boxes correspond to coding
exons, gray boxes correspond to non‐coding exon sequences (UTRs). Dotted lines represent alternative splicing (AS) events. The major isoforms produced are also
indicated (b and d). (D) and (E) Relative expression levels of FLM-b (D) and FLM-d (E) mRNA as quantified by real-time quantitative PCR in the different lines grown
at 23°C under LD conditions (n ≥ 5). Student’s t-test comparing cdkg2-1, cycL1-1, or cdkg2-1;cycL1-1 to Col-0, ***p < 0.001, and *p < 0.05.
January 2020 | Volume 10 | Article 1680
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At 27°C, both the single cdkg2-1 and the double mutant line were
flowering significantly earlier than the wild type (Figures 2A, B)
while no significant differences in flowering time were seen for
the cycL1-1 mutant.

To determine the effect of temperature on FLM splicing in the
different mutant backgrounds, we quantified the levels of FLM-b
and FLM-d by RT-qPCR in 2-week old seedlings grown under
LD conditions by shifting growth temperature from 23°C either
to 15°C or to 27°C for 48 h before sampling.
Frontiers in Plant Science | www.frontiersin.org 6
In the wild type, FLM-b levels displayed temperature
sensitivity as previously reported (Posé et al., 2013) with
transcript levels raising at 15°C and decreasing at 27°C (Figure
2C) while FLM-d expression remained relatively stable in wild
type (Figure 2D). Strikingly, we found a more pronounced
reduction in FLM-b levels along the temperature range in
mutant lines and a significant increase in FLM-d at 23 and 27°
C (Figures 2C, D) in comparison to wild type. The detrimental
effect of temperature increases on splicing in the mutant lines
FIGURE 2 | Lack of CDKG2 and CYCL1 unbalances the alternative splicing of FLM across the ambient temperature range. (A) Flowering phenotype of Col-0,
cdkg2-1, cycL1-1, and cdkg2-1;cycL1-1 mutants grown under long day (LD) conditions at 15 and at 27°C as indicated. (B) Flowering time of the plants shown in
(A) quantified by counting the number of rosette leaves present at bolting (n ≥ 27 at 15°C and n ≥ 23 at 27°C). Boxes represent 2nd and 3rd quartiles, bars minimum
to maximum values, and crosses average of the groups. (C) and (D) Relative expression levels of FLM-b (C) and FLM-d (D) messenger RNA (mRNA) as quantified
by real-time quantitative PCR in the different lines, grown at 15, 27, and 23°C for comparison under LD conditions as indicated (n ≥ 3). (E) Ratio of FLM-d/FLM-b
mRNA in cdkg2-1, cycL1-1, and cdkg2-1;cycL1-1 in comparison to Col-0 at the respective temperature (LD, long day). In the inset, detail of Col-0, cdkg2-1, and
cycL1-1 for statistic display. Student’s t-test ***p < 0.001, **p < 0.01, and *p < 0.05.
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became more evident when the ratio between FLM-b and FLM-d
(FLM-d/FLM-b) was calculated at each temperature point
(Figure 2E). While in Col-0 the ratio increased with the
temperature (5.9 ± 1.2 fold from 15 to 27°C) this increase was
higher in the mutant lines (11.5 ± 0.7 fold in cdkg2-1;cycL1-1).

We also examined the relative levels of SVP expression in the
various mutant backgrounds at different temperatures and found
that the double cdkg2-1;cycL1-1 mutant had constitutively lower
SVP expression than the wt control across the temperature range
(Supplementary Figure 6A).

Although FLM is known to influence flowering particularly at
lower temperatures (Lutz et al., 2015), the cdkg2-1 and the cdkg2-
1;cycL1-1 double mutants flowered earlier than Col-0 also at 27°C
suggesting the involvement of additional regulatory
mechanisms. Expression of FLC was reported to have a strong
impact on flowering time particularly at high temperatures
(Balasubramanian et al., 2006). However, we observed no
significant changes in FLC expression between Col-0 and the
mutant lines at 27°C suggesting that the early flowering
phenotype of the cdkg2 mutants is not due to altered FLC
expression (Supplementary Figure 6B).

CDKG2/CYCL1 Has a Wide Effect on FLM
Transcript Processing
In order to determine if other major splicing events in FLM were
affected by the lack of CDKG2 and CYCL1, we analyzed
expression of the mRNAs that retain intron 4, namely splicing
variants ASF7 or ASF10 (Capovilla et al., 2017). Retention of the
in frame intron 4, either in combination with exon 2 or 3, could
translate for proteins with characteristics similar to FLM-b or
FLM-d respectively (see Figure 3A and Supplementary Figure
2A for splicing scheme). Remarkably, we found reduced levels of
intron 4 retention for ASF7 transcripts in the cdkg2-1 and cdkg2-
1;cycL1-1 mutant lines at 23 and 27°C while ASF10 was mildly
but significantly affected in the single cycL1-1 and in the double
mutant albeit at different temperatures (Figures 3B, C).

Variations in FLM intron 1 sequence were previously shown
to fine tune flowering time and to be involved in adaptation to
temperature (Lutz et al., 2015; Lutz et al., 2017) and based on
database annotations (Araport11) there are several potential
intron 1 retention FLM mRNAs (AT1G77080.6, AT1G77080.7,
AT1G77080.9, AT1G77080.10). These alternative FLM
transcripts could thus affect FLM expression. We observed that
FLM intron 1 retention (FLMi1) was not affected by temperature
in Col-0 while single and double mutant lines showed
remarkably higher retention levels at 23 and 27°C (up to 2.6 ±
0.34 fold, Figure 3D).

Taken together, these data suggested that the lack of CDKG2
and CYCL1 affected not only the balance between FLM-b and
FLM-d but also the processing of other FLM transcripts spanning
from exon 1 to intron 4 along the ambient temperature range.

The observed differences in the relative FLM isoform
abundance and how these may impact on the expression of
FLM, prompted us to evaluate the total levels of FLM by
measuring FLM exon 1 (FLMex1) containing transcripts by
RT-qPCR. Total levels of FLM mRNA decreased along the
temperature range in Col-0 and were further reduced in the
Frontiers in Plant Science | www.frontiersin.org 7
mutant lines both at 15 and 23°C but not at 27°C (Figure 3E).
These observations suggest that the lower FLM levels observed
in the cdkg2-1 and cycl1-1 mutants may reflect intrinsic
differences in FLM isoform stability, although we cannot
completely exclude a concomitant reduction in transcription at
specific temperatures.

Lack of CDKG2 and CYCL1 Promotes
Flowering and Alters FLM Alternative
Splicing Independently of the Photoperiod
Since the photoperiod also has a strong effect on flowering time,
we assessed the flowering phenotypes of the single and double
cdkg2-1 and cycL1-1 mutants under SD conditions. For this we
grew plants at 15, 23, and 27°C in SD (8 h light/16 h dark) which
is considered a non-inductive condition for Arabidopsis
(Balasubramanian and Weigel, 2006). We hypothesize if
mainly the temperature pathway was affected then early
flowering should be maintained independently of day length.

The double cdkg2-1;cycL1-1 mutant lines still flowered earlier
than wild type plants in SD conditions at all temperatures while in
cdkg2-1 this effect was present at 23°C and at 27°C (Figures 4A–F).

As we observed under LD conditions, plants grown in SD
showed small decreases in FLM-b with increased temperature
(Figure 5A). Increases in FLM-d transcripts were significant only
in the double cdkg2-1;cycL1-1 mutant (Figure 5B). In addition,
FLMi1 levels were also increased in mutant lines while FLMex1
was lowermainly at 23°C (Figures 5C, D). Since, no differences in
flowering were observed in SD conditions (23°C) and expression
of FLM-b and FLM-d was similar between Col-0 and the cdkg1-1
mutant line (Supplementary Figures 7A–C), we decided not to
further test this mutant in the present investigation.

The data profile obtained for ASF7 and ASF10 under SD
conditions was comparable to that seen under LD conditions.
Indeed, ASF7 levels decreased with temperature and this effect
was more accentuated in the mutants at higher temperatures. The
effect on ASF10 was less pronounced (Supplementary Figures
8A, B). Notably, the expression profile of SVP was not affected in
the mutant lines in SD conditions (Supplementary Figure 8C).

Taken together, these results suggest that the temperature-
dependent effect of the CDKG2/CYCL1 complex on the AS of
FLM is independent of the photoperiod.

FLMi1 Transcripts Accumulate in the
Cell Nucleus
Intron retention events in plants can promote mRNA
sequestration in the nucleus (Gohring et al., 2014) so that the
affected mRNAs are unlikely to be translated into proteins in the
cytoplasm. Hence, a possible consequence of the significant
increase in FLM intron 1 containing transcripts in the mutant
lines could be the increase of the nuclear FLM mRNA pool. This
could represent an interesting, yet previously unknown,
mechanism of FLM regulation based on CDKG2 activity and
controlling FLM nuclear export.

The accumulation of intron 1 containing transcripts in the
cdkg2-1 and cycL1-1 single and double mutants could be the
consequence of either an increase in FLM pre-mRNA
(unprocessed transcripts) or of a specific CDKG2 effect on
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intron 1 AS. To distinguish between these two possibilities, we
amplified only processed messengers by RT-PCR by positioning
the primers at the end of FLM intron 1 and at the exon 4/exon 5
junction (FLMi1e2F and FLMe5-4R; Supplementary Table 2).
Interestingly, the transcripts we found had size corresponding to
FLMi1 mRNAs that contain both intron 2 and intron 3 (and
relative exons) or only intron 2 (Supplementary Figure 9A).
Moreover, we observed that these isoforms where more
abundant in the double cdkg2-1;cycL1-1 mutant than in Col-0,
confirming that we see increased FLM intron 1 retention in the
absence of CDKG2/CYCL1 (Supplementary Figure 9A).

These findings prompted us to fractionate protoplast cell mRNA
and assess sub-cellular localization of specific transcripts. Strikingly,
nuclear and cytoplasmic fractions showed that while FLM-b
and FLM-d forms are present in the cytoplasm (as expected, being
Frontiers in Plant Science | www.frontiersin.org 8
protein coding isoforms) FLMi1 was retained in the nucleus
(Figure 6A). The purity of the fractions was confirmed by RT-PCR
for SEF Factor (AT5G37955) and by Western blot.

In summary, the data presented here show that the CDKG2/
CYCL1 complex affects the temperature-dependent splicing of
FLM. Finally, the nuclear retention of FLM intron1 containing
transcripts could provide a new layer of FLM regulation across
the temperature range.
DISCUSSION

The identification of key components in ambient temperature
sensing/response in plants is crucial not least in times of global
FIGURE 3 | CDKG2 and CYCL1 also regulate the abundance of other FLM alternative splicing isoforms. (A) Schematic representation of FLM locus and messenger
RNA (mRNA) variants, including exons (boxes) and introns (lines). White boxes correspond to coding exons, gray boxes correspond to non‐coding exon sequences
(UTRs). iR, intron retention. (B–E) Relative expression levels of ASF7 (B), ASF10 (C), FLMi1 (D), and FLMex1 (E) mRNA as quantified by real-time quantitative PCR
in the different lines, grown at 15, 23, and 27°C under long day conditions as indicated. Student’s t-test comparing cdkg2-1, cycL1-1, or cdkg2-1;cycL1-1 to Col-0
at the respective temperature, n ≥ 3, ***p < 0.001, **p < 0.01, and *p < 0.05.
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warming where increased temperature variation could produce
ecological changes that will negatively impact on the present
agricultural system (Wheeler and von Braun, 2013; Moore and
Lobell, 2015; Jagadish et al., 2016).Hence, investigationand analysis
Frontiers in Plant Science | www.frontiersin.org 9
of the molecular circuits involved in the temperature transduction
pathways in plants is now of considerable importance.

While animals have developed specialized receptor classes for
specific environmental variables (Terakita and Nagata, 2014;
FIGURE 4 | Lack of CDKG2/CYCL1 complex promotes flowering across the ambient temperature range in short day conditions. (A–C) Flowering phenotype of Col-
0, cdkg2-1, cycL1-1, and cdkg2-1;cycL1-1 mutants grown under SD conditions at 15°C (A), at 23°C (B), and at 27°C (C). (D–F) Flowering time of the plants shown
in (A), (B), and (C) quantified by counting the number of rosette leaves present at bolting (n ≥ 15, n ≥ 10, and n ≥ 14 respectively). Boxes represent 2nd and 3rd

quartiles, bars minimum to maximum values, and crosses average of the groups. Student’s t-test comparing cdkg2-1, cycL1-1, or cdkg2-1;cycL1-1 to Col-0 at the
respective temperature, ***p < 0.001 and **p < 0.01.
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Vriens et al., 2014), the sensors so far identified in plants belong
to diverse gene families and can have wider roles in both sensing
and integrating environmental cues (Paik and Huq, 2019). The
CDKG group of kinases, for example, has an important role in
inherently temperature sensitive processes like meiosis and
flowering (Zheng et al., 2014; Ma et al., 2015).

Recently we found that CDKGs can also integrate ambient
temperature inputs by modulating an alternative mRNA splicing
cascade (Cavallari et al., 2018) raising the question as to whether
the role of CDKs in the aforementioned developmental processes
could be acting through AS.

In the current report, we demonstrate that the CDKG2/
CYCL1 modulates AS of the flowering regulator FLM, possibly
providing an additional mechanism fine-tuning flowering time
across the ambient temperature range.

FLM mRNA processing responds strongly to ambient
temperature coding for some known (i.e., FLM-b and FLM-d)
as well as putative isoforms (i.e., ASF7 and ASF10) (Posé et al.,
2013; Capovilla et al., 2017). While the repressive role of FLM-b
in flowering time regulation is well accepted there is still debate
about the function of FLM-d. In addition, functional
Frontiers in Plant Science | www.frontiersin.org 10
characterization of ASF7 and ASF10 proteins (with predictably
similar functions as FLM-b and FLM-d) is still missing. Indeed,
ASF7 and ASF10 transcripts contain the in-frame FLM intron 4
which belongs to the exitron class (Marquez et al., 2015).
Exitrons define a particular intron group associated with
translation of alternative protein variants, suggesting that ASF7
and ASF10 might code for alternative proteins with different
(and as yet unknown) functions.

Besides the strong temperature regulation of FLM AS, we
found that the absence of CDKG2 and CYCL1 resulted in changes
in the abundance of FLM-b and FLM-d and, to a minor extent, of
ASF7 and ASF10 across the temperature range (Figures 2C, D
and 3B, C) and under LD and SD conditions (Figures 5A, B and
Supplementary Figures 8A, B). While temperature increases
affects levels of the active floral repressor FLM-b, CDKG2 acted
against the temperature signal to dampen the shift on the
production of its non-repressive counterpart FLM-d.

Moreover, CDKG2 and CYCL1 control the levels of FLM
intron 1 retention and this new regulatory mechanism may
influence the FLM intracellular mRNA trafficking (Reed, 2003).
The nuclear retained FLMi1mRNAs could potentially be further
FIGURE 5 | Lack of CDKG2 and CYCL1 unbalances the alternative splicing of FLM across the ambient temperature range in short day (SD) conditions. (A–D)
Relative expression levels of FLM-b (A), FLM-d (B), FLMi1 (C), and FLMex1 (D) messenger RNA as quantified by real-time quantitative PCR in the different lines, Col-
0, cdkg2-1, cycL1-1, cdkg2-1;cycL1-1 grown at 15, 23, and 27°C under SD conditions (8 h light, 16 h dark) as indicated. Student’s t-test comparing cdkg2-1,
cycL1-1, or cdkg2-1;cycL1-1 to Col-0 at the respective temperature, n = 3, ***p < 0.001, **p < 0.01, and *p < 0.05.
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processed, as was recently shown for the splicing factor SR30
(Hartmann et al., 2018), and be stored or released from the cell
nucleus in response to changing environmental conditions to
promote or delay transition to flowering respectively. Indeed, the
two FLMi1 isoforms found by RT-PCR (Supplementary Figure
6A) retaining intron 2 and intron 3 may be spliced either into
FLM-b or FLM-d variants.

Hence, modulation of CDKG2 kinase activity is likely to
impact on flowering time definition changing the AS of FLM,
either by altering the ratio of FLM-b and FLM-d as reported for
other splicing factors (Lee et al., 2017; Park et al., 2019; Steffen
et al., 2019) or by promoting retention of FLM intron 1. Indeed,
the predicted increase in nuclear retention for FLMi1 isoforms
would provide a new additional, elegant, and rapid signaling
module to adjust flowering time in response to changes in
ambient temperature. Furthermore, the observation that the
Frontiers in Plant Science | www.frontiersin.org 11
effect on AS in mutant lines was greater at higher temperatures
(Figure 2E) suggests that CDKGs may contribute to temperature
compensation during mRNA processing, a feature which is very
important for other cellular mechanisms like the circadian clock
(Avello et al., 2019). Consistent with this idea, FLM-d and FLMi1
expression became temperature dependent in cdkg2-1 mutant
lines, contrary to Col-0 where these isoforms were stably
expressed (Figures 2D and 3D).

Previously we showed that CDKG1 affected the splicing of
ATU2AF65A (Cavallari et al., 2018) and recently, loss of this
fundamental spliceosome component has been reported to
regulate flowering time in Arabidopsis by altering the
expression patterns of several flowering related genes including
FLM (Park et al., 2019). The observations that CDKG2 and
CYCL1 control the AS of both CDKG1 and FLM along the
ambient temperature range, place this complex at the top of a
signal transduction cascade translating environmental signals
into developmental changes by regulating the AS of key
regulatory genes in the temperature pathway.

Indeed, our data suggest a model whereby interplay between
temperature and CDKs can modulate flowering time via AS of
key floral regulators. We speculate that the flowering phenotype
observed in cdkg2 mutant lines may go beyond just a direct
action on FLM considering that additional flowering genes are
affected at the expression or AS levels (like SVP). A deeper
understanding of the genetic interactions between CDKG related
functions and the flowering time pathway could provide insights
into the role of AS in regulating flowering and, particularly, the
role it might play in temperature compensation.

However, whether temperature related differences in AS
pertains to mRNA secondary structure modifications, as in the
yeast model (Meyer et al., 2011) or to a sensor mediated signaling
cascade, the molecular mechanisms ruling temperature
dependent mRNA processing are yet to be fully elucidated.

The complexity and plasticity of the environmental sensing
landscape in plants is only just emerging (Legris et al., 2016; Fujii
et al., 2017; Casal and Qüesta, 2018; Dickinson et al., 2018; Wang
et al., 2018; Han et al., 2019; Paik and Huq, 2019) and our results
highlight the capacity of AS to bridge the interactions between
environmental input pathways, specifically temperature, and
central regulatory mechanisms, such as the cyclin dependent
protein kinases, to control gene expression.
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