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Chickpea is one of the most economically important food legumes, and a significant
source of proteins. It is cultivated in more than 50 countries across Asia, Africa, Europe,
Australia, North America, and South America. Chickpea production is limited by various abiotic
stresses (cold, heat, drought, salt, etc.). Being awinter-season crop in northern south Asia and
some parts of the Australia, chickpea faces low-temperature stress (0–15°C) during the
reproductive stage that causes substantial loss of flowers, and thus pods, to inhibit its yield
potential by 30–40%. The winter-sown chickpea in the Mediterranean, however, faces cold
stress at vegetative stage. In late-sown environments, chickpea faces high-temperature stress
during reproductive and pod filling stages, causing considerable yield losses. Both the low and
the high temperatures reduce pollen viability, pollen germination on the stigma, and pollen tube
growth resulting in poor pod set. Chickpea also experiences drought stress at various growth
stages; terminal drought, along with heat stress at flowering and seed filling can reduce yields
by40–45%. In southernAustralia andnorthern regionsof southAsia, lackof chilling tolerance in
cultivars delays flowering andpod set, and the crop is usually exposed to terminal drought. The
incidences of temperature extremes (cold and heat) as well as inconsistent rainfall patterns are
expected to increase in near future owing to climate change thereby necessitating the
development of stress-tolerant and climate-resilient chickpea cultivars having region specific
traits, which perform well under drought, heat, and/or low-temperature stress. Different
approaches, such as genetic variability, genomic selection, molecular markers involving
quantitative trait loci (QTLs), whole genome sequencing, and transcriptomics analysis have
been exploited to improve chickpea production in extreme environments. Biotechnological
tools have broadened our understanding of genetic basis as well as plants' responses to
abiotic stresses in chickpea, and have opened opportunities to develop stress
tolerant chickpea.
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INTRODUCTION

Chickpea (Cicer arietinum L.) is the 2nd most important legume
crop after common bean (Phaseolus vulgaris L.) (Gaur et al.,
2008; Varshney et al., 2013b) and an economically beneficial
protein-rich food legume. India is the largest chickpea-producing
country, with a 75% share of global production (FAO, 2016;
Maurya and Kumar, 2018; Gaur et al., 2019). Chickpea is
produced in 50 countries, of which Australia, Canada,
Ethiopia, India, Iran, Mexico, Myanmar, Pakistan, Turkey, and
the USA are the major producers (Gaur et al., 2012; Archak et al.,
2016; Dixit et al., 2019). However, the productivity of chickpea is
not sufficient to fulfill the protein requirement for the increasing
human population (Henchion et al., 2017; Chaturvedi et al.,
2018). Chickpea production faces many challenges due to
various abiotic stresses such as drought, and low and high
temperatures (Ryan, 1997; Millan et al., 2006; Gaur et al., 2008;
Mantri et al., 2010; Jha et al., 2014; Garg et al., 2015). Most
importantly, unpredictable climate change is the major
constraint for chickpea production as it increases the frequency
of drought and temperature extremes, i.e., high (> 30°C) and low
(< 15°C) temperatures (Gaur et al., 2013; Kadiyala et al., 2016),
which reduces grain yields considerably (Kadiyala et al., 2016).
Thus, high- and stable-yielding varieties of chickpea during such
stress conditions need to be developed (Chaturvedi and
Nadarajan, 2010; Krishnamurthy et al., 2010; Devasirvatham
et al., 2015; Devasirvatham and Tan, 2018).

Drought stress is a serious situation for agriculture in the
context of climate change and the ever-increasing world
population (Farooq et al., 2009; Tardieu et al., 2018). Extreme
drought conditions reduce crop yields through negative impacts
on plant growth, physiology, and reproduction (Yordanov et al.,
2000; Barnabas et al., 2008). Across the globe, drought stress
reduces chickpea yield by about 45–50% (Ahmad et al., 2005;
Thudi et al., 2014). Numerous studies have been conducted on
the drought effects on different chickpea traits, including early
maturity, root traits, carbon isotope discrimination, shoot
biomass (Kashiwagi et al., 2005; Krishnamurthy et al., 2010;
Upadhyaya et al., 2012; Krishnamurthy et al., 2013b;
Purushothaman et al., 2016), and morphological (Sabaghpour
et al., 2006), physiological (Turner et al., 2007; Rahbarian et al.,
2011), biochemical (Gunes et al., 2006; Mafakheri et al., 2010)
and molecular traits (Mantri et al., 2007; Thudi et al., 2014; Garg
et al., 2016). There have been various attempts to explain the
advancements in “omics” technology for drought challenges.
These advances should progress the development of stress-
resilient, high yielding, and nutritionally superior varieties
of chickpea.

Winter/autumn-sown chickpea crops in northern south Asia
and south Australia face low temperature (LT) stress at
reproductive (flowering/podding) stages whereas those in
Mediterranean region, especially the central Anatolia, are
exposed to LT at the seedling and early vegetative stages
(Berger et al., 2005; Berger et al., 2011; Berger et al., 2012).
Winter-sown crops in the West Asia and North Africa (WANA)
or northern regions of south Asia flower when cold is over and
temperatures rise. Podding temperatures are slightly higher than
Frontiers in Plant Science | www.frontiersin.org 2
those for flowering (Berger et al., 2005), and flowers drop if
temperatures remain lower than that required for podding. At
flowering/podding time, the crop is also at the risk of damage by
Ascochyta blight disease. A temperature of 14–6°C, usually 15°C,
is considered a threshold for reproduction in chickpea
(Srinivasan et al., 1998; Berger et al., 2004; Clarke et al., 2004;
Berger et al., 2005; Bakht et al., 2006b; Berger, 2007), a recent
study by Berger et al. (2012), however, measured mean flowering
temperature to be 21°C which is well above the earlier estimates
implying that most of the world chickpea is susceptible to cold
stress. Winter sown chickpea is also prone to terminal drought,
as delayed flowering extends the chickpea growing season to
warm but low or no rainy periods. In contrast to this, spring
sown crops in the Mediterranean, USA, and Canada are of short
duration and do not face terminal drought but productivity is
low due to short duration (Singh et al., 1997a). In USA, the rains
may extend the crop growth season so long that crop fails to
mature especially in the Montana region (McVay et al., 2013).
Being a crop of indeterminate growth habit, drought conditions
will hasten maturity in chickpea by stopping growth, while late
season rains will cause plants to green back up (McVay
et al., 2013).

Despite being a cool-season crop, chickpea also faces high-
temperature (HT) stress during reproductive development in
warmer regions and in late-sown environments. HT aborts floral
buds, flowers, and pods, ultimately leading to reduced seed size
and yield (Wang et al., 2006) especially those above 32°C
(Kaushal et al., 2013; Devasirvatham et al., 2015). HT like LT
leads to loss of pollen viability and pollen fertility that affect pod
set (Wang et al., 2006; Kumar et al., 2013; Kaushal et al., 2016).
HT induced disruption in sucrose synthesis and its availability to
the anthers, and oxidative stress appears to contribute to loss of
pollen fertility and stigmatic function (Kaushal et al., 2013;
Kumar et al., 2013; Devasirvatham et al., 2015), resulting in
poor pod set. Heat stress can have a highly destructive effect on
grain growth and development in chickpea (Wang et al., 2006).
The grain yield of chickpea is related to its phenology, which is
influenced by temperature range (Jumrani and Bhatia, 2014).
High temperatures (> 35°C) during the reproductive stage is a
major constraint for chickpea productivity (Siddique et al., 1999;
Wang et al., 2006; Basu et al., 2009), with temperatures >30°C
reducing grain weight and number (Kobraee et al., 2010).
Substantial reductions in chickpea yield have been observed for
even a 1°C rise in temperature beyond the threshold (Kalra et al.,
2008). Yield losses have increased to 100% in many chickpea
genotypes, with increasing temperature (Canci and Toker, 2009).
High temperature severely affects podding in chickpea; the
magnitude of which may be due to impaired source and sink
relations from green leaves to anther tissue that leads to the
mortality of pollen grains (Awasthi et al., 2014). Heat stress after
flowering and grain filling reduced chickpea yield, due to
increased senescence and reduced grain set and grain weight
per plant (Wang et al., 2006). Post-anthesis, both grain numbers
and weight decreased at high temperatures, leading to lower
grain yields (Summerfield et al., 1984; Wang et al., 2006;
Devasirvatham et al., 2013). Heat stress, in future, would
February 2020 | Volume 10 | Article 1759
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considerably reduce the grain yields in several crops, including
chickpea, in many parts of the world, and thus deserves serious
attention to develop heat-tolerant cultivars. Developing new
cultivars with improved adaptation to high temperature is vital
for increasing worldwide chickpea production.

Winter sown crops in all parts of world are prone to terminal
drought, however, drought is not confined to terminal stages but
it may occur at any plant growth stage. Spring-sown chickpea in
WANA region and semi-arid tropics (SAT) faces drought at the
vegetative as well as reproductive stages (Silim and Saxena, 1993)
leading to 30 to 100% yield losses, depending on the genotype,
and severity as well as timing of drought (Singh, 1993; Leport
et al., 1999; Canci and Toker, 2009). Chickpea can tolerate
drought stress based on “escape,” “tolerance,” and “avoidance”
three important mechanisms (Levitt, 1972). The principle of
drought escape constitutes completion of plant's life-cycle before
the onset of drought stress by hastening the phenological events
(Levitt, 1972; Berger et al., 2016). Drought avoidance mechanism
features minimum water loss and maximizing water use (Levitt,
1972). Usually, under central and south Indian conditions where
chickpea is grown under stored soil moisture and having high
water holding capacity soil, chickpea withstands drought stress
through employing drought escape and drought avoidance
mechanisms (Berger et al., 2006; Berger et al., 2016). However,
this drought avoidance strategy remains ineffective under
Mediterranean climates in Western Australia featuring low
water holding capacity soil (Berger et al., 2016). The sources of
resistance to these stresses are available either in the cultigens
(heat and drought stress) or wild relatives (cold stress), and can
be exploited to develop stress-resilient chickpea cultivars. The
methodologies may be as simple as hybridization to use of
marker assisted breeding [for genes as well as quantitative trait
loci (QTLs)] or development of transgenics. QTLs for drought
and temperature tolerance and in several cases genes within QTL
regions have already been identified (Varshney et al., 2013a;
Varshney et al., 2016; Devasirvatham and Tan, 2018; Kaloki
et al., 2019). Genic, genetic, physiological, and biochemical basis
of stress tolerance, once explored sufficiently, are expected to
form the guiding principles for development of stress
management strategies in chickpea. The objectives of
sustainability of chickpea productivity or enhancing it further
under changing climates can not be achieved until chickpea
cultivars tolerant to combined stress, such as drought and heat,
and drought and cold are developed. Various defense
mechanisms regulating chickpea's adaptation during
temperature and drought stress, especially the combined
stresses, also need to be investigated (Upadhyaya et al., 2012;
Awasthi et al., 2015; Khan et al., 2019a; Khan et al., 2019b). Here,
we update the research status on drought and temperature stress
in chickpea, and suggest appropriate management strategies to
develop stress-tolerant genotypes.

Effects of Cold Stress
Chickpea (C. arietinum L.) has evolved in the Mediterranean
region and developed sensitivity to low temperature, with
adverse effects on growth and yield (Croser et al., 2003; Kaur
et al., 2008a; Thakur et al., 2010; Kumar et al., 2013). About half
Frontiers in Plant Science | www.frontiersin.org 3
of the productivity losses in chickpea are due to exposure to low
temperature (Saxena, 1990). Chilling stress in chickpea mostly
affects the northern parts of India and southern Australia, as
temperatures drop below 15°C at flowering (Srinivasan et al.,
1998; Clarke et al., 2004; Berger et al., 2006). The reproductive
phase is critical for crop productivity (Thakur et al., 2010);
chilling stress in chickpea causes flower abortion, pollen, and
ovule infertility, disrupts fertilization, reduces pod set, retards
seed filling, and reduces seed size and ultimately crop yield
(Clarke and Siddique, 2004; Nayyar et al., 2005b; Nayyar et al.,
2007; Thakur et al., 2010; Kumar et al., 2011). Low temperatures
can limit chickpea growth and vigor at all phenological stages but
are most damaging during the reproductive stage.

Germination and Vegetative Growth
Chickpea is a cool-season crop that is exposed to chilling (3–8°C)
or even freezing temperatures during germination, which can
affect seedling establishment and reduce seedling vigor (Chen
et al., 1983; Srinivasan et al., 1998; Bakht et al., 2006b). Several
interacting factors (genotype, temperature, duration and time of
exposure, and seed moisture content prior to imbibition)
mediate seed responses to low germination temperatures.
Roberts et al. (1980) and Singh et al. (2009) demonstrated that
low temperature (10°C) decreased the germination rate of
chickpea seeds. The recommended threshold temperatures
range for chickpea germination varies from 5 to 35°C and
optimum germination temperature is 20°C (Singh and
Dhaliwal, 1972; Ellis et al., 1986; Auld et al., 1988; Calcagno
and Gallo, 1993). Chickpea, along with many other chilling-
sensitive species, is prone to “imbibitional chilling injury” (Tully
et al., 1981). In the field, chilled seeds are often vulnerable to
infestation by soil organisms, which reduces seedling survival.
Chen et al. (1983) observed that the greatest sensitivity to cold
occurs in the first 30 min of imbibition in chickpea and low
temperature (3 to 8°C) during imbibition reduced chickpea
germination by 15%. The combination of imbibition at low
temperature and fast water uptake reduced germination by
65% (Tully et al., 1981; Chen et al., 1983). In Australia, chilling
damage during imbibition has been implicated in the poor
establishment of some chickpea genotypes in cold and wet
soils combined (Knights and Mailer, 1989). The rapidity of
imbibition is a factor, controlled principally by the thickness of
the testa (Tully et al., 1981; St. John et al., 1984). Kabuli types
generally have thinner testa than desi types, resulting in more
rapid imbibition of water and consequently greater levels of
imbibitional damage.

Another factor affecting germination success at cold
temperatures is the seed phenolic content (Auld et al., 1983;
Wery, 1990), which presumably confers fungal properties (Wery
et al., 1994). Thus, the poor germination of kabuli types is partly
due to their thin white testa being more susceptible to soil
pathogens. Cold stress adversely affects the mobilization of
food reserves from cotyledons that decreases embryonic
growth, germination, and growth of chickpea seedlings (Croser
et al., 2003). Ellis et al. (1986) found genotypic differences in the
rate of germination with temperature. Given the existing genetic
variability, it should be possible to select genotypes that are
February 2020 | Volume 10 | Article 1759
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resistant to temperature stress during germination. Some seed
treatments, such as hydropriming for 12 h or osmopriming
(PEG/0.5 MPa) for 24 h have increased germination of
chickpea in low-temperature soil conditions (Elkoca et al.,
2007), and may be linked to cross-tolerance. Chickpea plants
growing under field conditions, especially in India and Australia,
are exposed to gradually decreasing temperatures and
photoperiods during the early vegetative stage (Croser et al.,
2003). The minimum temperature that chickpea generally seems to
survive is –8°C; however, some lines can tolerate as low as –12°C
post-emergence (Wery, 1990; Croser et al., 2003). Thus, there is
potential to select for cold tolerance at germination and during
seedling growth from the existing chickpea germplasm.

Reproductive Growth and Yield
The flowering phase, the crucial phase in the plant life cycle that
determines the yield of chickpea, is most sensitive to cold stress
(Sharma and Nayyar, 2014). Temperatures below 15°C result in
the abortion of chickpea flowers leading to decline in the number
of pods per plant and seeds per pod (Srinivasan et al., 1999; Berger
et al., 2004; Clarke and Siddique, 2004; Nayyar et al., 2005b; Berger
et al., 2006; Kaur et al., 2011; Kumar et al., 2011). The causes of
flower abortion in sensitive genotypes of chickpea are fairly well
understood. It is well documented that male gametophyte of
chickpea is highly sensitive to cold stress and in genotypes
sensitive to cold, both microsporogenesis and subsequent pollen
development are inhibited at temperatures below 10°C (Sharma
and Nayyar, 2014; Kiran et al., 2019). Identification of flower and
anther development stages in chickpea allowed studying the
impact of cold at different flower development stages (Kiran
et al., 2019). Flowers of different development stages react
differently to cold stress (Kiran et al., 2019) e.g., low
temperatures terminate microsporogenesis in flowers at pre-
meiotic stage of anthers and microgametogenesis in those at
tetrad stage. In anthers at young microspore stage, low
temperatures inhibited anther dehiscence but did not inhibit
development of microspores to mature pollen stage. The pollen,
however, were sterile indicating that cold at this stage affected
pollen viability, in addition to anther dehiscence (Oliver et al.,
2007). Exposure at mature pollen stage delayed anther dehiscence
and induced partial pollen sterility (Kiran et al., 2019). The
quantum of low temperatures induced pollen sterility also
depends upon the age of the flower with older flowers producing
less amount of sterile pollen as compared to younger flowers, e.g.,
low temperature treatment at young microspore stage led to
complete sterility of pollen whereas those at vacuolated
microspore stage 23.59% pollen were viable, at vacuolated pollen
stage 52.4% pollen were viable, at mature pollen stage 65.5% pollen
were viable (Kiran et al., 2019). Apparently, male gametophytes of
younger flowers are more prone to damage by cold stress as
compared to the older ones. In contrast, cold-tolerant chickpea
genotypes maintain functional anther and pollen development,
leading to pod formation and seed set during chilling stress (Clarke
and Siddique, 2004; Kumar et al., 2011). Cold stress also impairs
pollen tube growth in the style and, consequently, fertilization
failure (Clarke and Siddique, 2004; Nayyar et al., 2007).
Frontiers in Plant Science | www.frontiersin.org 4
Chilling stress also has an adverse effect on gynoecium to
impair ovule function; Srinivasan et al. (1998) reported missing
embryo sacs in some chickpea cultivars, which reduced the
number of fertilized ovules in all cultivars during cold stress.
Chilling stress reduces ovule viability, stigma receptivity, and
pollen load on stigma (Kiran et al., 2019). While studying
flower abortion due to cold stress in chickpea, it was observed
that the older flowers, that have sufficient viable pollen were
also aborted (Kiran et al., 2019). Very low ovule viability
accompanied by very low stigma receptivity in older flowers
pointed toward role of female gametophyte factors in lack of
fertilization and flower abortion under low temperature stress
in addition to male factors. The role of female gamete was also
highlighted using pollen from cold treated flowers to pollinate
plants growing at normal temperatures and vice-versa (Nayyar
et al., 2005b). The low temperature (4°C) used by Kiran et al.
(2019) was, however, considerably lower than the threshold of
15°C (Srinivasan et al., 1998; Clarke et al., 2004; Berger et al.,
2004; Berger et al., 2005; Bakht et al., 2006b; Berger, 2007) or
21°C (Berger et al., 2012) reported for reproduction in
chickpea. Further studies at temperature slightly below 15°C
need to be conducted to understand behavior of flowers to
threshold low temperature stress.

Ectopic persistence of tapetum in low temperature treated
chickpea flowers indicates disruption of normal process of
tapetum programmed cell death under low temperatures
(Kiran et al., 2019). Such disruption might have imbalanced
nutrition to developing microspores. It has been already
documented that low temperatures during flowering cause
nutritional deficiencies in the tapetum (Nayyar et al., 2005b;
Sharma and Nayyar, 2014) and decrease in sugar levels in anthers
and pollen grains, which may be a primary cause of flower
abortion. Low temperatures disrupt the mobilization of
carbohydrates from source to sink and lead to nutrient
deficiencies in stylar tissues too (Nayyar et al., 2005b). Cold
stress also induces the synthesis of abscisic acid (ABA) in
chickpea flowers, indicating a correlation between flower
abortion and high ABA concentration (Thakur et al., 2010). In
chickpea exposed to low temperatures (12–15/4–6°C day/night),
increased ABA concentrations caused flowers to abort (Nayyar
et al., 2005a). ABA interferes with sucrose translocation to
flowers (Kumar et al., 2010) probably by inhibiting sucrose
transporter gene invertase as has been observed in crops like
rice (Oliver et al., 2005; Sharma and Nayyar, 2016).

Chilling stress has a damaging effect on flower number, pod
set, seed growth, and development in chickpea (Croser et al.,
2003; Berger et al., 2004; Nayyar et al., 2005b; Thakur et al.,
2010). Moreover, low temperature impairs seed filling processes,
which reduces the size of chickpea seeds (Nayyar et al., 2005b;
Nayyar et al., 2007; Kaur et al., 2008a). Grain yield is related to
phenology of chickpea and a combination of low temperature
induced factors i.e., poor plant growth, delay in flowering, flower
abortion, delay in podding, pod abortion, and poor seed filling
contribute to lower the yield of chickpea under cold (Berger et al.,
2004). Poor pod set/filling as a result of cold stress is due to the
disruption in photosynthesis and inhibition of translocation of
February 2020 | Volume 10 | Article 1759
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initiating signals from leaves to the meristem or by changing
plant architecture (Gogoi et al., 2018). The studies on estimation
of yield losses in chickpea due to cold are scanty. Singh et al.
(1993) grew cold tolerant and cold susceptible genotypes of
chickpea both in spring (temperatures normal for crop) and
autumn (temperatures stressful as low as −10°C) in Syria and
compared yield among the genotypes and seasons. A highly cold
susceptible chickpea line with cold rating of 7.8 (1 = no visible
cold damage, 9 = all plants killed) yielded 161 kg/ha during
winter (low temperature) season and 474 kg/ha during warmer
spring season (Singh et al., 1993). In comparison to this, a line
with cold rating of 5.2 yielded 632 kg/ha during winter season
and 251 kg/ha during spring season (Singh et al., 1993)
indicating that cold in susceptible genotypes caused huge yield
losses. The spring season due to short duration, reduces
productivity of chickpea as compared to longer winter seasons
that allows more time for crop to grow and consequently higher
yields. Nayyar et al. (2005c) reported 30% increase in seed yield
per plant in glycine betaine (a compatible solute that accumulate
in cold-tolerant plants in higher amounts under cold stress)
treated plants over control in winter sown chickpea grown in low
temperature prone northern regions of India (pot-based studies).
Since, winter sown chickpea yields more as compared to spring
sown one if genotype has adequate cold-tolerance, the emphasis
worldwide is on development of cold tolerant cultivars of
chickpea to increase productivity of the crop. Wild relatives of
chickpea in primary gene pool (Cicer reticulatum, Cicer
echinospermum) that are crossable with the cultigens are
tolerant to cold can be ideal sources to introgression cold
tolerance to chickpea for development of varieties for winter
season (Berger et al., 2012).

Physiology
The physiological functions of plants are adversely influenced by
low temperature (<20°C) (Thakur et al., 2010). Low temperatures
(17.6/4.9°C; day/night for 26 days during reproductive phase)
resulted in reduction in relative leaf water content, possibly due
to a decline in root hydraulic conductivity, oxidative and
membrane damage, and chlorophyll loss (Kumar et al., 2011).
Chilling stress (13/10°C; day/night for 18 h) during germination
considerably inhibited a-amylase activity, disrupted sugar
metabolism, reduced leaf water status, and uptake of mineral
elements (N, P, and K) that delayed seedling emergence and
caused poor seedling growth in chickpea (Farooq et al., 2017).
Temperature changes can impact root physiology, thus affecting
ion absorption and may result in visible deficiency symptoms
(Gregory, 1988). Low-temperature stress (5°C for 3 days)
inhibited root growth and the capacity for water and mineral
uptake to subsequently impact the nutritional influences on plant
growth (Aroca et al., 2003; Heidarvand et al., 2011). Low
temperatures (5/5°C for 4 days) also reduced the leaf water
content because the stomata are unable to close (Lee et al., 1993;
Farooq et al., 2009). Flower abortion and poor pod set in
chickpea due to cold stress (12–15/4–6°C day/night during
flowering stage) was attributed to decreasing levels of sucrose,
glucose, and fructose in anthers and pollen in sensitive genotypes
(Nayyar et al., 2005a). Endogenous proline and carbohydrates
Frontiers in Plant Science | www.frontiersin.org 5
(glucose, rhamnose, and mannose) increased with cold stress (3°C
for 7 days) in chickpea genotypes, and may play a role in
osmoregulation and meeting the enhanced energy requirements
(Saghfi and Eivazi, 2014); the cold-tolerant genotypes performed
better in this regard.

Cellular and Physiological Mechanisms for
Cold Survival
Low temperatures (0–10°C) result in rigidification of the plasma
membrane that is sensed by plant cells (Yadav, 2010) to impair
the integrity of phospholipids in the plasma membrane (Badea
and Basu, 2009). In cold-tolerant chickpea genotypes, the
content of unsaturated fatty acids increased during low-
temperature exposure (10°C for 5 days followed by 4°C for 2
days) (Shahandashti et al., 2013), which possibly contributed
toward maintenance of membrane integrity during cold stress.
Mitochondria are the most vital cell organelles and play an
important role in stress tolerance mechanisms by interacting
with energy-dissipating elements such as alternative oxidase
(AOX) (Borecky and Vercesi, 2005; Rurek et al., 2015). In
optimum conditions, plant cells carry on the cytochrome-
mediated pathway with the help of the mitochondrial electron
transfer chain, which results in ATP synthesis by using the
proton motive force (Dinakar et al., 2016). In unfavorable
conditions, a new pathway is involved in which cytochrome
reductase and cytochrome oxidases are replaced by AOX to
protect respiration and metabolic processes. This suggests that
mitochondria have the flexibility to alter their activities and
enhance AOX activity during environmental stress (Shi et al.,
2013; Vanlerberghe, 2013). There are different genes for AOXs,
depending on plant species; for example, AOX in chickpea is
encoded by the aox3 gene in mitochondria (Karami-Moalem
et al., 2018), and might be involved in cold tolerance.

Reactive oxygen species (ROS) are produced in response to
cold stress in chickpea (Kumar et al., 2011) and damage vital
molecules in cells, including membranes. Generally, lipid
peroxidation and hydrogen peroxide concentrations are
measured as markers of temperature-induced oxidative stress
(Awasthi et al., 2015). A positive correlation was observed
between lipid peroxidation and malondialdehyde (MDA)
concentration in Cicer occidentalis (Shahandashti et al., 2013).
Plant cells have different mechanisms to combat oxidative
damage by activating ant oxidative systems that include both
non-enzymatic (e.g., tocopherols, ascorbate, proline) and
enzymatic [e.g., superoxide dismutase (SOD), catalase (CAT),
and ascorbate peroxidase (APX)] (Turk et al., 2014; Zouari et al.,
2016). A few studies in chickpea have identified an increase in the
double bond index due to enhanced lipoxygenase (LOX) activity,
suggesting that increased LOX activity plays an important role in
providing cold tolerance in chickpea (Padham et al., 2007;
Wasternack, 2007; Pushpalatha et al., 2011). The up-regulation
of various types of antioxidants has been correlated with cold
tolerance in chickpea (Nayyar and Chander, 2004).

Some plant regulating molecules look promising for
imparting stress tolerance (Bhandari et al., 2017), and have
been investigated in chickpea for enhancing cold tolerance.
Polyamines (PAs), with a polycationic nature at a physiological
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pH, bind strongly to the negative charges in cellular components
such as nucleic acids, proteins, and phospholipids (Bouchereau
et al., 1999) and interact with membrane phospholipids to
stabilize membranes under stress conditions (Roberts et al.,
1986). The depletion of PAs as a result of cold stress (5 to 25°
C for 4 days) has been linked to the loss of flowers and pods
(Nayyar and Chander, 2004). Exogenous application of PAs
reduced H2O2 levels and MDA content and increased
antioxidant levels in chickpea plants subjected to cold stress
(Nayyar and Chander, 2004). Hence, it may be possible to
improve cold tolerance in chickpea by increasing the content
of PAs using genetic manipulation or exogenous application.
Besides PAs, abscisic acid (ABA) is also involved in providing
stress tolerance (Trivedi et al., 2016); cold-stressed (10–12/2–4°C
day/night at bud stage) chickpea plants treated exogenously with
10 µm ABA had improved pollen viability, pollen germination,
flower retention, and pod set (Kumar et al., 2008). At the cellular
level, ABA-treated plants increased activities of SOD, catalase
(CAT), ascorbate peroxidase (APX), ascorbic acid, glutathione,
and proline. Trehalose, a disaccharide of glucose plays an
important role as a compatible solute, stabilizes biological
structures under abiotic stress (Jain and Roy, 2009), including
dehydrated enzymes, proteins, and lipid membranes, and
protects biological structures from damage during desiccation
(Fernandez et al., 2010). It also acts as a membrane and molecule
chaperone during water or cold stress (Crowe, 2007; Fernandez
et al., 2010). Seed priming with trehalose reduced the oxidative
damage to biological membranes and other vital organelles
during cold stress (13/10°C for 18 h) in chickpea, and
improved carbon assimilation, resulting in better seedling
growth (Farooq et al., 2017). Increased accumulation of total
and reducing sugars (especially trehalose) may protect against
chilling stress by stabilizing cell membranes, ceasing protein
denaturation and acting as a scavenger of free radicals
(Benaroudj et al., 2001; Farooq et al., 2009).

Glycine betaine (GB), an amino acid, is a cryoprotective
solute that protects the activities of enzymes and proteins and
stabilizes membranes and photosynthetic apparatus under
chilling (12–14/3–4°C day/night) and freezing temperatures at
bud and pod filling stage (Rhodes and Hanson, 1993; McNeil
et al., 1999; Nayyar et al., 2005c). Cold stress (12–14/3–4°C day/
night at bud stage) decreased the endogenous GB concentration
in chickpea leaves and flowers, resulting in the loss of pods
(Nayyar et al., 2005c). Exogenously applied GB to chickpea
plants at bud and pod filling stages during cold stress
improved flower function, pollen germination, pollen tube
growth, stigma receptivity, and ovule viability, leading to floral
retention, pod set, and pod retention (Nayyar et al., 2005c).
Moreover, treatment with GB at the pod filling stage improved
seed yield/plant, number of seeds/100 pods. Cold tolerance
induced by GB may be related to an increase in relative leaf
water content (RLWC), chlorophyll and sucrose, and decrease in
ABA and active oxygen species (malondialdehyde and hydrogen
peroxide) (Nayyar et al., 2005b; Nayyar et al., 2005d; Nayyar
et al., 2005e). Possible roles for GB in stress tolerance include
stabilization of complex proteins and membranes in vivo,
Frontiers in Plant Science | www.frontiersin.org 6
protection of transcriptional and translational machinery, and
as a molecular chaperone for refolding enzymes (Rhodes and
Hanson, 1993).

Cold stress is lethal to most plants; despite this, temperate
plants survive the winter months through acclimation processes,
which suggest that plant exposure to low but not freezing
temperatures confers cold tolerance (Bohn et al., 2007). A
comparative study on cold-acclimated (CA) and non-
acclimated (NA) chickpea plants showed an increase in the
ratio of unsaturated fatty acids and saturated fatty acids in CA
plants (Kazemi-Shahandashti et al., 2014). Antioxidative
enzymes, such as SOD, CAT, guaiacol peroxidase (GPX), and
lipoxygenase (LOX), were highly active in CA plants and resulted
in enhanced cold tolerance, compared to NA plants. The
transcription levels of CaCAT and CaSOD genes were higher
in CA plants than NA plants. Moreover, the transcription level of
the Ca-Rubisco gene was higher in CA plants than NA plants.
Thus, cold acclimation (23°C for 20 days, 10°C for 5 days,
followed by −10°C for 15 min.) had a positive effect on
chickpea plants during long-term cold stress (Kazemi-
Shahandashti et al., 2014), and may be a critical means of
increasing cold tolerance.

Genomics and Transcriptomics in Elucidating
Molecular Responses of Chickpea Under Cold
The “omics” approaches such as genomics, transcriptomics,
proteomics, and metabolomics have become integral part of
scientific strategies to study regulation of plants' responses to
abiotic and biotic stresses. Between the genomics and
transcriptomics, genomics provide the knowledge of structure
of the genome including genes, promoters, regulatory elements
etc. whereas the transcriptome elucidate the functional
component of genome at any stage of plant growth.
Consequently, transcriptomics reveal changes, not only in the
expression of genes in a plant under abiotic stresses but also the
gene regulatory mechanisms that govern differential expression
of genes. Transcriptomics also provide information on
differences in gene regulation and expression between the
tolerant and sensitive genotypes thereby depicting precisely the
mechanisms that lead to tolerance or susceptibility. Such detailed
information can also be used to understand coordination among
different regulatory pathways and may be exploited in the
agricultural crops to develop appropriate strategies to manage
the abiotic stresses under field conditions. In chickpea, global
transcriptome expression using complementary DNA-amplified
fragment length polymorphism (cDNA-AFLP), differential
display, or microarray techniques have been used to identify
genes of potential importance for acclimatization/tolerance to
cold and elucidate pathways regulating this process (Mantri et al.,
2007; Dinari et al., 2013; Sharma and Nayyar, 2014). Using
microarrays, 210 differentially expressed genes under cold were
identified (Mantri et al., 2007). The cDNA-AFLP in association
with 256 primer combinations revealed different transcript-
derived fragments (TDFs) associated with cold in chickpea
leaves (Dinari et al., 2013). Some of the TDFs showed a
differential expression pattern and belonged to putative
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functions associated with transport, signal transduction
pathways, metabolism, and transcription factors. Various genes
are activated in chickpea during low-temperature stress, which
encode for transcription factors and components involved in
detoxification processes and cell signaling. For example, the gene
encoding phosphatidylinositol-4-kinase, a key enzyme in an
influx of Ca2+ into the cytoplasm, expressed in Jk649809 and
Jk649838 chickpea genotypes, (Scebba et al., 1998). The mitogen-
activated protein kinase was also up-regulated in Jk649803
during cold acclimatization and might be a signal molecule for
cold tolerance. It was concluded that cold tolerance in chickpea is
regulated by a relatively small number of genes (Dinari
et al., 2013).

Transcriptome analysis of meiotic anthers of chickpea
revealed that cold-tolerance-associated genes belonged to four
main categories—carbohydrate/triacylglycerol metabolism,
pollen development, signal transduction, and transport
(Sharma and Nayyar, 2014). All of the genes of these four
categories were upregulated in cold-tolerant anthers, with the
exception of one pollen development gene that was down-
regulated. Genes involved in microspore/pollen growth (tetrad
separation, pollen expansion, increased vascular transport, fatty
acid transport, pollen maturation, pollen exine formation, pollen
tube growth, fertility, and pollen development) were switched-on
in cold-tolerant genotype under cold stress (Sharma and Nayyar,
2014). Upregulation of genes associated with carbohydrate and
triacylglycerol metabolism suggests that cold-tolerant chickpea
plants produce viable pollen during chilling stress by
maintaining pollen development and carbohydrate/
triacylglycerol metabolic pathways (Sharma and Nayyar, 2014).
Another study reported increased expression of 109 and 210
genes when chickpea was exposed to drought and cold stress,
respectively (Mantri et al., 2007). Of these, 15 and 30 genes were
differentially expressed between tolerant and sensitive genotypes,
respectively, which coded for various regulatory and functional
proteins. Significant differences were observed in stress responses
within and between tolerant and susceptible genotypes
indicating multi-gene control and a complex abiotic stress
response mechanism in chickpea. This study demonstrated
that the leaves of cold-tolerant chickpea over expressed serine/
threonine protein kinase while the flowers of cold-sensitive
chickpea up-regulated SOD, a copper chaperone precursor
involved in oxidative stress. Auxin repressed protein
(DY475078) and auxin-responsive protein IAA9 (DY396315)
transcripts, which are involved in cell rescue, were induced in the
flowers and leaves of both the sensitive genotypes. Two
phosphate-induced proteins (DY475076 and DY475172) were
induced in flowers/pods of tolerant-1 (Sonali) chickpea genotype
(Mantri et al., 2007). It is worth mentioning here that
phosphorus is responsible for flower formation and seed
production. Sucrose synthase (DY475105) was also induced in
leaves of Sonali, which lead to the accumulation of sucrose that
functions as an osmolyte and may provide cold tolerance.

To compare similarities and differences between cold-stressed
anthers and gynoecium, a small subset of 25 genes that were up-
regulated in anthers under cold, was used to study gene
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expression in gynoecium (Sharma and Nayyar, 2014). While all
the genes were expressed in both the organs, nine had
contrasting expression patterns in both the organs, i.e., an
increase in one organ and decrease in the other (Sharma and
Nayyar, 2014). The genes expressed under cold were also
compared with those expressed under drought and salinity
(Mantri et al., 2007). Some of the genes were common between
the stresses while others were unique (Mantri et al., 2007; Mantri
et al., 2010), which suggests that some segments of abiotic stress
responsive machinery are shared by different abiotic stresses.

Whole genome sequencing (WGS) has also provided insights
into cold-tolerance mechanisms in chickpea. The technique has
been exploited to generate genomic resources for better
understanding of cold-tolerance and cold-susceptibility in
chickpea, such as identification of a flowering repressor gene
MtVRN2 in the confidence interval of a QTL (Mugabe et al.,
2019), using the reference genome of CDC Frontier chickpea.
GWS has also been used to identify mitogen-activated protein
kinases (MAPKs) in chickpea and the impact of cold on their
expression. Of the 19 MAPK genes detected in chickpea, 15 were
induced by low temperature (4°C, chilling stress) compared to
control plants (Singh et al., 2018). Similarly, 36 genes encoding
the K+ transport system in the chickpea genome were identified,
along with their promoters with putative cold signals (Azeem
et al., 2018). These studies provided new vital information about
the genes, which might be associated with cold tolerance to
chickpea and indicated that cold-tolerance mechanisms might
have organ specific distinctions e.g., leaf, anther and gynoecium.
To confirm association of these candidate genes in cold tolerance
or cold susceptibility, further studies need to be conducted using
appropriate models.

There is also a study indicating that changes in methylation
patterns may be associated with cold tolerance in chickpea.
Prolonged cold stress in a cold-tolerant genotype increased
demethylation, relative to a cold-susceptible genotype,
suggesting a higher potential for activation of cold-stress-
responsive genes (Rakei et al., 2016). Thus, WGS and its
further exploitation has generated genomic resources and
enhanced our understanding of mechanisms governing cold
tolerance/susceptibility in chickpea. These resources are ideal
starting points for subsequent studies aimed at the regulation of
cold tolerance in chickpea. The recent description of flower and
anther development stages in chickpea (Kiran et al., 2019) is also
expected to aid in the identification of molecular mechanisms for
cold tolerance during different stages anther development.

Physiological studies (see previous sections for details) point
to prominent role of carbohydrate metabolism, antioxidants, and
free amino acids in cold-tolerance, however, gene regulatory
networks for carbohydrates, antioxidants, and free amino acids
under cold-tolerance have not been studied in detail. To
understand intricacies and reveal complete picture of cold-
susceptibility or tolerance in chickpea, merger of physiological
and gene regulation knowledge under cold stress is essential.
There is also a need to generate information on gene regulation/
expression for antioxidants, carbohydrates, and free amino acids
where physiological studies have already been conducted. Since,
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mechanisms of cold-tolerance by leaves may be different from
flowers, which are complex organs involving microsporogenesis,
microgametogenesis , megasporogenesis , poll ination,
fertilization, and seed development (Kiran et al., 2019), studies
also need to be launched to understand mechanisms of pollen
viability/ovule viability under cold stress by the cold-
tolerant genotypes.

Genetic Variability and Breeding for Cold Tolerance
Winter-sown chickpeas face cold stress during reproductive
growth resulting in flower drop, pod drop, and poor seed set
(India and Australia) and restricted vegetative growth in young
plants (Mediterranean region) (Singh et al., 1989; Saxena, 1990;
Chaturvedi et al., 2009; Sharma and Nayyar, 2014; Sharma and
Nayyar, 2016). The cold environment differs in these chickpea
cultivation areas; temperatures remain subzero (freezing) for
some time during early crop growth in the Mediterranean
region but usually above zero in Indian and Australian regions.
Consequently, the goals of cold-tolerance breeding will vary
between regions, i.e., genotypes should be selected for freezing
tolerance (below 0°C) during early growth in the Mediterranean
region and chilling tolerance (up to 0°C) during reproductive
growth in Indian subcontinent (Chaturvedi et al., 2009).
Screening scales based on plant death at subzero temperatures
are well described for cold-tolerant chickpea germplasm (Singh
et al., 1989 [1–9 scale]; Saccardo and Calcagno, 1990 [0–5 scale]).
However, no screening scales have been devised to identify
chilling tolerance during reproductive growth, and appears to
be due to the complexity of processes at reproductive phase
(flowering, podding, seed set, seed development, etc.) and
mechanisms by which cold impedes flower, anther, and pod
development (Sharma and Nayyar, 2014; Kiran et al., 2019).
Moreover, temperature sensitivity varies for flower, pod, and
seed growth. For example, the critical temperature for seed
growth is higher than that required for pod set (Srinivasan
et al., 1998). Evidence is emerging that pod set is related to
cumulative temperature rather than minimum temperature, as
plants growing at 0°C night temperature and 20°C day
temperature bore pods (Srinivasan et al., 1998). These
observations need to be confirmed, as an earlier study reported
that pod set only occurred at minimum night temperatures
above 8°C (Saxena, 1990).

Several studies have been undertaken on freezing tolerance in
the cultigens or Cicer species. Within C. arietinum, germplasm
including M 450, ILC 8262, ICCV 88501, ICCV 88502, ICCV
88503, ICCV 88506, FLIP 84-70C, FLIP 84-71C, and FLIP84-79
C are tolerant to cold (Singh et al., 1990; Singh and Saxena, 1993)
along with FLIP 81-293C, FLIP 82-127C, FLIP82-128C (Wery,
1990), ILC 8262 (a germplasm line), ILC 8617 (a mutant) and
FLIP 87-82C (a breeding line) (Singh et al., 1995), ICCV 88501
and ICCV 88503 (Srinivasan et al., 1998), FLIP95-255C, FLIP93-
260C and Sel95TH1716 (Kanouni et al. , 2009), and
Sel96TH11404, Sel96TH11439, Sel96TH11488, Sel98TH11518,
x03TH21, and FLIP93-261C (Saeed et al., 2010). Freezing
tolerance in chickpea is dominant over susceptibility and
controlled by at least five sets of genes (Malhotra and Singh,
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1990). Further genetic analysis revealed the presence of genic
interactions (additive × additive and dominance × dominance)
with duplicate epistasis and additive gene effects (Malhotra and
Singh, 1991). The two types of chickpeas, desi, and kabuli, do not
differ in their reaction to cold (Berger et al., 2012).

There is growing evidence that wild relatives of chickpea
possess a higher degree of cold tolerance than the cultigens
(Singh et al., 1995; Berger et al., 2012). Wild Cicer species of the
primary gene pool are readily crossable to the cultigens and can
be the potential donors of cold tolerance. Wild species were
evaluated extensively for cold tolerance both at freezing (young
plants) and to a limited extent in chilling environments (at the
reproductive stage). Among the wild relatives, Cicer bijugum, C.
echinospermum, and Cicer judaicum were more cold-tolerant
than C. arietinum during early growth (Singh et al., 1990;
Malhotra, 1998) of the reproductive stage (Berger et al., 2012).
Among 59 lines from seven annual wild Cicer species, 26 lines of
C. reticulatum, 10 of C. bijugum, 4 of C. echinospermum, 2 of
Cicer pinnatifidum, and 1 of C. judaicum tolerated freezing
(subzero conditions) during early vegetative growth (Singh
et al., 1995). Among the cold-tolerant wild species, five lines of
C. bijugum and four of C. reticulatum (highly tolerant) were
superior to the cultigens for cold tolerance. In another study,
Toker (2005) evaluated 43 accessions of eight annual wild Cicer
species (C. bijugum, Cicer chorassanicum, Cicer cuneatum,
C. echinospermum, C. judaicum, C. pinnatifidum, C.
reticulatum, and Cicer yamashitae) for cold tolerance in young
plants at subzero temperatures (freezing tolerance). C. bijugum
was the best source of cold tolerance, with all six accessions
under study being cold-tolerant (AWC 6: free from any damage,
AWC 2 and AWC 4: highly tolerant, AWC 1, AWC 3, and AWC
5: tolerant) (Toker, 2005). Eleven of 15 accessions of C.
reticulatum, 4 of eight C. echinospermum, and 1 of five C.
pinnatifidum (score 3) were cold-tolerant.

Chilling-tolerant chickpea germplasm—CTS 60543
(ICCV88516), CTS11308 (ICCV88510)—has been identified
(Clarke and Siddique, 2004). Pollen selection [transfer of plants
to cold stress (12/7°C) for 3 days immediately after pollination
followed by F1 seed collection] was used to develop chilling-
tolerant chickpea varieties including Rupali (WACPE 2095) and
Sonali (WACPE 2075) (Clarke et al., 2004). Similar to freezing
stress, accessions of C. arietinum had less chilling tolerance than
wild accessions (Berger et al., 2012). Even Rupali and WACPE
2078 developed by Clarke et al.(2004), when grown at∼10°C post-
anthesis, had large flower–pod intervals (>65 days) indicating a
low degree of cold tolerance (Berger et al., 2006). Among the wild
species, an accession of C. echinospermum had robust chilling
tolerance, whereas JM2106 of C. reticulatum was also chilling
tolerant (Clarke and Siddique, 2004; Berger et al., 2012). The C.
echinospermum accession not only expressed the early podding
character at low temperature but also yielded five times more than
the most productive chickpea cultivar. With duplications in gene
bank accessions of wild species of Cicer (Croser et al., 2003), the
actual number of cold-tolerant sources may be lower than that
reported in the literature. Nonetheless, wild Cicer species are
important sources for improving cold tolerance in chickpea.
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One of the major consequences of low temperature has been
hypothesized to be low sink utilization in northern regions of
India, where low temperature causes flower abortion or failure of
set pods (Saxena et al., 1988). To improve harvest index due to
pod set failure in this region, chilling-tolerant lines were crossed
with agronomic ally desirable lines (Saxena et al., 1988). Early
flowering and podding in cross bred lines improved harvest
index (50–54%) more than late flowering lines (39–42%). Cold-
tolerant wild species of Cicer, namely C. reticulatum and C.
echinospermum, have also been exploited to develop high-
yielding chickpea (Singh and Ocampo, 1997). Cold-tolerant
and Fusarium wilt resistant accession of C. reticulatum (ILWC
124) and C. echinospermum (ILWC 179) were crossed with
cultigens (ILC 482); one of the progenies out-yielded ILC 482
by 39%. In another study, lines derived from a cross of cultivated
chickpea and C. reticulatum out-yielded the check cultivars
(Singh et al., 2005). Both studies showed that wild Cicer is not
only a source of tolerance for abiotic stresses and diseases but can
contribute to yield enhancement in chickpea. Both chilling
tolerance during reproductive growth and yield enhancement
in pedigree lines indicate that wild species of the primary gene
pool have the potential to increase chickpea productivity in
Australia and the Indian subcontinent (the region with the
maximum area under chickpea) where cold stress coincides
with the reproductive phase of the crop and productivity is low.

Genomics Advancements for Developing Cold
Stress Tolerance in Chickpea
Generation of adequate genomic resources such as simple
sequence repeat markers (SSRs) and single nucleotide
polymorphism (SNPs) is essential for gene/QTL mapping and
for identifying genes in QTL intervals. Currently available
bioinformatics tools allow identification of molecular and
biological functions of genes in QTL intervals based on
existing scientific information, thereby allowing the selection of
candidate genes governing the trait. The gene linked markers or
QTLs can also be used to identify introgression of gene(s) into
elite cultivars using a technique called foreground selection and
recovery of recurrent parent genome using the background
selection. Our understanding of cold tolerance in chickpea has
increased considerably in the last decade, primarily due to
advances in sequencing technologies that enabled large-scale
decoding of genomic sequences at lower cost leading to gene
identification, gene regulation, or large-scale development of
DNA-based markers such as simple sequence repeats (SSRs)
and single nucleotide polymorphism (SNPs). Development of
reference genome sequences in chickpea (Jain et al., 2013;
Varshney et al., 2013b; Parween et al., 2015) provided the
much needed push in advancement of genomic resources in
chickpea including development of SSR or SNP markers,
identification of candidate genes within QTL intervals. Marker
developments have allowed identification of QTLs governing
tolerance to abiotic stresses. Association mapping of a panel of 44
genotypes was used to identify QTLs associated with freezing
tolerance; however, no QTL associated with cold tolerance could
be identified (Saeed and Darvishzadeh, 2017). The lack of
adequate marker density appears to explain the non-detection
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of QTLs linked to cold tolerance as only 64 AFLP markers were
used. Recently, a mapping population of 129 recombinant inbred
lines (RILs), derived from an interspecific cross between ICC
4958 (cold-sensitive, desi type, C. arietinum) and PI 489777
(cold-tolerant wild relative, C. reticulatum Ladiz), followed by
genotyping-by-sequencing was used to identify QTLs linked to
cold tolerance (Mugabe et al., 2019). A total of 747 SNP markers,
spanning 393.7 cM, were used in this study. The SNPs were more
abundant than traditional markers and had considerably higher
marker density, with an average of 1.8 SNPs cM−1. Freezing
tolerance in PI48977 was governed by three QTLs situated on
linkage groups (LGs) 1B, 3, and 8 (Mugabe et al., 2019); CT Ca-
3.1 (on LG3) and CT Ca-8.1 (on LG8) were more important and
accounted for 34 and 48% of the phenotypic variance for cold,
respectively. One of the parents used in the study, C. reticulatum,
requires vernalization, i.e., acceleration of flowering following
brief spells of cold exposure (van Oss et al., 2015) and QTLs for
vernalization response were also identified using a RIL
population where one of the parents was PI 489777 (Samineni
et al., 2016). It is worth mentioning here that cultigen, C.
arietinum, does not respond to vernalization (Berger et al.,
2005. Using 1,291 loci [SSRs, diversity array technology
(DArT), cleaved amplified polymorphic sequences (CAPs),
legacy markers, etc.] for QTL identification, a major
vernalization response QTL was identified (Samineni et al.,
2016). The QTL spanned 22 cM on LG3 and explained 47.9 to
54.9% of the phenotypic variation. Both studies, Samineni
et al.(2016) and Mugabe et al.(2019) used the same cold-
tolerant and vernalization responsive parent (PI 489777), and
identified the same QTL (CT Ca-3.1) linked to the cold tolerance
and vernalization response. This finding necessitates further
research to determine the relationship between cold tolerance
and vernalization response machinery in Cicer species. Using
CDC Frontier chickpea as a reference genome, a homolog of the
Med i c a g o t r un c a t u l a v e rn a l i z a t i on g en e named
VERNALISATION2‐LIKEVEFS box gene (MtVRN2) was
mapped in CTCa-3.1 confidence interval (Mugabe et al., 2019).
MtVRN2 is a repressor of the flowering locus T gene homolog
from M. truncatula and is a repressor of transition to flowering
(Jaudal et al., 2016). This example demonstrates that genome
sequences can be exploited effectively to narrow possible
candidate genes in QTL regions and vernalization response in
Cicermight be inversely related to flowering. None the less, QTLs
governing cold tolerance in chickpea or candidate cold tolerance
genes within these intervals are poorly explored so far as no
information is available for QTLs in other cold-tolerant
genotypes of C. reticulatum. Moreover, QTLs for cold-
tolerance within cold-tolerant genotypes of C. arietinum and
another annual wild relative Cicer echnospermum that possesses
tolerance to cold are yet to be identified. In addition, no efforts
have so far been made to transfer cold-tolerance QTLs from
C. reticulatum to C. arietinum.

Impacts of Heat Stress
Excessive heat stress affects all aspects of chickpea growth,
phenology, and development (Devasirvatham et al., 2012;
Devasirvatham et al., 2013; Kaushal et al., 2013), including
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biomass, flowering duration, pod number, days to maturity, seed
weight, and grain yield (Upadhyaya et al., 2011; Kaushal et al.,
2013) and a wide range of plant development and physiological
processes. The impact of heat stress at different stages of plant
growth and development in chickpea are described below.

Germination and Vegetative Growth
High temperatures affect seed germination in chickpea;
genotypic variation was observed for high-temperature
tolerance at seed germination, with no germination above 45°C
(Singh and Dhaliwal, 1972; Ibrahim, 2011), reduced seedling
growth (Kaushal et al., 2013), and even seedling death (Kaushal
et al., 2011). Controlled environment studies showed significant
biomass increases in both tolerant and sensitive genotypes at 35/
25°C whereas exposure to 40/30°C decreased biomass at
maturity in all genotypes, more so in the sensitive genotypes
(Kumar et al., 2013).

Reproductive Growth
Heat stress limits chickpea growth and vigor at all phenological
stages, but the reproductive phase is considered more sensitive to
temperature extremes than the vegetative stage (Sita et al., 2017).
Heat stress during reproduction generally 1) reduces flower
number, 2) increases flower abortion, 3) alters anther locule
number decrease, 4) causes pollen sterility with poor pollen
germination, 5) reduces fertilization and stigma receptivity, 6)
causes ovary abnormalities, 7) reduces the remobilization of
photosynthates to seeds, and 8) reduces seed number, seed
weight, and seed yield (Devasirvatham et al. , 2012;
Devasirvatham et al., 2013; Kaushal et al., 2013). Exposure of
chickpea to heat stress (35/20°C) pre-anthesis reduced anther
development, pollen production, and fertility by inducing
physiological abnormalities (Devasirvatham et al., 2012). High
temperature can induce anther and pollen structural aberrations,
such as alterations in anther locule number, anther epidermis
wall thickening, and pollen sterility, which are key factors
reduc ing ch ickpea y i e ld under h igh tempera ture
(Devasirvatham et al., 2013). In chickpea, pollen is more
sensitive to heat stress than the female gametophyte
(Devasirvatham et al., 2012). The effect of high-temperature
stress post-anthesis has been associated with poor pollen
germination, pollen tube growth and fertilization, and the loss
of stigma receptivity (Kaushal et al., 2013; Kumar et al., 2013),
which reduces seed number, seed weight, and seed yield
(Summerfield et al., 1984; Wang et al., 2006). Temperatures
above 45°C are detrimental to pollen fertility and stigma function
in chickpea (Devasirvatham et al., 2015).

Heat tress enhanced oxidative stress and lowered leaf
photosynthesis, which reduced the soluble carbohydrate and
ATP contents in the pistil (Kumar et al., 2013) and prevented
nutrient transport from the style to pollen tube thus inhibiting
pollen tube growth and ovary development (Kumar et al., 2013).
Screening chickpea genotypes for heat sensitivity revealed
substantial genetic variation in a high-temperature
environment (Krishnamurthy et al., 2011; Devasirvatham et al.,
2015). Heat-tolerant chickpea genotypes produced pods at
temperatures above 35/20°C, while sensitive genotypes aborted
Frontiers in Plant Science | www.frontiersin.org 10
most of their flowers (Kaushal et al., 2013). Devasirvatham et al.
(2013) reported greater pod set in heat-tolerant genotypes (ICC
1205 and ICC 15614) than heat-sensitive genotypes (ICC 4567
and ICC 10685).

Influence of Heat Stress on Physiology
Some vital physiological traits, including chlorophyll
concentration, photosynthetic rate, and membrane stability of
leaf tissue, can be used as indicators of heat sensitivity
(Hasanuzzaman et al., 2013). Chickpea is relatively more
sensitive in terms of membrane stability and photosystem II
function at high temperatures 50°C for 48 h than other legumes
(Srinivasan et al., 1996). Heat stress (35/16°C for 10 days)
induces leaf senescence in chickpea (Wang et al., 2006) by
disrupting the chloroplasts and damaging chlorophyll. Heat
stress (>32/20°C during reproductive stage) reduced the
chlorophyll content in chickpea leaves, which caused chlorosis
(Kaushal et al., 2013); this loss may have occurred due to photo-
oxidative stress or inhibition of chlorophyll synthesis (Guo et al.,
2006). Heat stress (>32/20°C during reproductive stage) caused
more leaf damage in a heat-sensitive than heat-tolerant chickpea
genotype, due to a greater reduction in leaf water status (as
RLWC) and possible decline in stomatal conductance, and
restriction in hydraulic conductivity of root (Kaushal et al.,
2013). Transpiration efficiency in chickpea decreased with
increasing temperature (Singh et al., 1982). The quantum yield
or photosystem II (PSІІ) activity in chickpea was not affected at
35°C, but a noticeable reduction occurred at 46°C (during pod
filling) that caused irreversible damage to photosynthetic systems
(Basu et al., 2009). Similarly, Srinivasan et al. (1996) reported
severe damage to PSІІ at 50°C for 48 h in chickpea. Temperatures
above 35°C during reproductive stage suppressed photosynthesis
and electron flow and disrupted metabolic pathways to reduce
grain size (Kaushal et al., 2013; Awasthi et al., 2014; Redden
et al., 2014).

Heat stress alters the fluidity of plasmalemma, mitochondria,
and chloroplast membranes, which can disintegrate the lipid
bilayer to change the protein conformation and cause protein
unfolding (Pastor et al., 2007). Heat stress also results in the
production of ROS that damage photosynthetic apparatus and
other components, thus hampering metabolic activity
(Allakhverdiev et al., 2008; Das and Roychoudhury, 2014).
Respiration is more temperature-sensitive than photosynthesis
(Hatfield et al., 2011). At 45/35°C (day/night), the cellular
oxidizing ability of chickpea plants reduced appreciably at
vegetative stage (Kumar et al., 2013), suggesting impaired
respiration and energy generation, possibly due to the
inactivation of enzymes (Salvucci and Crafts-Brandner, 2004).

At high temperature (> 32/20°C), sucrose synthesis decreased
due to the inhibition (40–43%) of sucrose synthesizing enzymes
(sucrose synthase and sucrose phosphate synthase) to impair
sucrose metabolism in leaves of chickpea during reproductive
phase (Kaushal et al., 2013). As a result, the sucrose flow to
flowers in heat-sensitive genotypes was considerably decreased to
affect the developmental and functional aspects of pollen grains
resulting in poor fertilization and pod set (Kaushal et al., 2013).
High temperatures (32/20°C day/night) from anthesis to
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maturity reduced starch deposition in chickpea grains because of
reduced activity of ADP-glucose pyrophosphorylase and starch
synthase (Vu et al., 2001; Awasthi et al., 2014) resulting in
reduction in grain weight.

Cellular Mechanisms for Survival Under Heat
Under heat stress (>35/23°C day/night) at the time of flowering,
chickpea experiences adverse effects on growth and various
metabolic processes that lead to alterations in the redox state
of the cell (Kaushal et al., 2011; Awasthi et al., 2015). At high
temperature (37 and 42°C for 10 h), ROS generation causes
oxidative damage to vital cellular components, such as
membrane lipids, proteins, nucleic acids, pigments, and
enzymes (Rivero et al., 2001; Suzuki and Mittler, 2006; Yin
et al., 2008). The ROS-induced oxidative damage consists of
both free radicals, including hydroxyl radicals (OH˙),
superoxide (O2

−), alkoxyl radicals, and non-radicals like
hydrogen peroxide (H2O2) and singlet oxygen (1O2) (Suzuki
and Mittler, 2006). At 40/30 and 45/35°C during growth and
germination stage, increased lipid peroxidation and hydrogen
peroxide levels in the leaves of heat-sensitive chickpea genotypes
caused more leaf damage, than in tolerant genotypes (Kaushal
et al., 2011; Kumar et al., 2012b; Kumar et al., 2013). Heat
tolerance mechanisms in chickpea are potentially characterized
by higher levels of antioxidants and osmolytes (Kaushal et al.,
2011), which maintain membrane integrity, protect
macromolecules, and sustain metabolism, leading to heat
acclimatization. Under stressful conditions, plants tend to
combat ROS production by inducing an antioxidant system
consisting of enzymatic and non-enzymatic components (Gill
et al., 2012); for example in chickpea, the activities of SOD,
catalase (CAT), and ascorbate peroxidase (APX) increased at 40/
35°C during growth and germination stage but decreased at 45/
40°C (Kaushal et al., 2011). Similar, the activity was observed in
non-enzymatic antioxidants ascorbate (ASC) and glutathione
(GSH). Inhibition of these enzymes and non-enzymatic
antioxidants was much more in the heat-sensitive genotypes:
the antioxidants increased at 40/35°C but declined at 45/40°C
observed (Kaushal et al., 2011) in heat-sensitive genotypes.
Exogenous application of proline (Pro), an osmolyte,
significantly increased SOD, CAT, ASH, and GSH activity at
45/40°C in chickpea, relative to the plants grown without proline
(Kaushal et al., 2011).

Salicylic acid (SA) plays a key role in providing tolerance
against temperature stress in chickpea. Heat-stress-induced
membrane damage in chickpea plants declined significantly
with the application of SA, relative to the untreated control
and heat-acclimatized plants (Chakraborty and Tongden, 2005).
The SA treatment also altered the contents of proteins and
proline, significantly with induction of various stress enzymes
such as peroxidase (POX), ascorbate peroxidase (APOX), and
catalase (CAT) activities (Chakraborty and Tongden, 2005).
Abscisic acid also appears to be involved in thermotolerance of
chickpea; exogenous ABA application (2.5 mM) at 4 day seedling
significantly alleviated the effects of heat stress (45/40°C for 10
days) in chickpea (Kumar et al., 2013) by improving plant
Frontiers in Plant Science | www.frontiersin.org 11
growth and reducing oxidative damage. Another study showed
that exogenous nitrogen application during pre-flowering and
suitable irrigation helped to mitigate the effects of heat stress
(>35°C) in chickpea (Upadhyaya et al., 2011). Heat stress (38°C
for 10 days) induced the accumulation of raffinose family
oligosaccharides (RFOs), such as galactinol and raffinose;
galactinol synthase (GolS) is a key regulatory enzyme of RFO
biosynthesis. In a recent study, galactinol and raffinose content
increased significantly in response to heat stress in chickpea
(Salvi et al., 2017).

During heat stress, heat shock genes encode different heat
shock proteins (HSPs), which accumulate and protect cells by
acting as molecular chaperones (Huang and Xu, 2008). The
transcription of HSP genes is controlled by heat stress
transcription factors (Hsfs), which play a prominent role in
thermo tolerance (Kotak et al., 2007). The recent identification
of 22 Hsfs genes in the chickpea genome (both desi and kabuli)
has provided valuable information on thermo tolerance in
chickpea (Chidambaranathan et al., 2018). Quantitative PCR
(Q-PCR) expression analysis of Hsfs in heat-stressed (> 35°C for
3 h) chickpea at two stages of development (15-day-old seedlings
and during podding) revealed that CarHsfA2, A6, and B2 were
up-regulated at both the stages of growth and four other Hsfs
(CarHsfA2, A6a, A6c, B2a) showed early transcriptional up-
regulation (Chidambaranathan et al., 2018). A previous study
identified three distinct classes of Hsfs (A, B, and C) (Lin
et al., 2014).

Various other heat-responsive proteins induced by heat stress
(42/25°C for 8 days), exclusively in the heat-tolerant chickpea
genotype, may play a vital role in heat tolerance (Parankusam et al.,
2017). A recent study identified a set of 482 heat-responsive
proteins and several metabolic proteins, including phenylalanine
ammonia lyase 2-like, pectinesterase 3, cystathionine gamma-
synthase, monodehydroascorbate reductase, adenosyl methionine
synthase, NADH dehydrogenase subunit, cytochrome b6, inositol-
3-phosphate synthase, RNA polymerase, and ATP synthase
subunit alpha protein that were strongly related to the heat
response in chickpea (Parankusam et al., 2017). Understanding
the differential role and expression of these proteins in chickpea
genotypes will provide an important vision for mechanisms that
confer thermotolerance in chickpea.

Transcription factors (TFs) play an important role in
modulating cellular responses under different stress conditions
by activating the transcription of target genes. WRKY TFs are a
major family of transcriptional regulators in plants that influence
the stress tolerance mechanism and form an integral part of cell
signaling pathways (Agarwal et al., 2011; Chen et al., 2012). In
chickpea, TFs for heat tolerance have been reported [CaMIPS1
and CaMIPS2 (Kaur et al., 2008b) and Ca_02170, Ca_16631,
Ca_23016, Ca_09743, Ca_25602] (Agarwal et al., 2016). Recently,
a genome-wide analysis of a WRKY TF gene model revealed the
presence of 78 WRKY TFs evenly distributed across eight
chromosomes in chickpea (Kumar et al., 2016). Car-WRKY TF is
reportedly multi-stress responsive, playing a central role in stress
signal transduction pathways (Konda et al., 2018). In the chickpea
genome, seven genes were identified based on homology, PIE1
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(photoperiod independent early flowering 1), ARP6 (actin-related
protein), two SEF (serrated leaf and early flowering), and three
H2AZs (histone 2A variant-Z, a thermosensor in plants) and
analyzed for expression under heat stress (37°C) that are
homologous to chromatin remodeling complexes (SWR1) in
Arabidopsis (Chidambaranathan et al., 2016). Of the seven genes,
PIE1 was up-regulated during podding but downregulated at the
seedling stage. Higher tissue-specific expression of PIE1 and SEF
genes was observed in root, flower, pod wall, and grain tissues than
in shoots. During pod development, all three H2AZ genes might
function as thermosensors, with greater downregulation within 15
min, 1 and 6 h of the heat stress treatment (Chidambaranathan
et al., 2016).

Mechanisms For Improving Heat Tolerance
The damage from high-temperature stress mainly depends on
the plant's defense response and the growth stage at the time of
exposure (Farooq et al., 2017). Chickpea plants use adaptive
strategies to avoid, escape, and tolerate heat stress (Wery et al.,
1993; Toker et al., 2007). Leaves avoid the heat by changing
orientation, reducing transpiration, and reflecting light (Wery
et al., 1993). In heat-stressed chickpea plants, phenology was
accelerated as days to flowering and podding decreased
significantly at 35/20°C (Kaushal et al., 2013), which also
reduced total plant biomass. Therefore, accelerated phenology
may be detrimental to chickpea production and considered an
escape mechanism. Early maturation is closely correlated with
reduced yield losses (Jumrani et al., 2017). In chickpea, a simple
and cost-effective field screening method for heat tolerance at the
reproductive stage was developed by delayed sowing
(Krishnamurthy et al., 2011), which enable the plants to expose
to high temperatures (>35°C) during reproductive phase;
accordingly, the number of filled pods per plant in late-sown
crop as identified as a selection criterion for reproductive-stage
heat tolerance. Recent research has suggested that heat stress
tolerance indices mean productivity, geometric mean
productivity, yield index, tolerance index (TOL), superiority
measure, and stress susceptibility index can be used to identify
chickpea genotypes based on grain yield under normal and heat-
stressed conditions. Based on these selection indices, RVG 203,
RSG 888, GNG 469, IPC 06-11, and JAKI 9218 had moderate to
high heat tolerance (Jha et al., 2018a). Using a heat tolerance
index (HTI), ICC 3362, ICC 12155, and ICC 6874 were identified
as heat-tolerant lines (Krishnamurthy et al., 2011). Upadhyaya
et al. (2011) identified ICC 14346 as a heat-tolerant genotype
among 35 early maturing germplasm under ideal crop
management (irrigation, nitrogen application) conditions in a
field screening at Patancheru (India), based on grain yield (kg
ha–1). The pollen selection method and pollen viability were used
to confirm the heat tolerance in ICCV 92944 (Devasirvatham
et al., 2012), ICC 1205, and ICC 1561 (Devasirvatham et al.,
2013). Heat-tolerant chickpea genotypes are listed in Table 1.

Various physiological traits—such as stomatal responses,
membrane thermostability, chlorophyll fluorescence (CFL),
canopy temperature depression (CTD)—have been associated
with heat tolerance (Priya et al., 2018). Stomatal responses to
heat stress is one possible mechanism for heat adaptation in
Frontiers in Plant Science | www.frontiersin.org 12
chickpea; in a recent study, stomatal conductance and leaf water
content (RWC) were significantly lower in heat-sensitive
genotypes, relative to the unstressed plants, and significantly
higher in tolerant genotypes, when grown under HS
environment (>32/20°C) (Kaushal et al., 2013). Therefore, it
can be assumed that stomatal conductance plays an important
role during heat stress. Membrane thermostability is another
important trait for heat tolerance, which has been considered a
possible selection criterion for heat tolerance in chickpea, faba
bean, and lentil based on electrolyte leakage from the leaves
(Ibrahim, 2011). When tissues are subjected to high
temperatures, electrical conductivity increases due to damage to
cell membranes, consequently resulting in solute leakage.
Electrolyte leakage increased under high temperature (>32/20°C)
in a heat-sensitive chickpea genotype, relative to a heat-tolerant
genotype (Kaushal et al., 2013; Parankusam et al., 2017). Thermal
techniques have been used tomeasure canopy temperature; genetic
variability in CTD (canopy temperature depression) was reported
in chickpea under high temperature (32–35°C) (Devasirvatham
et al., 2012), which correlated with yield. The genotypes with lower
CTD (1–3°C) had lower grain yields than those with higher CTD
(> 4°C) (Devasirvatham et al., 2015).

Effects of Drought in Chickpea
Chickpea is predominantly grown in resource-poor, arid, and
semi-arid regions under rainfed conditions. Consequently,
drought stress can decrease chickpea yields by up to 50%
(Sabaghpour et al., 2006). Drought stress impairs key
physiological and biochemical processes ranging from
photosynthesis, CO2 availability, cell growth, respiration,
stomatal conductance, to other essential cellular metabolisms
(Mansfield and Atkinson, 1990; Chaves, 1991; Chaves et al.,
2003; Flexas et al., 2005; Chaves et al., 2009; Pinheiro and
Chaves, 2011).

In subtropical (South Asia and north-eastern Australia) and
Mediterranean climatic regions (such as southern Australia),
chickpea faces “terminal drought” during the reproductive phase
(Leport et al., 1999; Siddique et al., 1999), which can seriously
impair reproductive processes, viz. anthesis, pollination, and also
causes malfunction of reproductive organs especially pollen
germination, pollen viability, fertility, and pollen tube growth
and even dysfunction of stigma and style (Leport et al., 1998;
Leport et al., 1999; Pang et al., 2017). However, drought stress at
young plant stage or prior to reproduction is not uncommon.
Drought at young plant stages reduces plant growth leading to
stunting and reduced biomass accumulation (Siddique et al.,
1999). Water deficit during podding in chickpea increased ABA
that may impair pod set and cause pod abscission which can
ultimately cause significant yield losses (Pang et al., 2017).
Drought stress in chickpea can also lead to the collapse of
symbiotic N2 fixation processes, resulting in serious yield
losses (Wery et al., 1993).

Genetic Variability for Capturing Drought Stress
Tolerance in Chickpea
The exploitation of natural genetic variation across various crop
gene pools remains central to improving drought stress tolerance
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TABLE 1 | List of chickpea genotypes tolerant to heat, cold, and drought stress.

Abiotic
stress

Donor parents Basis of tolerance Subject involved Reference

Heat
stress

ILC 482, Annegiri, ICCV 10 Higher cell membrane stability Plant physiology Srinivasan et al. (1996)

ICCV 88512, ICCV 88513 Reproductive biology Plant physiology Dua (2001)
ACC 316 and ACC 317 Early phenology Plant physiology Canci and Toker (2009)
ICC 1205 Reproductive biology Plant physiology Devasirvatham et al. (2010)
ICC 4958, ICC 14778, ICC 1205,
ICC 456

Increased plant yield Plant breeding Krishnamurthy et al. (2010)

ICC 14346 Early phenology Plant physiology Upadhyaya et al. (2011)
Pusa 240, JG 218, ICCV 92944 Low yield reduction under heat Plant breeding Kumar et al. (2012a)
RAU 52, HK 94-34,IPC 98-12, stress
CSG 8962, GCP 101, Pusa 209, GNG 663
ICC 1205 and ICC 15614 Higher pollen viability, and pollen tube germination Plant breeding and

physiology
Devasirvatham et al., 2012, Gaur et al.
(2012) Devasirvatham et al. (2013)

ICC 15614, ICCV 92944 Reproductive biology Plant physiology Kaushal et al. (2013)
ICCV 07110, ICCV 92944 Biochemical Plant biochemistry Kumar et al. (2013)
BG 256 Yield related traits Plant breeding Jumrani and Bhatia (2014)
Katila, Vaibhav, Avrodhi Yield related traits Plant breeding Jha and Shil (2015); Jha et al. (2015)
GNG1958, ICC 15955, ICC1510 Heat tolerance indices based on Plant breeding Jha et al. (2017)

yield per plant
IPC 2010-62, BRC 2, GNG 2215 Yield related traits Plant breeding Kumar et al. (2017)
Pusa 1103, Pusa 1003, BGM 408,
Pusa 240, PG 95333, JG14

Heat tolerance indices based on yield and
physiological traits

Plant breeding and
plant physiology

Kumar et al. (2017)

PhuleG 13110, NBeG 507, BG3043 Pods/plant, yield/plant Plant breeding Agrawal et al. (2018)
RVG 203, JAKI 9218, JG 130 Heat tolerance indices based on Plant breeding Jha et al. (2018a)
ICCV0 7118, ICC1356 yield per plant
ICC 14778, ICC 15618 Yield related traits Plant breeding Varshney et al. (2019)
ICC 96029 Early phenology (escape mechanism) Plant physiology Kumar and Rao (1996)

Drought ICCV 2 Early phenology (escape mechanism) Plant physiology Kumar and Abbo (2001)
ICC 5680, ICC 10448 Leaf trait Plant physiology Saxena (2003)
ICC 4958 High root biomass, and volume Plant physiology Krishnamurthy et al. (2003) and

deep rooting Kashiwagi et al. (2005; 2006a)
ICC 8261 Root trait (avoidance mechanism) Plant physiology Gaur et al. (2007)
ICC 4958, ICC 8261 Root trait Plant physiology Kashiwagi et al. (2008)
ACC 316 and ACC 317 Early phenology (escape mechanism) - Canci and Toker (2009)
Gokce High anti oxidant enzyme activity Plant physiology Macar and Ekmekci (2009)

High proline and anthocyanin accumulation
MCC 544, MCC 696 and MCC 693 High proline accumulation Plant biochemistry Mafekheri et al. (2010)
ICC 4958, HC 5 Maintains high photosynthesis rate Plant physiology Kumar et al., (2012c)

and relative water content
ICC 7571 High harvest index Plant physiology Kashiwagi et al. (2013)
Phule G 09103, Phule G 2008-74,
Digiijay

Lower yield and chlorophyll, reduction and Plant breeding and
plant physiology

Ulemale et al. (2013)

low membrane injury
FLIP03-145C, ILC 3182, and ILC
588

High yield and low days to maturity Plant breeding and
plant physiology

Hamwieh and Imtiaz (2015)

FLIP03-100, FLIP05-123C,FLIP03-
98

Based on drought tolerance indices Plant breeding Jha et al. (2016)

IPC2009-102 and IPC2009-186
ICC 16374B, ICC 15510 Deep rooting that may help in accessing sub soil Plant physiology Chen et al. (2017)
ICC9586 and ICC 867 moisture during drought stress
Neelam High seed yield and Plant physiology Pang et al. (2017)

conservative water use efficiency
DICC8172 Pod and seed Plant physiology Pang et al. (2017)

Decrease in photosynthesis and
assimilate supply to seed

Bakhar-2011 Higher proline, total phenolics, and trehalose
accumulation and stable carbon assimilation

Plant physiology
and biochemistry

Farooq et al. (2018)

Cold ILC 3470, FLIP 82-64C Low yield loss Plant breeding Malhotra and Singh (1991)
ILC 8262, ILC 8617,(FLIP 87-82C Low yield loss Plant breeding Singh et al. (1995)
Cicer pinnatifidum, Cicer judaicum
Cicer echinospermum

(Continued)
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in crops, including chickpea. Considerable genetic variability for
drought stress tolerance in chickpea has been recorded for
various morpho-physiological and grain yield-related
parameters under contrasting water regimes in the field
(Krishnamurthy et al., 2010; Jha et al., 2014; Pang et al., 2017).
Simple field-based screening techniques and superior crop yield
performance has identified several chickpea genotypes under
non-stressed and water stress conditions (Singh et al., 1997b;
Toker and Cagirgan, 1998; Canci and Toker, 2009). Likewise,
stress tolerance indices viz. drought susceptibility index and
drought tolerance index, identified significant genetic
variability for various phenological and yield-related traits
under water stress in a large mini-core collection of 211
accessions (Krishnamurthy et al., 2010) (Table 1).

Considering the role of wild species as an important reservoir
for imparting drought tolerance, Cicer anatolicum, Cicer
microphyllum, Cicer songaricum are worth mentioning (Toker
et al., 2007). Likewise, Kashiwagi et al. (2005) identified chickpea
landraces in the Mediterranean, west Asian, and central Asian
regions with high genetic variability for root length density that
could be exploited for developing high water-use-efficient
chickpea genotypes under water stress. Water use efficiency
(WUE) is an important strategy for drought tolerance in crop
plants, including chickpea (Condon et al., 2004; Zaman-Allah
et al., 2011a; Zaman-Allah et al., 2011b), where a significant
amount of genetic variability has been recorded (Pang et al.,
2017). The authors identified “Neelam” as drought tolerant
genotype, based on high WUE, as this genotype used a
“conservative water use strategy” to maintain higher seed
yields under water stress during early growth.

Root architecture traits are important parameters for
improving crop performance under drought stress (Wasaya
et al., 2018; Ye et al., 2018). Considerable progress has been
made in elucidating the role of various root traits for drought
stress tolerance in chickpea (Kashiwagi et al., 2006a; Kashiwagi
et al., 2015). How root biomass, root length, and other root-
related parameters, such as root length density (RLD), total root
dry weight (RDW), and deep root dry weight (deep RDW),
contribute to drought stress tolerance has been investigated in
chickpea (Krishnamurthy et al., 2003; Kashiwagi et al., 2005;
Gaur et al., 2008; Kashiwagi et al., 2008; Kashiwagi et al., 2015;
Purushothaman et al., 2016; Chen et al., 2017). A significant
amount of genetic variability for RLD in the mini-core collection
and wild species of chickpea has been reported (Kashiwagi et al.,
2005). Given their larger RLD, deep rooting system, and higher
Frontiers in Plant Science | www.frontiersin.org 14
root biomass production, ICC 4958 and ICC 8261 genotypes are
used extensively as donors for transferring important drought
adaptive root traits to elite chickpea cultivars to develop drought-
resilient chickpea cultivars (Saxena et al., 1993; Gaur et al., 2008).
In addition, ICC 4958 remains one of the most extensively
studied chickpea genotypes both in classical and modern
molecular breeding programs for dissection of various traits,
including drought-stress-related root traits.

Thus, these genotypes (ICC 4958 and ICC 8261) have been
steadily incorporated into drought tolerance breeding programs
for transferring the above-mentioned traits into elite chickpea
varieties and developing mapping populations for deciphering
drought-tolerant QTLs (Gaur et al., 2012). Concurrently, efforts
are underway to develop multi-parent advanced generation
inter-cross populations (MAGIC) by incorporating ICC 4958,
JG 130, ICCV 10, JAKI 9218, JG 130, JG 16, ICCV 97105, and
ICCV 00108, genotypes possessing drought and heat tolerance
genomic regions/QTLs (Devasirvatham and Tan, 2018). Thus,
selection from the resultant crosses could increase genetic gain in
chickpea. Moreover, Chen et al. (2017) provided scope for
improving drought tolerance in chickpea by investigating 30
root-related traits and three shoot-related traits in a large set of
270 core collection. 13C discrimination, an important
physiological selection parameter related to water stress could
also be used to enhance WUE under drought stress (Condon
et al., 2002). A significant amount of genetic variability for 13C
discrimination has been recorded in the chickpea reference
germplasm collection (n = 280) (Upadhyaya et al., 2008;
Krishnamurthy et al., 2013b).

Advancements in breeding techniques such as MAGIC have
enabled the transfer of drought- and heat-tolerant traits into elite
high-yielding chickpea cultivars by combining favorable allele
combinations for drought and heat tolerance (Gaur et al., 2014;
Gaur et al., 2019). Furthermore, marker-assisted recurrent
selection (MARS) and marker-assisted backcrossing (MABC)
efforts have been successfully used to transfer a “QTL-hotspot”
genomic region harboring important drought-tolerant-related
traits from donor parent ICC 4958 to JG 11 elite cultivar
(Varshney et al., 2016).

Role of Physiological Traits for Adaptation Under
Drought and Heat and Increasing Future Genetic
Gain in Chickpea
Direct phenotypic selection for yield and yield-related traits has
led to ignoring various important physiological traits that have
TABLE 1 | Continued

Abiotic
stress

Donor parents Basis of tolerance Subject involved Reference

Sonali and Rupali High viability and fertility of pollen Plant physiology Clarke et al. (2004)
ICC 16348 and ICC 16349 Low electrolyte leakage, Plant physiology Kumar et al. (2011)

low decrease in chlorophyll content
ICC16349 – – Sharma and Nayyar,(2014)
Punjab 2008 Higher proline, total phenolics, and trehalose

accumulation and stable carbon assimilation
Plant physiology
and biochemistry

Farooq et al. (2017)

PI 489777 (Cicer reticulatum Ladiz) – Plant breeding Mugabe et al. (2019)
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great potential for increasing genetic gain and significantly
contributing to plant acclimation under various abiotic stresses
(Reynolds and Langridge, 2016). The incorporation of
“physiological traits” in crop breeding programs provides an
opportunity to enhance the chances of “cumulative gene action
for yield” (Cossani and Reynolds, 2012). However, the success of
incorporating various physiological traits depends on how the
traits are associated with grain yield, their heritability, their ease
of selection response and measurement, and their non-
destructive nature (Monneveux et al., 2012).

Plant withstand drought and heat stress by recruiting “escape,”
“tolerance,” and “avoidance” mechanism (Levitt, 1972). In the
context, the major physiological traits involved in drought stress
adaptation are categorized into “constitutive traits” and “acquired
tolerance traits” (Sreeman et al., 2018). The notable “constitutive
traits” involved in drought stress adaptation in chickpea include
phenology (Kumar and Abbo, 2001), stomatal conductance (Liu
et al., 2003), specific leaf area (Purushothaman et al., 2016), leaf
area index (Purushothaman et al., 2016), chlorophyll content
(Mafakheri et al., 2010), WUE (Kashiwagi et al., 2006b), and
root traits (Krishnamurthy et al., 2003; Gaur et al., 2008;
Kashiwagi et al., 2006a; Kashiwagi et al., 2015; Zaman-Allah et
al., 2011b; Purushothaman et al., 2015). Likewise, canopy
temperature depression (CTD) (Zaman-Allah et al., 2011a;
Purushothaman et al., 2016), proline accumulation (Macar and
Ekmekci, 2009; Mafakheri et al., 2010), regulation of ABA (Pang
et al., 2017), and production of various antioxidant scavenging
enzymes (Macar and Ekmekci, 2009) are the major “acquired
tolerance” traits involved in drought stress tolerance in chickpea.

Prioritizing early phenology traits, viz. selection for early
flowering and maturity, helps in the selection of genotypes
exhibiting drought and heat stress tolerance in the form of an
escape mechanism (Canci and Toker, 2009; Gaur et al., 2012;
Hamwieh and Imtiaz, 2015). Relying on this mechanism
important drought tolerant varieties viz., ICCV 90629, ICCV 2,
ICCC 37, ICCV 10 (Kumar and Abbo, 2001), KAK2 (Gaur et al.,
2008), and heat tolerant variety ICCV92944 (Gaur et al., 2012)
were developed, however they suffered yield penalty due to
restricted photosynthetic period, rapid growth rate, high
harvest index, and short lifecycle (Kashiwagi et al., 2015;
Berger et al., 2016).

Shoot Related Traits Contributing in Drought Stress
Tolerance
Stomatal conductance (gs) is an important shoot-related
parameter affecting leaf gas and water vapor exchange under
stress conditions. Drought stress negatively affects stomatal
conductance and leaf turgor (Liu et al., 2003). Zaman-Allah
et al. (2011a) and Pang et al. (2017) argued genotype having lower
stomatal conductance and utilizing lower water during vegetative
stage at well-watered condition displayed higher drought
tolerance at reproductive stage by using the conserved soil
water at “terminal drought” stress. However, this “water
sparing” will be effective for the crops those grow under stored
soil water condition (Vadez et al., 2012). Insight into the genetic
inheritance of stomatal conductivity and selection for lower
Frontiers in Plant Science | www.frontiersin.org 15
stomatal conductance with higher leaf transpiration efficiency
under drought could be promising for the development of
drought tolerant chickpea genotypes. Likewise, correlations
between crop growth rate and transpiration and transpiration
efficiency are receiving attention in the development of drought-
tolerant chickpea (Purushothaman et al., 2016).

Among the various non-destructive physiological traits, CTD
infrared thermometer based parameter acting as a surrogate trait
for transpiration explains the difference between air temperature
[Ta] and canopy temperature [Tc] (Balota et al., 2007). It has
received great attention as a potential selection tool and is
regularly employed for screening high yielding drought and
heat stress tolerant plants (Mason and Singh, 2014). This
parameter depicts plant transpiration status that plays an
important role in reducing leaf temperature under both
drought and heat stress. Lower canopy temperature is
indicative of higher transpiration, which enables plants to
maintain their water status for growth under heat stress and
water stress (Zaman-Allah et al., 2011a). In this context, a
positive association of CTD with grain yield was noted under
heat stress (Devasirvatham et al., 2015) and under drought stress
(Purushothaman et al., 2015) in chickpea. Likewise, under
drought stress, cooler canopy temperatures enhance root
biomass, root depth, and ultimately grain yield (Lopes and
Reynolds, 2010). Thus, further research of CTD at a genetic
level could give better insight how to use this traits to develop
drought and heat stress tolerance chickpea genotypes.

Role of Water Use Efficiency in Drought Stress
Adaptation
WUE defines “biomass accumulated in plant at the cost of per
unit water transpired” (Bacon, 2004). An array of traits ranging
from stomatal regulation, transpiration rate to root traits could
be employed for increasing WUE. Regulation of stomatal
opening remains a great paramount importance, as restriction
in stomatal opening increases reduction in transpiration leading
to enhance WUE (Saradadevi et al., 2017). In this context,
Zaman-Allah et al. (2011a) opined that lower stomatal
conductance and lower transpiration could save water to be
utilised during reproductive period under “terminal drought”
stress in chickpea. However, reduction in stomatal opening
causes lower intake of CO2 that may lead to decrease in
photosynthetic carbon accumulation (Vadez et al., 2012). This
mechanism of water stress tolerance works well when chickpea is
grown in high water holding capacity soil in the south and
central India featuring warmer and shorter growing period for
chickpea (Berger et al., 2006; Berger et al., 2016). Contrastingly,
high transpiration rate, high above and below ground biomass,
high seed yield are the characteristics features of chickpea when it
is grown under high rainfall receiving areas viz., northern Indian
condition with low water holding capacity and with later
phenology (Berger et al., 2006; Berger et al., 2016). Relying on
the result explaining positive correlation of WUE with biomass
yield under drought stress, Wright (1996) argued that increase in
WUE could promisingly enhance plant yield provided harvest
index is maintained.
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Likewise, carbon isotope discrimination (D13C) is a
noteworthy physiological attribute for measuring transpiration
efficiency/WUE of plants under drought or heat stress.
Kashiwagi et al. (2006b) suggested a negative correlation
between D13C and WUE. However, its high cost of
measurement remains a barrier to measuring WUE in larger
numbers of genotypes. Thus, future genetic and molecular
studies targeting traits improving WUE and optimizing
transpiration rate could be beneficial in developing drought
tolerant chickpea cultivars.

Role of Root Traits Contributing Drought Adaptation
Root system architecture is an important parameter that directly
controls plant water content, which influences crop performance
under water stress (Ye et al., 2018). Besides, root senses drought
stress under dry soil and signals to produce ABA that causes
closure of stomata resulting restriction of water loss through
transpiration (Saradadevi et al., 2017). The crucial role of root
traits, viz. RLD, root biomass, total RDW, root diameter, root
volume, and root surface area, in controlling plant water status
and how they help chickpea to adapt to water stress has been
investigated (Krishnamurthy et al., 2003; Gaur et al., 2008;
Kashiwagi et al., 2006a; Zaman-Allah et al., 2011b; Kashiwagi
et al., 2015; Purushothaman et al., 2015). Mostly root traits play
critical role in drought adaptation in chickpea by facilitating
mining water through deep root and minimizing transpiration
under water stress (Berger et al., 2016). In order to elucidate the
role of root traits contributing in grain yield, Gaur et al. (2008)
showed higher RLD and maximum root depth (RDp) in shallow
soil could assist in increasing seed yield under drought stress.
Likewise, Ramamoorthy et al. (2017) also evidenced positive
association of RLD and grain yield under drought stress in
chickpea. However, positive association of root traits with
grain yield under drought stress remains inconsistent across
various environment (Zaman-Allah et al., 2011b), leading plant
breeders reluctant to use this trait in breeding program for
drought tolerance. Thus, under central and south Indian
condition where chickpea faces “terminal drought” stress, root
traits based on “drought avoidance” strategy could be a
promising approach for designing drought tolerant chickpea
varieties (Kashiwagi et al., 2015). However, when chickpea
grown under “in-season rainfall” in low water holding capacity
soil under Mediterranean climates in Western Australia, this
“drought avoidance” strategy remains ineffective (Berger
et al., 2016).

Response of Biochemicals Alleviating Drought and
Heat Stress
Plants including chickpea maintain turgor pressure and cell wall
plasticity under water stress through recruiting osmotic
adjustment mechanism that allows accumulating crucial
biochemical compounds, including proline, glutathione,
trehalose, molecular chaperones, and various antioxidant
enzymes (Macar and Ekmekci, 2009; Mafakheri et al., 2010;
Kaushal et al., 2011; Berger et al., 2016; Kaur et al., 2017; Farooq
et al., 2018). Among the various stress-responsive chemical
compounds, proline remains a critical amino acid produced in
Frontiers in Plant Science | www.frontiersin.org 16
plants in response to stress. The differential expression pattern of
proline synthesis enzyme (D1-pyrroline-carboxylate synthetase)
and catabolism of proline by proline dehydrogenase in response
to water stress at different vegetative and reproductive stages in
drought-tolerant and drought-sensitive genotypes has been
investigated in chickpea (Kaur et al., 2017). The desi Bakhar-
2011 chickpea genotype accumulated more proline, trehalose,
and non-reducing sugars to tolerate drought stress more than
Bitall-2016 desi genotype by alleviating the adverse effects of
oxidative stress and maintaining better carbon assimilation
(Farooq et al., 2018). Likewise, to detoxify and to protect
cellular damage from reactive oxygen species (ROS) viz.,
superoxide radicals, singlet oxygen accumulating under
drought and heat stress, several ROS scavenging anti-oxidant
enzymes such as superoxidase dismutase, catalase, glutathione
peroxidase are worth mentioning biochemicals that enable
chickpea adapting under drought and heat stress (Mafakheri
et al., 2011; Kaur et al., 2017). Recently, Ullah et al. (2019)
proposed that supply of zinc based nutrition could also assist in
enhancing antioxidant activities and alleviate the detrimental
effects of drought and heat stress in chickpea. These mechanisms
are effective under moderate dehydrating conditions and impart
partial drought tolerance (Farooq et al., 2018).

A holistic approach encompassing plant physiological
approaches, genomics tools, and innovative breeding
techniques for designing drought and extreme temperature
tolerant chickpea cultivars has been depicted in Figure 1.

Advances in Genomics for Developing Drought and
Heat Stress Tolerance in Chickpea
Investigating the genomic resources such as simple sequence
repeat markers (SSRs) and single nucleotide polymorphism
(SNPs) is vital for mapping of genes/QTL as well as for
identifying genes related to drought and heat tolerance in QTL
intervals. In the last decade, unprecedented advancements in
molecular marker development and construction of high-density
linkage maps have enabled precise mapping of various traits of
breeding interest at specific locations across linkage groups in
chickpea (Thudi et al., 2011; Jha et al., 2018b). Considering
drought and heat stress tolerance, family-based bi-parental
mating scheme derived mapping populations were limitedly
devoted to elucidating QTLs controlling traits associated with
various morpho-physiological and yield and yield-related traits
under drought and heat stress in chickpea (Rehman et al., 2011;
Hamwieh et al., 2013; Paul et al., 2018). However, the resultant
QTL intervals remained large. Additionally, precise mapping of
drought stress tolerance QTL remains challenging as it is
controlled by various “minor effect QTLs” and remains
unstable across the various locations due to high G×E
interaction (Fleury et al., 2010). Increasing facilities of high
density genotyping with large number of SSR markers and
precise phenotyping of two mapping population segregating
for various drought-related traits across multiple locations and
multiple seasons allowed Varshney et al. (2014) to identify a
“QTL-hotspot” harboring 13 main effect QTLs related to 12
drought-related traits, which explained up to 58% of the
phenotypic variation on CaLG4. Subsequently, by adopting a
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marker-assisted backcross breeding scheme, this QTL-hotspot
genomic region was introgressed from ICC4958 into JG11, an
elite chickpea cultivar (Varshney et al., 2016). The resultant
introgressed lines had greater root depth, RLD, and RDW
(Varshney et al., 2016). However, this marker assisted breeding
scheme remains effective for transferring “major effect QTLs”
(Hayes et al., 2009). Further, advancements in next-generation
sequencing technology (NGS) and high resolution genotyping
platforms enabled the generation of huge numbers of SSR and
SNP markers that assisted in narrowing the previously identified
QTL-hotspot (Varshney et al., 2014) region to ~14 cM by
recruiting genotyping-by-sequencing (Jaganathan et al., 2015).
Furthermore, the combination of high density bin mapping and
precise phenotyping of 17 drought-related traits across multiple
locations and seasons further narrowed the QTL-hotspot region
to ~300 Kb, and subdivided this genomic region into “QTL-
hotspot_a” and “QTL-hotspot_b” regions on CaLG4 (Kale et al.,
2015). Interestingly, QTLs contributing to plant vigor and
canopy conductance under water stress were unfolded in this
genomic region (Sivasakthi et al., 2018). Likewise, a total of four
major QTLs developed from ICC 15614 × ICC 4567 RIL
population controlling pod and grain yield trait were mapped
on CaLG5 and CaLG6 under heat stress (Paul et al., 2018).
Future cloning and functional characterization of these genomic
regions could unravel the function of underlying gene(s), and
Frontiers in Plant Science | www.frontiersin.org 17
thus facilitating designing of drought and heat stress tolerant
chickpea genotypes.

Taking the advantage of higher resolution power of mapping
complex QTLs owing to “natural evolutionary recombination
events” genome-wide association study (GWAS) received great
attention for unveiling “genotype-phenotype” associations
elucidating the underlying novel candidate gene(s) controlling
various complex traits including drought stress tolerance across
large germplasm panel in various crop plants (Zhu et al., 2008;
Huang and Han, 2014; Liu and Yan, 2019). In chickpea, GWAS
has been used to better understand the genetic architecture of
various complex traits of breeding importance [see Jha (2018)].
To elucidate marker-trait associations (MTA) for drought-
related traits, Thudi et al. (2014) conducted GWAS in a large
global collection of 300 chickpea genotypes. A total of 312
significant MTAs related to various drought and heat stress-
related traits were identified providing a great opportunity for
targeting those genomic regions for drought and heat stress
tolerance breeding (Thudi et al., 2014). Similarly, five significant
MTAs for cell membrane stability and chlorophyll content
related to heat stress tolerance were deciphered from 71
chickpea genotypes containing historically released varieties of
Indian and improved breeding lines (Jha et al., 2018b). Likewise,
recently given the 3.65 million SNPs emanating from
resequencing 429 globally collected chickpea germplasm,
FIGURE 1 | Integration of genomic approaches with physiological traits for breeding drought and temperature extreme resilient chickpea cultivar.
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GWAS was used to elucidate significant MTAs for drought and
heat stress tolerance in chickpea (Varshney et al., 2019). A total
of 262 significant MTAs for various heat stress relevant traits,
along with several potential candidate genes, viz. TIC, REF6,
aspartic protease, cc-NBS-LRR, RGA3 contributing in heat and
drought tolerance were uncovered. Thus, the consistent and
stable significant MTAs/genomic regions controlling pods/
plant, yield trait, and phenological traits could be potentially
incorporated in the high yielding yet drought/heat stress
sensitive popular chickpea cultivars for improving drought and
heat stress in chickpea.

Unparalleled advances in cost-effective genotyping platforms
have enabled the generation of large-scale SNP marker
information using WGS and WGRS of globally released
chickpea cultivars, breeding lines, and germplasm accessions
(Varshney et al., 2013b; Thudi et al., 2016; Roorkiwal et al.,
2018a; Varshney et al., 2019). This has provided opportunities
for the chickpea breeding community to use genomic selection
(GS) (Meuwissen et al., 2001; Jannink et al., 2010) for various
complex traits including drought stress tolerance (Roorkiwal
et al., 2016; Li et al., 2018; Roorkiwal et al., 2018b). To date,
several conventional breeding approaches have been devoted to
increasing genetic gain by selecting superior individuals in
chickpea under various biotic and abiotic stresses, including
drought stress. However, this process remains slow due to
yield and yield-related traits being governed by “small effect
QTLs,” low heritability, and the influence of G × E interactions.
GS could be one of the promising approaches to minimize this
problem. GS constitutes “training population” with known
genotypic and trait information, and is used to predict the
genomic estimated breeding value of unobserved individuals of
“candidate population” for complex traits with only genotypic
information byusing various “trained statistical”/prediction
models (Meuwissen et al., 2001; Jannink et al., 2010). Thus, the
adoption of GS scheme could be a new avenue for capturing the
“minor effect QTLs” across the whole genome and predicting
increased genetic gain based on various prediction models under
water stress in various crops, including chickpea (Hayes
et al.2009; Crossa et al., 2017). The profuse numbers of SNP
markers generated from 132 chickpea genotypes by WGRS
allowed to conduct “SUPER GWAS” for unveiling the
candidate genes associate to drought stress tolerance and also
the sub set of SNPs were also used for performing GS for
“prediction accuracy” of important yield related traits under
drought stress (Li et al., 2018). Subsequently, Roorkiwal et al.,
2018b investigated the implications of GS for precise prediction
accuracy of genotypes incorporating G × E effects to enable
selection of superior genotypes under various target
environments for enhanced genetic gains in chickpea.
However, the success of GS relies on high marker density,
advanced genotyping platforms, heritability of trait, and
optimization of the statistical model frameworks devised for
GS (Roorkiwal et al., 2018a; Voss-Fels et al., 2019). Therefore, GS
has great scope for selecting superior parents for crossing
programs, maximizing selection accuracy, multi-trait selection
in early generation, and speeding up the breeding cycle (Hayes
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et al., 2009; Jia and Jannink, 2012; Crossa et al., 2014; Crossa
et al., 2017; Dias et al., 2018).

The arrival of NGS technologies in the last decade created a
new dimension in genome sequencing chemistry, enabling the
release of draft genome sequences of various plants of
agricultural and economic importance (Michael and Jackson,
2013). The availability of draft genome sequences of kabuli
(Varshney et al., 2013b), desi (Jain et al., 2013), and wild
species (Parween et al., 2015) has sped up genomics research
in chickpea. However, these genome sequences do not capture all
the structural variations and presence–absence variation related
to various traits. Falling cost of sequencing allowed us to
sequence several genotypes/lines at a reasonable cost to capture
the desired genomic regions. To obtain novel insight into
drought-controlling genomic regions, WGRS of 100 chickpea
genotypes has provided several important haplotypes that
control drought stress tolerance (Thudi et al., 2016).
Subsequently, Li et al. (2018) have unfolded significant
associations of SNP markers released from WGRS of 132
chickpea lines with important drought tolerance candidate
genes encoding auxin efflux carrier protein (PIN3),
p-glycoprotein (PGP), and nodulin MtN21/EamA-like
transporter. Recent efforts in WGRS of global chickpea
germplasm coupled with GWAS have identified several
drought-stress-controlling genomic regions (root traits,
phenological traits, harvest index, 100 seed weight, delta
carbon ratio etc.), including an important candidate gene REF6
responsible for early phenology trait (Varshney et al., 2019).
Further cloning and functional validation of this REF6 gene and
transfer of this gene through marker assisted breeding could help
developing drought tolerant chickpea cultivar based on drought
escape mechanism. Thus, translation of these genomics resources
into applied breeding could expedite designing drought-tolerant
chickpea varieties.

Functional Genomic Resources for Drought and
Heat Stress Tolerance
Functional genomics remains a powerful approach for
identifying the underlying candidate gene(s) and deciphering
their functional role in response to various stresses including
drought and heat stress in plant (Langridge et al., 2006). This
approach can be employed in chickpea genotypes contrasting for
stress sensitivity to obtain critical information about specific
genes and their roles related to drought and heat tolerance. A
significant progress in the development of genomic resources for
dissection of drought and heat stress tolerance has been made
(Varshney et al., 2014; Jaganathan et al., 2015; Kale et al., 2015;
Varshney et al., 2016; Paul et al., 2018). However, the role of
various candidate genes and their complex regulatory networks
controlling drought and heat tolerance in chickpea at the
functional level is limited (Hiremath et al., 2011; Agarwal
et al., 2016; Garg et al., 2016); the information available about
functional genomics largely pertains to drought tolerance.

Current advances in high throughput transcriptome sequencing
technologies, especially RNA sequencing (RNA-seq), have provided
novel insights into the molecular basis of drought tolerance by
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revealing the comprehensive landscape of divergent gene expression
and their complex regulatory networks at various developmental
stages at the transcriptional level (Garg et al., 2016; Kudapa et al.,
2018). Before the advent of RNA-seq, microarray-based
technologies and expressed sequenced tags (ESTs) were
exclusively devoted to elucidating the preliminary function of
various drought-stress-responsive genes/differentially expressed
genes (DEGs) in chickpea (Mantri et al., 2007; Varshney et al.,
2009; Deokar et al., 2011). Subsequently, given the RNA-seq driven
global transcriptome analysis, a large number of water stress
responsive DEGs (4954) were unearthed from root tissues of two
contrasting drought tolerant (ICC 4958) and drought sensitive (ICC
1882) parents responding under water stress condition (Garg et al.,
2016). Various DEGs identified under drought stress were found to
be drought responsive TFs genes involved in controlling various
hormone signaling ranging from abscisic acid, auxin, gibberellins,
jasmonic acid, brassinosteroid to cytokinin (Garg et al., 2016;
Badhan et al., 2018). Likewise, recently transcriptome sequencing
of root and shoot tissue of two contrasting parents Bivanij and
Hashem for drought resulted in 4,572 DEGs (Mahdavi Mashaki
et al., 2018). From this investigation a total of seventeen common
drought responsive genes from shoot and root were recovered.
Importantly, to elucidate the role of candidate genes responding
under drought stress, Bhattacharjee et al. (2015) reported higher up-
regulatory role of Ca_19899 (homeobox gene) in shoot tissue and
down-regulatory role of Ca_00550 gene both in root and shoot
under drought stress. To mitigate the toxic effect of ROS activity
produced under drought stress, Mahdavi Mashaki et al. (2018)
unveiled up-regulatory activity of three genes (in Hashem) and
Ca_04125 gene (in Bivanij) involved in safeguarding cells against
ROS toxicity. Likewise, up-regulatory activity of Ca_05702 gene
(participating in flavonoid biosynthesis), CaNAC16 (Ca_18090)
(involved in water stress tolerance) and Ca_00449 (carotenoid
biosynthesis and producing ABA contributing in drought stress
tolerance) in shoots of Bivanij under water stress were also
substantiated (Mahdavi Mashaki et al., 2018). Additionally,
participatory role of several TFs genes ranging from NAC, AP2/
ERF, bHLH,WRKY, to MYB/MYC in essential metabolic pathways
were also deciphered in chickpea under drought stress (Badhan
et al., 2018; Mahdavi Mashaki et al., 2018; Kumar et al., 2019).

Furthermore, to identify the precise role of various candidate
genes identified in the “hotspot QTL” region pinpointed by Kale
et al. (2015) at the gene expression level, RNA-seq based global
gene expression analysis revealed differential expression of nine
candidate genes under water stress (Kudapa et al., 2018). Four
genes namely E3 ubiquitin‐protein ligase, LRX 2, kinase
in t e rac t ing (KIP1 ‐ l i k e ) fami ly , and homocy s t e ine
S‐methyltransferase, displayed induced expression under
drought stress (Kudapa et al., 2018). Likewise, RNA-seq
analysis of various vegetative and reproductive tissues
subjected to heat stress identified several important candidate
genes, viz. Ca_25811, Ca_23016, Ca_09743, Ca_17680,
contributing in heat-stress tolerance (Agarwal et al., 2016).

Similarly, non-coding RNA, including microRNA and long
non-coding RNA (lncRNA), have received attention for their
regulatory role in the expression of various genes controlling
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complex traits at the post-transcriptional level, including for
drought stress in chickpea (Khandal et al., 2017; Singh et al.,
2017). A microRNA (miRNA) profiling study of root apical
meristem identified 284 unique miRNA sequences; of which 259
were differentially expressed under drought and salinity stress
(Khandal et al., 2017). Functional validation of miRNA397
through qRT-PCR revealed its up-regulatory role under
drought stress and it targeted LACCASE4 gene that participate
in lignin metabolism. To obtain deeper insight into the role of
lncRNA for drought, a new tool “PLncPRO” was developed
(Singh et al., 2017). A total of 3,714 lncRNAs involved in drought
stress response in rice and chickpea have been discovered using
this tool. However, the precise role of these lncRNAs in the
drought stress response in chickpea and their functional
annotation need further investigation. Further, availability of
reference genome sequences, “C. arietinum gene expression atlas
(CaGEA)” (Kudapa et al., 2018) and further refinement of
transcr iptome analys is could further increase our
understanding of the complex drought and temperature stress
responsive pathways, tracing the regulatory gene networks, and
the underlying candidate gene(s), and their precise role in
controlling drought and extreme temperature stress tolerances
in chickpea. Moreover, transcriptome analysis could provide us
great opportunity for revealing the genetic basis of higher
adaptation of crop wild relatives (CWRs) and landraces to the
counterpart of the cultivated species under various abiotic
stresses (Srivastava et al., 2016). However, limited availability
of abiotic stress tolerant cloned gene(s) has hampered the
progress of functional genomics in chickpea (Deokar et al.,
2015; Sen et al., 2017). Thus, in future mapbased cloning of
abiotic stress tolerant gene(s)/QTLs could further illuminate our
understanding of various mechanisms and key molecular players
involved in drought, heat and cold tolerance in chickpea.
CONCLUSION AND FUTURE
PERSPECTIVE

Current trends of unpredictable global climate change have
resulted in periodic spells of drought stress and frequent
episodes of extreme temperature, thus challenging plant
growth and yield in several crops, including chickpea.
Harnessing of crop germplasm, including various gene pools
remains one of the most viable options in design of climate-
resilient chickpea plants. Cicer cultigens are not adequately
equipped with cold-tolerance; wild relatives C. echinospermum
or C. reticulatum, the species of primary gene pool which are
crossable to the cultigen, are however, good sources of cold
tolerance. These species can be exploited to introgress cold
tolerance to the cultigen. Incorporation of cold-tolerance in
winter sown crop will lead to early flowering and maturity, a
strategy that would allow the crop to avoid terminal drought,
expected terminal high temperature due to global warming
especially in winter/autumn sown crop and would increase
reproductive period leading to enhanced productivity.
Chickpea has indeterminate growth, and observations at two
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sites in north India (Palampur and Chandigarh, India) showed
that temperature increase acts as a cue to terminate flowering
and podding (Sharma and Nayyar, personal observations). If
temperature remains conducive, chickpea plants would continue
to flower and set pods due to indeterminate growth habit and this
period can be increased by introgression of cold tolerance in
chickpea. On the other hand, chickpea in warmer climates
especially the spring-sown regions is expected to face higher
terminal temperatures and high temperature tolerant chickpea
must be developed for these regions for sustained productivity
under global warming. Incorporation of drought tolerance in the
cold tolerant as well as heat tolerant cultivars would be desirable
as such dual tolerance chickpea would have additional protection
from damage by drought apart from cold or heat stress.

Unlike cold-tolerance, heat-tolerant chickpea genotypes are
relatively common to find in C. arietinum. In both types of
temperature stresses, reproductive stage is the most sensitive one,
and fails for similar reasons. Some cellular defense mechanisms
such as osmolytes, carbohydrates, and antioxidants have been
worked out by us under both heat and cold stress environments,
which showed commonalities in their expression in responses to
both the stresses but the picture fully clear in this context.
Physiological mechanisms under combination of drought and
heat as well as drought and cold are not fully understood.
Further, it needs to be investigated whether heat-tolerant
genotypes set pods under cold stress by subjecting them to LT
under controlled environment, and testing their reproductive
function and pod set. In case of cross tolerance, cellular defense
mechanisms involving some stress-related metabolites and
related genes may be probed to understand the underlying
mechanisms. Since chickpeas have maximum acreage under
rainfed and leftover soil moisture conditions and the crop
invariably faces droughts at reproductive stage, this coupled
with expected erratic rainfall under climate change scenarios
warrants development of drought tolerant varieties. Terminal
drought usually coincides with terminal heat stress in several
chickpea growing regions, and hence, development of heat and
drought tolerant chickpea cultivars is desired. Incorporation of
various landraces and a range of crop gene pool harboring
“adaptive traits” could enhance the resilience of chickpea
genotypes under extreme climates.

Considerable understanding of physiological responses of
genotypes of chickpea tolerant/sensitive to cold, heat, and drought
is available, this understanding have, however, not been underpinned
completely by the genetics/genomics. Genomics and transcriptomics
have increased our understanding of gene and gene regulatory
networks governing cold, drought, and heat stress, the
understanding is, however, incomplete as it does not converge into
well defined pathways governing tolerance or susceptibility to these
three major abiotic stresses of chickpea. Unlike chickpea, we have
considerably more information of plants' responses to various abiotic
stresses in Arabidopsis thaliana. To identify well defined regulatory
pathways for abiotic stress tolerance/sensitivity in chickpea, focus
should be on establishment of role of individual genes identified
through transcriptomics/genomics in tolerance or sensitivity and
advancing this knowledge gradually to elucidate some specific as
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well as common responses of chickpea plants to these abiotic stresses.
Owing to advancements in genomics in chickpea, QTLs/genes
governing tolerance to the three abiotic stress traits and
preliminary information on genes/gene interactions governing
susceptibility/tolerance to these traits is available. The DNA-based
markers, despite accelerated development during the last decade, are
still inadequate and further enrichment of genomic resources for
marker assisted selection is required so that adequately dense genetic
maps be developed to map all the possible traits and narrow down
the QTL boundaries in case of quantitative traits such as cold,
drought, and heat stress tolerance. Considering drought stress, a
“QTL-hotspot” harboring root and various drought related trait has
been introgressed into elite chickpea genotype (Varshney et al., 2016).
However, the other minor QTLs need to be pyramided individually
or in combination for developing drought and heat tolerant elite
chickpea varieties. Chickpea breeders still rely primarily on
phenotypic selection for progeny plants while marker assisted
selection (MAS) remained an underutilized technology even for
monogenic traits like Fusarium wilt. Similarly, gene/QTL
pyramiding has not been exploited in chickpea. Clearly, marker
technology in chickpea is still in the laboratory stage waiting to be
exploited commercially. Nonetheless, genomic resources such as
markers linked to phenotypic traits and genes governing several
traits are already known and this knowledge is expanding rapidly e.g.,
sequencing and resequencing approaches have increased repertoire of
SNP markers during the last decade. This information indicates
toward possible exploitation of genomic selection for phenotypic
traits for chickpea in future.

Future research must aim at developing designer chickpea
cultivars that can tolerate combination of stress environments,
such as heat and drought, and cold and drought, to expand its
stress tolerance ability along with superior agronomic
performance. Exploitation of genomics/transcriptomics/
resequencing coupled with reference genome sequences in
chickpea, are expected to enhance our understanding of cold,
heat and drought stress tolerance that in near future will boost
development of single- or multiple stress tolerant high-yielding
chickpea cultivars suited to specific climatic niches. This
knowledge may consequently result in development of better
and economical stress management options based on chemical/
agronomic means, apart from host resistance, to enable us to deal
with unexpected climatic contingencies.
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