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The increased availability of large phylogenomic datasets is often accompanied by
difficulties in disentangling and harnessing the data. These difficulties may be enhanced
for species resulting from reticulate evolution and/or rapid radiations producing large-
scale discordance. As a result, there is a need for methods to investigate discordance,
and in turn, use this conflict to inform and aid in downstream analyses. Therefore, we drew
upon multiple analytical tools to investigate the evolution of Micranthes (Saxifragaceae), a
clade of primarily arctic-alpine herbs impacted by reticulate and rapid radiations. To
elucidate the evolution of Micranthes we sought near-complete taxon sampling with
multiple accessions per species and assembled extensive nuclear (518 putatively single
copy loci) and plastid (95 loci) datasets. In addition to a robust phylogeny for Micranthes,
this research shows that genetic discordance presents a valuable opportunity to develop
hypotheses about its underlying causes, such as hybridization, polyploidization, and range
shifts. Specifically, we present a multi-step approach that incorporates multiple checks
points for paralogy, including reciprocally blasting targeted genes against transcriptomes,
running paralogy checks during the assembly step, and grouping genes into gene families
to look for duplications. We demonstrate that a thorough assessment of discordance can
be a source of evidence for evolutionary processes that were not adequately captured by
a bifurcating tree model, and helped to clarify processes that have structured the evolution
of Micranthes.
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INTRODUCTION

The ability to sample hundreds of loci initially inspired optimism
about recovering robust phylogenetic inferences despite
discordance (Gee, 2003; Rokas et al., 2003). This optimism has
been tempered by the growing finding that conflict is rampant
throughout the tree of life at different taxonomic levels across
phylogenomic datasets (e.g., Wickett et al., 2014; Crowl et al,
2017; Folk et al., 2018; Moore et al., 2018). Gene tree
reconciliation methods seeking to deal with these problems
have been developed, but commonly these methods and the
studies using them treat discordance as a nuisance parameter and
do not account for the possibility of the incongruence itself being
of interest (Hahn and Nakhleh, 2016; Sayyari et al., 2018).

Here, we investigate the phylogeny and evolution of a
complex clade of north temperate, alpine, and arctic flowering
herbs for which inter- and intraspecific relationships have
remained obscure. Micranthes Haw. (Saxifragaceae), a clade of
~80 species, occurs primarily in temperate, montane, and arctic
habitats in the Northern Hemisphere (Brouillet and Elvander,
2009a). Previous phylogenetic investigations of Micranthes
included only a few genes and/or limited sampling, and none
have addressed the potential causes of phylogenetic conflict that
have been documented (Lanning, 2009; Prieto et al., 2013; Tkach
et al., 2015). One reason for this is that Micranthes is
characterized by phylogenetic complexities variously attributed
to autopolyploidy, allopolyploidy, aneuploidy, and hybridization.
The hypothesized role of hybridization and polyploidy has been
supported by the success of generating artificial hybrids and
documentation of a wide range of chromosome numbers, both
within and among species (Perkins, 1978; Elvander, 1984). Of the
34 species of Micranthes that have reported chromosome counts,
the range spans from 2n = 10 to 120 with the most common
counts being 2n = 20 and 38 (Rice et al., 2015). Extensive
intraspecific variation also exists, e.g., Micranthes occidentalis
has reported chromosome counts of 2n = 20, 38, 40, 56, 58
(Perkins, 1978; Brouillet and Elvander, 2009a). This substantial
variation in chromosome numbers is unusual, not only within
Saxifragaceae, but also angiosperms (Webb and Gornall, 1989;
Soltis, 2007; Brouillet and Elvander, 2009b; Weiss-Schneeweiss
and Schneeweiss, 2013).

We assembled and analyzed a phylogenomic dataset
developed through target-enrichment and investigated these
data with multiple complementary methods to assess
robustness. We employed a gamut of methods to explore gene
tree discordance, and we used this discordance to inform
hypotheses regarding the evolution of Micranthes. Further, we
assessed paralogous genes and analyzed species-tree vs. gene-tree
conflicts. We then used the resulting best-supported
phylogenetic hypothesis to compare dating methods for
phylogenomic datasets. These analyses were used to address
two main questions: 1) are different evolutionary narratives
obtained when examining and accounting for incongruence?
and 2) how can gene conflict be used to inform phylogenetic
inference? Notably, in addition to addressing these questions we
demonstrate that datasets with considerable phylogenetic
conflict are not inherently intractable for subsequent analyses.

This research illustrates methods for investigating conflicting
signals in phylogenomic data, and provides refined inferences of
phylogenetic and biogeographic relationships for Micranthes.

MATERIALS AND METHODS

Taxon Sampling and Target Enrichment

Specimens were collected from natural populations spanning the
Northern Hemisphere over three successive field seasons (2014-
2016). Additional samples, primarily for outgroup taxa, were
obtained from herbarium specimens and other field collections
preserved in silica (Table S1). In all, our dataset comprised 161
samples, including 27 outgroups and 68 Micranthes (Table S1).

DNA extraction, probe design, target-capture, and dating
analysis followed Stubbs et al. (2018), and are summarized
briefly here. We used a target-capture approach for enrichment
of pre-selected genomic regions optimized to provide resolution
at multiple phylogenetic scales. To obtain transcriptomes fresh
leaf tissue for six species of Micranthes species (Micranthes
petiolaris, Micranthes caroliniana, Micranthes careyana,
Micranthes micranthidifolia, Micranthes oregana, and
Micranthes ferruginea) was collected from natural populations,
placed in liquid nitrogen, and stored at —80°C for subsequent
RNA extraction. RNA extractions were performed per option 2
of the protocol by Jordon-Thaden et al. (2015) with the addition
of 20% sarkosyl. RNA library preparation and sequencing were
performed by BGI (Shenzhen, China). Reads were filtered by
quality-score prior to assembly, which was performed using
SOAPdenovo-trans v1.03 (Xie et al., 2014) for the transcript
(-K 35; -M 1, -F) assembly following Wickett et al. (2014).

Using the program MarkerMiner v1.0 (Chamala et al., 2015)
the transcriptomes were input against reference databases
composed of annotated single-copy genes in Arabidopsis
thaliana. We used read-mapping in Geneious v9.0.2 (Kearse
etal., 2012) to check for paralogous genes. If there were multiple
overlapping hits from one transcriptome, this was considered a
potential paralog and the gene was removed.

Probes universal to the clade Saxifragales were designed using
parallel methods (Folk et al., 2019); sequence divergence was
accounted for using up to 11 orthologs per gene from the 1KP
project transcriptomes based on 11 species (Matasci et al., 2014).
The order-level probes were multiplexed with the Micranthes-
specific probe set, and in total, the final markers selected for
probe design included 518 putatively single-copy nuclear genes.
This gene set was used to design a myBaits custom bait library
(formerly Mycroarray; Ann Arbor, Michigan, USA), with 120-
mer biotinylated baits, an overlap of 60 base pairs (bp), and
3x tiling.

We selected taxa to supplement the 27 ingroup accessions
from our previous analysis (Stubbs et al., 2018) with the aim of
having a substantial representation of every clade of Micranthes
based on the most recent treatment of the group (Tkach et al,
2015). Total genomic DNA was extracted from silica-dried and
herbarium specimen leaf material, following a modified cetyl
trimethylammonium bromide (CTAB) extraction protocol
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(Doyle and Doyle, 1987). Double-barcoded Illumina libraries
were built by RAPiD Genomics (Gainesville, Florida), with a size
selection step aiming for >200 bp. Target capture reactions were
performed with either a custom myBaits kit either in-house
following the v3.1 manual or by RAPiD Genomics with libraries
pooled 8-plex. The post-capture libraries were pooled and
sequenced on six lanes of an Illumina HiSeq 3000 with 150 bp
paired-end reads.

Phylogenetic Analysis
Assembly of the nuclear reads was performed using HybPiper
v1.2 (Johnson et al.,, 2016), a collection of Python scripts that
employs the original gene sequences used for probe design to
assemble sequences for each target locus. Post-processing scripts
were run in HybPiper to retrieve both a summary of target
enrichment and gene recovery efficiency and a heat map
visualizing the gene recovery efficiency per sample. Chloroplast
genes were assembled from off-target reads following the same
methods as the nuclear dataset, but using as a reference the
complete plastome of Heuchera parviflora var. saurensis (Folk
et al., 2015), with the addition of intergenic regions identified
using DOGMA (Wyman et al., 2004). All genes and spacer
regions were manually reviewed for length and quality, and genes
and spacers >200 bp were kept. In total, we retrieved 95
chloroplast coding sequences and intergenic regions.

Additionally, we ran the post-processing script
“paralog_investigator.py” on the nuclear dataset to extract
coding sequences from alternative contigs flagged by HybPiper
(available from https://github.com/mossmatters/HybPiper). This
tool determines potential paralogs as follows: first, the initial
retrieval script in HybPiper identifies all contigs matching each
probe, then a single contig is selected based on size and similarity
and the smaller contigs are flagged and removed, and finally, the
post processing script retrieves all flagged contigs for subsequent
use (Johnson et al,, 2016). To assess if these additional contigs
represented paralogs, homeologs, allelic variation, or
contamination, the files generated by HybPiper containing all
gene contigs (both retained and discarded) for all species were
retrieved and run through a pipeline to create a phylogeny. This
pipeline consisted of an alignment in MAFFT v7.215 (Katoh and
Standley, 2013) with default parameters and a tree reconstruction
using FastTree 2 (Price et al, 2010) specifying the GTR+CAT
model. All resulting gene trees were manually examined, and any
genes that included multiple contigs for multiple species were
removed from downstream analyses. In all, 37 genes were
discarded at this step, resulting in a final collection of 481
putative single copy nuclear genes for downstream analyses.

Methods of alignment and analyses followed Stubbs et al.
(2018) and are reviewed here. The 481 single-copy loci and
plastid genes were individually aligned with MAFFT. Alignment
statistics were calculated by AMAS (Borowiec, 2016). In both
datasets, genes were concatenated and partitioned, and a
maximum likelihood (ML) analysis was performed using
RAXML v8 (Stamatakis, 2014). Gene trees were inferred for
each of the individual nuclear gene alignments.

A coalescent species tree was inferred from the 481 best ML
nuclear gene trees from RAXML and 1,000 bootstraps (BS), using

ASTRAL-II v5.0.3 (Mirarab and Warnow, 2015). Branches with
less than 10% BS were collapsed in the gene trees using Newick
utilities (Junier and Zdobnov, 2010). We examined coalescent
branch length estimated in ASTRAL-II to quantify incomplete
lineage sorting (ILS) expectations throughout the tree. Although
this metric is conservative since all gene incongruence is assumed
to be due to ILS, it is useful as a direct measure of the amount of
discordance in the gene trees. Support of the ASTRAL-II species
tree was quantified using the local posterior probability (LPP) of
a branch as a function of its normalized quartet support (Sayyari
and Mirarab, 2016). We first ran ASTRAL-II with all accessions,
and from that resulting tree we collapsed all species that were
recovered as monophyletic. Additionally, to use the ASTRAL-II
results for downstream analyses requiring branch lengths, we
used RAXML to optimize branch lengths for this topology by
constraining RAXML to the ASTRAL-II topology. We define
the support on the species trees from here on as follows: strong
support will correspond to either BS >90 or LPP >0.9 and poor
support will be any node with BS <70 or LPP <0.9. All trees were
visualized with FigTree v1.4.2 (Rambaut, 2009) and Interactive
Tree of Life (iTOL) (Letunic and Bork, 2016).

Numerous sections and series have been designated within
Micranthes (Haworth, 1821; Don, 1822; Johnson, 1934; Gornall,
1987; Soltis et al., 1996; Tkach et al., 2015; Gornall, 2016). For
ease of discussion we will be referring to the five clades that are
maximally supported (LPP = 1.0) in our results. These clades are
Merkii, Melanocentra, Stellaris, Lyallii, and the core Micranthes
(Figure 1).

Conflict between gene trees and the species tree was assessed
using PhyParts v0.0.1 (Smith et al., 2015). For input into
PhyParts, all gene trees were rooted using Phyx (Brown et al.,
2017) and subsequently outgroups were removed. To minimize
the effect of gene tree estimation error, we applied a bootstrap
filter where edges with bootstrap values lower than 70% were
ignored for congruence calculations. We ran PhyParts on both
the dataset with all accessions and a reduced dataset where the
gene trees were pruned to one species per accession. When two
or more accessions were available per species, the accession with
the most nuclear exon sequence data was selected. To visualize
the results we used scripts developed by Matt Johnson
(https://github.com/mossmatters/MJPythonNotebooks/blob/ma
ster/PhyParts_PieCharts.ipynb). We further explored gene
conflict using the gene- and site-concordance factors in
IQ-TREE (Nguyen et al., 2015; Minh et al., 2018); gCF is the
percentage of gene trees containing a specific branch in the
species tree, while sCF is the percentage of alignment sites
supporting that branch. For input into IQ-TREE we used the
ASTRAL-II species trees and the RAXML gene trees and 500 qua
rtets were randomly sampled per branch. Finally, incongruence
between the chloroplast and nuclear genome was visualized
using the “tanglegram” function in DensiTree.

Gene Duplication

We clustered gene families using OrthoFinder (Emms and Kelly,
2015) under the default parameters, with the exception of
providing our rooted ASTRAL-II species tree for reconciling
the gene trees. The input files for OrthoFinder were all exons plus
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potential paralogs as retrieved by HybPiper. First, we reduced
our dataset to just ingroup taxa, removed two taxa with low
coverage (Micranthes pseudopallida and Micranthes japonica),
and used only a single accession per species (as above). As we
were interested in paralogs, we included all contigs for each of
the original 518 genes. The summary statistics output by
OrthoFinder included a list of nodes that were recovered as
having a duplication event, the genes included in that
duplication, and the support of the duplication for that node.
To ensure that short contigs were not misinterpreted as gene
duplications and that multiple orthogroups were not constructed

Micranthes

er

 occidenialls B
; eEdentals RS75

FIGURE 1 | Species tree generated using ASTRAL-Il and 481 low-copy nuclear genes. Nodes are colored corresponding to local posterior probability. Additionally,
clades are colored to show boundaries of each clade. Inset shows branch lengths generated in RAXML for the ASTRAL-Il topology. (A) Micranthes nudicaulis, (B)
Micranthes tolmiei, (C) Micranthes melanocentra, (D) Micranthes ferruginea, (E) Micranthes manchuriensis, (F) Micranthes hieraciifolia, (G) Micranthes californica, (H)

from the same gene, we carefully examined the output from
OrthoFinder. We found no examples of either scenario.

Molecular Dating

We employed multiple approaches for divergence-time inference.
For all approaches we used the same fossil constraints. The best
well-documented fossils to use for Micranthes are in closely
related families outside Saxifragaceae, including fossilized leaves
of Ribes webbii in Grossulariaceae (Hermsen, 2005), Itea fossil
pollen in Iteaceae (Hermsen, 2013), and fossils of Divisestylus in
the Saxifragaceae alliance (Hermsen et al., 2006; Hermsen, 2013).
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Fossils were applied following the placements suggested in
previous dating analyses of Saxifragaceae (Ebersbach et al.,
2016; Stubbs et al., 2018; Folk et al., 2019). Briefly, fossil
constraints were as follows: constraining the stem Itea +
Choristylis + Pterostemon at 49 million years ago (Mya); placing
the most recent common ancestor (crown) age of Ribes at
14.5 Mya, and the crown of the Saxifragaceae alliance (all taxa
excluding Mytillaria, Glischrocaryon, Altingia) at 89 Mya.

Dating analyses were conducted using Bayesian methods.
Given the computational resources needed for these methods,
it was necessary to reduce the scale of the datasets via “gene
shopping” methods (Hedges et al.,, 1996; Kumar and Hedges,
1998); such methods seek to identify a reduced set of genes with
the best information relevant to time calibration. One method
followed Johns et al. (2018) and employed HashRF (Sul and
Williams, 2008) to calculate the Robinson-Foulds (RF) distance
(Robinson and Foulds, 1981) between the gene trees and the
ASTRAL-II-constrained RAXxML topology; those with the least
RF distance have greater concordant phylogenetic signal. The
25 loci closest in RF distance to the species tree were selected.
Secondly, we implemented an approach developed by Smith et al.
(2018). We used the SortaDate package (https://github.com/
FePhyFoFum/sortadate) to filter the 25 “best” loci. This packa
ge determines which gene trees are clock-like, have the least
topological conflict with the species tree, and have informative
branch lengths. Both datasets were concatenated for use in
BEAST v1.8.2 (Drummond et al., 2012).

BEAST analyses were run under a relaxed uncorrelated
lognormal model for 10® generations, logging parameters every
2,000 generations, and assuming a coalescent process. The prior
distribution for all fossil calibration points was lognormal with
the aforementioned dates used as the median to determine the
offset value. The molecular clock was set as relaxed lognormal.
To speed up the analysis, five strongly supported recovered
clades (see Results) were constrained, and five identical runs
were carried out simultaneously. To summarize the results, all
tree sets were combined using LogCombiner v1.8.2 after
removing the burn-in (10% of trees). Summary statistics were
calculated using TreeAnnotator v1.8.2.

RESULTS

Target Enrichment Phylogenetic Analysis

In total, we captured up to 518 nuclear loci across all 164
accessions (Figure S1). All sequence data have been deposited
at the Sequence Read Archive (BioProject: PRINA587870). With
the exception of the OrthoFinder results below, all Results and
Discussion hereafter refer to the reduced low-copy 481-loci
dataset. For gene recovery, the average locus length for
Micranthes was 865 bp (range: 113-2,191 bp) and 49.8%
(range: 7.5-75.7%) of reads were on target (Table S2). For
ingroup taxa, the total alignment for the 481-loci matrix
consisted of 665,502 base pairs, with 309,742 parsimony-
informative sites, and had 22% missing data (Table S3). All

analyses indicated that Micranthes consists of five lineages
approximating traditionally recognized sections (Figure 1). We
recovered monophyly for most species for which there were
multiple samples, but there were a few exceptions from multiple
sections, including Micranthes nelsoniana, Micranthes
hitchcockiana, Micranthes subapetala, M. oregana, Micranthes
razshivinii, and Micranthes calycina. Most polyphyletic species
across all analyses were within the core Micranthes clade, which
also included the highest number of low support values.

Our off-target reads recovered substantial coverage of the
plastome. In total, our plastid dataset consisted of 50,009 base
pairs, 44% missing data, and 21% parsimony-informative for
ingroup taxa (Table S3). Support in the plastid phylogeny was
generally strong at deeper nodes and in most sections, but in the core
Micranthes clade, there was poor support throughout (Figure 2).

The ASTRAL-II topology (Figure 1, Figure S2) was largely
congruent with the RAXML concatenated dataset (Figure S3),
and the main clades were maximally supported. Approximately
85% of branches in the Micranthes ASTRAL-II species tree with
one accession per species (Figure S2) were less than one
coalescent unit in length, consistent with significant discord
due to ILS.

Contflict between the ASTRAL-II nuclear topology and plastid
phylogenetic trees is shown via a tanglegram in Figure 2, where
nodes with <70% BS and <0.7 LPP are collapsed. Both analyses
recovered maximal support for the Micranthes clade as a
whole and for five distinct clades. The Merkii, Stellaris, and
Melanocentra clades did not have any hard interspecific
incongruence (> 70% BS, > 0.7 LPP) between the nuclear and
chloroplast trees. In the Lyallii clade relationships were generally
congruent with the exception of relationships in M. nelsoniana
and the placement of Micranthes unalaschensis as either sister
to M. razshivinii + M. calycina (nuclear) or nested within
M. razshivinii (plastid). There were multiple instances of
incongruence throughout the core Micranthes clade, and the
relationships within this clade were recovered with the lowest
support in both the nuclear and plastid trees.

PhyParts recovered many instances of discordance in the
nuclear gene trees—more than two-thirds of nodes in the
ASTRAL-II tree were shown to have more (> 60%) gene trees
in disagreement with that node than in agreement (Figure 2,
Figures S4 and S5). IQ-TREE further supported the high amount
of discordance in our dataset. For many of the branches within
the Micranthes phylogeny, the two concordance factors—gene
concordance factors (gCF) and site concordance factors (sCF)—
are similarly low regardless of high LPP. The nodes with the
lowest LPP also had the lowest gCF and sCF, yet even with
relatively low gCF and sCF we still recovered maximal support for
many nodes (Figure 3).

Duplications in Genes, Gene Families,

and Genomes

In the original 518-nuclear gene dataset, both HybPiper and
OrthoFinder recovered many potential paralogs. HybPiper
identified potential paralogs in 110 of 138 ingroup accessions.
Notably, the five accessions that had the most genes with
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detected paralogs based on HybPiper—M. hitchcockiana RS57,
M. subapetala RS98, Micranthes pensylvanica RS100, M.
subapetala RS97, and M. oregana RS77—had either low
bootstrap support or incongruent placements in all species
trees. Of those five species, all but M. pensylvanica had more
than one accession in our analyses, and the other accession(s) for
each species did not have many paralogs, nor were they
recovered as monophyletic. This lack of monophyly, however,

could be an artifact of lower sequence coverage for those other
accessions (Table S2).

OrthoFinder, which in contrast to HybPiper investigates deep
paralogy patterns of gene families and not just individual taxon
paralogs, also recovered putative gene duplication events.
OrthoFinder recovered 301 gene family duplications. At
terminal nodes, the most duplications were recovered for
Micranthes atrata, Micranthes pallida, and Micranthes
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FIGURE 3 | Comparison of gCF (gene concordance factor) and sCF (site
concordance factor) by local posterior probability at each node in species tree.

melanocentra. The most strongly supported duplications (40% or
more of the daughter taxa at that node) were shared across 12
nodes, and the most recent common ancestor (MRCA) for the
Stellaris clade had the most duplications.

Molecular Dating

The two gene shopping methods selected six of the same loci, but
the other 19 loci varied between the two datasets. The
concatenated SortaDate dataset (Figure S7) was a total of
42,340 bp, while the RF dataset (Figure S8) was a total of
36,778 bp. These methods recovered slightly different
topologies compared to the ASTRAL-II topology. The RF
phylogeny differed from the ASTRAL-II species tree and the
SortaDate phylogeny in the placement of the Stellaris clade.
There were additional differences between all three topologies
at the terminals, and therefore, our Results and Discussion will be
focused on deeper nodes. In spite of these differences, the dates
recovered by the gene shopping methods were similar to each
other (Table 1). For instance, the crown age of Micranthes was
estimated to be 52.8 Ma (95% HPD = 40.2-69.9 Ma) in the RF
dataset, and it was dated slightly older with the SortaDate genes
at 58.3 Ma (95% HPD = 38.9-79.7 Ma). The crown age of the
core Micranthes was dated to 18.0 Ma (95% HPD = 11.6-24.1
Ma) in the RF dataset, but with the SortaDate genes the crown
clade was dated slightly younger to 17.3 Ma (95% HPD = 7.8-
24.4 Ma). Due to the similarities in divergence estimates between
the two gene shopping methods, and that there were more

TABLE 1 | Divergence time estimates for major clades within Micranthes for two
gene shopping methods.

Node SortaDate Robinson-
Foulds Distance
Mean 95% Mean 95%
HPD HPD
Micranthes group crown 58.3 38.9-79.8 52.8  40.2-69.9
Merkii group crown 46.9 27.4-67.7 275 14.0-41.0
Melanocentra group crown 334 16.7-60.7 20.3 7.3-31.7
Stellaris group crown 140 7.4-214 18.0 12.0-271
Lyallii group crown 145 7.4-28.0 1564  7.3-24.0
Core Micranthes group crown 173 7.8-244 18.0 11.6-24.1
Core Micranthes + Lyallii group 25.1 15.2-39.4 248 16.9-32.6
crown

HPD, highest posterior density.

topological differences between the RF dataset and our
ASTRAL-II species tree, we used the dated phylogeny
generated by the 25 best genes selected by SortaDate for
the discussion.

DISCUSSION

An important initial goal of this study was to generate a
phylogenetic hypothesis for Micranthes; our analyses provided
robust support for the major relationships within this clade
(Figure 1). Strong support for most relationships throughout
Micranthes was recovered, although the core Micranthes clade
consistently had the lowest support. Because one of the goals of
our research was to investigate genetic conflict, we used multiple
tools to highlight discordance in our dataset. These areas of
incongruence do not necessarily hamper the ability to generate
testable hypotheses through downstream analyses. Hereafter, we
will focus only on a few selected key conflicts that are exemplary
of our methods for examining discordance.

The ancestral node for Micranthes was reconstructed with
high support in all of the analyses, and both PhyParts and 1Q-
Tree concordance factors suggest that most loci support the
relationships at the nodes. The BEAST dating analysis based on
the SortaDate genes (Table 1, Figure S7) showed that the
ancestor of Micranthes started diversifying at 58.8 Ma (95%
HPD = 38.9-79.8 Ma). This date is near the Cretaceous—
Paleogene (K-Pg) boundary (65 Ma), and it is widely accepted
that a major perturbation, such as a catastrophic mass extinction
event, would clear ecological space, reducing competition, and
allow the adaptive radiation of formerly restricted groups (Wing
and Sues, 1992). Consistent with this theory, during the late
Paleocene and early Eocene the Earth was much warmer than at
present, but the high Arctic had a climate similar to present day
Idaho, Montana, and Colorado. Hence, the suitable habitat for
this cold-adapted clade would have been primarily polar in a
largely tropical-subtropical globe (Harrington et al., 2012).

The Melanocentra and Stellaris clades have maximal support
at all but three nodes (Figure 1). There is limited gene conflict at
the base of these clades, but an increase of discordance at
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shallower nodes. This conflict could be attributed to paralogs. In
the Melanocentra clade, M. atrata, M. pallida, and M.
melanocentra had the highest number of gene family
duplications, and in conjunction, many of the branches
subtending these species have a gCF that is notably lower than
the sCF (Figure 2). Generally, when the gCF values are affected
by processes other than discordance, the gCF values will be lower
than sCF values (Lanfear, 2018). Therefore, the high posterior
probabilities recovered for this clade suggest that the species
coalescent method was able to reconcile the gene trees and
species trees, but some of the loci in the analysis are not
constrained to bifurcating speciation events.

The Stellaris clade contained the most gene family
duplications with high support. Although four duplicated gene
families represent a small percentage of all gene families
recovered, this is likely a significant underestimate of the
background genome duplication rate, given our a priori
filtering for genes generally maintained as single-copy (De
Smet et al., 2013). Hence, a possible explanation for these gene
duplications is that they resulted from an ancestral polyploidy
event. There are multiple lines of evidence for this theory. For
one, this clade is associated with the production of bulbils in
place of flower buds, a form of asexual reproduction not seen in
any other Micranthes. This is notable because asexual
reproduction and whole genome duplication are correlated,
with polyploids displaying elevated rates of asexual
propagation compared to diploid relatives (Baduel et al., 2018).
Additionally, four species from this clade have chromosome
numbers reported in the literature: M. ferruginea (2n = 20, 38),
Micranthes foliolosa (2n = 40, 48, 56, 64), Micranthes clusii 2n =
28), and Micranthes stellaris (2n = 28; Brouillet and Elvander,
2009a; Rice et al.,, 2015). Taken together, this combination of
results suggests that the Stellaris clade is an ideal group for
further investigation into a series of putative whole
genome duplications.

A well-supported example of putative hybrid speciation is
recovered within the Lyallii clade for three species with
overlapping distributions in Alaska. In the ASTRAL-II tree,
Micranthes unalaschensis is recovered as sister to both M.
calycina + M. razshivinii (Figure 1), while in the plastid tree
M. unalaschensis is placed in a clade with just M. razshivinii
(Figure 2). In contrast, in the RAXML tree (Figure S3), M.
unalaschensis is recovered in a clade with just M. calycina.
Additionally, in the ASTRAL-II tree the coalescent length for
the branch subtending this clade was near one, suggestive of low
ILS especially under organelle inheritance (Folk et al., 2016). This
is also indicative of hybridization and chloroplast capture rather
than ILS for explaining the chloroplast topology. Further, it has
been suggested by previous studies that M. calycina may
hybridize with both M. unalaschensis and M. razshivinii due to
the discovery of morphologically intermediate plants in Alaska
(McGregor, 2008; Brouillet and Elvander, 2009a). This evidence
for hybridization and overlapping distributions, in combination
with our molecular analysis, suggests that M. unalaschensis could
be the result of a hybrid speciation event, with plastid genes

consistent with a relationship with M. razshivinii, and nuclear
genes suggesting a relationship with M. calycina.

The core Micranthes clade is recovered in all of our analyses
as having a high level of discordance throughout the clade.
PhyParts recovered many gene trees being in disagreement
with both each other and the species tree (Figure 2, Figures
S$4 and S5), and almost never recovered a single dominant
alternative topology (yellow pie slice). This discordance could
be the result of ILS, hybridization, and/or gene duplication (see
below). Furthermore, in the ASTRAL-II tree (Figure S2;
measured in coalescent units) and the dated phylogeny (Figure
$7; measured in millions of years), the core Micranthes clade had
very short branch lengths, also characteristic of rapid radiations
(Folk et al., 2015; Hutter et al., 2017; Mitchell et al., 2017). The
branch subtending this clade was of length ~1 suggesting low
levels of discord between the core Micranthes and other clades.

We recovered multiple examples of strongly supported
phylogenomic conflict in the core Micranthes (Figures 1 and
2). A notable area of conflict is the evolutionary history of M.
hitchcockiana and M. subapetala. For one, both M. hitchcockiana
and M. subapetala have chromosome counts representative of
tetraploids of 2n = 76 (Perkins, 1978; Elvander, 1984; Brouillet
and Elvander, 2009a). Additionally, four decades ago Perkins
(1978) and Elvander (1984) suggested that M. hitchcockiana may
have arisen as the result of genome duplication following
hybridization between M. oregana and a member of the M.
occidentalis complex (including M. occidentalis, Micranthes
rufidula, Micranthes idahoensis, and Micranthes gormanii), and
that M. subapetala was an autopolyploid with M. oregana as its
progenitor. This hypothesis was based on exceptional
morphological, ecological, and artificial hybridization studies,
and we can now further test this hypothesis with molecular data.

In our analyses, M. hitchcockiana, M. oregana, and the M.
occidentalis complex are consistently supported as being
polyphyletic in both plastid and nuclear phylogenies.
Specifically, both individuals of M. hitchcockiana (collected
from different populations) are recovered in separate clades
with different accessions of M. oregana and M. subapetala.
These results, taken together with the detailed morphological,
cytological, and field studies conducted by Perkins (1978) and
Elvander (1984), do support the hypothesis that M. subapetala
and M. hitchcockiana are the result of polyploid speciation. For
M. hitchcockiana, our analyses, in combination with previous
work, suggest this species is an allopolyploid and that the other
progenitor is from the M. occidentalis complex, again aligning
with the predictions from Elvander (1984) and Perkins (1978).
The molecular analyses did not recover any signal for the other
progenitor of M. subapetala. Therefore, at least four other
possibilities exist: 1) the other progenitor is extinct; 2) the
other progenitor is a cryptic species we did not sample; 3) M.
subapetala is the result of a hybridization event followed by a
backcross to M. oregana, thus, masking the signal of the other
parent; or 4) M. subapetala is an autopolyploid as previously
hypothesized. Our analyses suggest that due to these taxa being
polyphyletic and having a divergence time of approximately
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5 Ma (Figure S7), M. hitchcockiana and M. subapetala may have
multiple origins of a polyploid taxa, a scenario believed to be
prevalent in natural populations (Soltis and Soltis, 1999; Soltis
et al,, 2015). Further tests are needed to fully explore
these hypotheses.

We used multiple lines of evidence to uncover diverse
evolutionary dynamics in Micranthes, including hybridization,
introgression, and polyploidization. Micranthes is a complex
clade, representing a diverse radiation, and likely involving
many cryptic species. Overall, our methods generated a
resolved phylogeny of Micranthes across multiple taxonomic
levels despite much underlying conflict. More work is needed on
this group, particularly to understand chromosome, gene family,
and ploidal evolution, but we were able to reconstruct multiple,
well-supported instances of putative non-bifurcating evolution.

Due to the complicated evolutionary history of Micranthes, as
inferred by our data and previous analyses, we suggest that
designations of traditional species by morphology and/or shallow
genetic sampling may be misleading. In fact, our results indicate
that lower support values seen in shallow relationships do not
reflect a lack of phylogenetic signal, but are likely the product of
evolutionary processes not adequately captured by a bifurcating
tree model. Teasing apart these varied phylogenetic histories
required explicit assessments of orthology and detailed
evaluations of discordance; this points to the importance of
orthology assessment in phylogenomics and explicit
consideration of conflicting evolutionary histories (Crowl et al.,
2017; Folk et al., 2018). A multi-step approach, such as the one
used here, incorporating four check points for paralogy—
targeting putatively single-copy genes in our bait design,
reciprocally blasting targeted genes against transcriptomes,
running paralogy checks during the assembly step, and
grouping genes into gene families to look for duplications—
should result in more robust phylogenetic inference. Further,
examining causes of discordance and low support values through
multiple avenues can also inform evolutionary reconstructions.
Subsequently, we recommend a similar approach for other
challenging groups. Investigating conflicting phylogenetic
signals provides the opportunity to unravel different
evolutionary narratives, yielding new insights into speciation.
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FIGURE S1 | Heatmap showing success of target capture. Darker colors
represent higher capture success.

FIGURE S2 | ASTRAL-II topology with single species accessions and outgroups
removed. Branch lengths labeled in coalescent units.

FIGURE S3 | RAXML analysis of concatenated nuclear dataset. Nodes are
labeled with bootstrap support values.

FIGURE S4 | PhyParts results depicting gene tree conflict with the ASTRAL-II
species topology. Pie charts show gene tree conflict evaluations at each node as
the following: proportion of gene trees in concordance (blue), in conflict (pink),
agreeing with the dominant alternative topology (yellow), and unsupported with
less than 70% BS (gray). The number above the branch is the number of gene
trees that agree with the relationships at that node and the number below the
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branch is the number of gene trees that are in conflict with that node. Total number
of trees is 481.

FIGURE S5 | PhyParts results depicting gene tree conflict with the ASTRAL-II
species topology where all but one accession per species were removed in the
species tree and gene trees. Pie charts show gene tree conflict evaluations at each
node as the following: proportion of gene trees in concordance (blue), in conflict
(pink), agreeing with the dominant alternative topology (yellow), and unsupported
with less than 70% BS (gray). The number above the branch is the number of gene
trees that agree with the relationships at that node and the number below the
branch is the number of gene trees that are in conflict with that node. Total number
of tree is 478.
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