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Organisms rely on symbiotic associations for metabolism, protection, and energy.
However, these intimate partnerships can be vulnerable to exploitation. What prevents
microbial mutualists from parasitizing their hosts? In legumes, there is evidence that hosts
have evolved sophisticated mechanisms to manage their symbiotic rhizobia, but the
generality and evolutionary origins of these control mechanisms are under debate. Here,
we focused on the symbiosis between Parasponia hosts and N2-fixing rhizobium bacteria.
Parasponia is the only non-legume lineage to have evolved a rhizobial symbiosis and thus
provides an evolutionary replicate to test how rhizobial exploitation is controlled. A key
question is whether Parasponia hosts can prevent colonization of rhizobia under high
nitrogen conditions, when the contribution of the symbiont becomes nonessential. We
grew Parasponia andersonii inoculated with Bradyrhizobium elkanii under four ammonium
nitrate concentrations in a controlled growth chamber. We measured shoot and root dry
weight, nodule number, nodule fresh weight, nodule volume. To quantify viable rhizobial
populations in planta, we crushed nodules and determined colony forming units (CFU), as
a rhizobia fitness proxy. We show that, like legumes and actinorhizal plants, P. andersonii
is able to control nodule symbiosis in response to exogenous nitrogen. While the relative
host growth benefits of inoculation decreased with nitrogen fertilization, our highest
ammonium nitrate concentration (3.75 mM) was sufficient to prevent nodule formation
on inoculated roots. Rhizobial populations were highest in nitrogen free medium. While we
do not yet know the mechanism, our results suggest that control mechanisms over
rhizobia are not exclusive to the legume clade.
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INTRODUCTION

Symbiotic partnerships have transformed the Earth’s nutrient
cycles and facilitated rapid adaptation of species to divergent new
niches (Joy, 2013; McFall-Ngai et al., 2013; Oldroyd, 2013). Because
almost all organisms rely on symbiotic associations for some form
of metabolism, protection, or energy (Bronstein, 2015), this
immense symbiotic microbial world has been called “the biggest
frontier that biology has presented us in a long time” (Carey, 2015).

Despite their importance, understanding the origins and
evolutionary trajectories of symbiotic partnerships remains a
major challenge. The problem is that mutual benefit does not
guarantee evolutionary stability, and partnerships can be
vulnerable to exploitation (Sachs and Simms, 2006; Kiers and
Denison, 2008; Sachs et al., 2011; Sachs and Hollowell, 2012).
What prevents microbial mutualists from defecting from
symbiotic cooperation and parasitizing their hosts? This is a
question being asked across a diversity of host organisms, from
plants and insects to humans (Werner et al., 2014; Hallam and
McCutcheon, 2015; Keeling et al., 2015; Werner et al., 2015).
While it is appreciated that symbiosis is a key underlying
mechanism behind the complexity of life, we do not have a
general understanding of how symbiotic associations are
controlled and harnessed (Keeling et al., 2015).

The legume-rhizobia N2 fixing symbiosis has become an
emerging model system in evolutionary biology to study host
control (Kiers et al., 2006; Kiers et al., 2007; Oono et al., 2009;
Porter and Simms, 2014; Regus et al., 2015; Westhoek et al., 2017;
Porter et al., 2019). Host plants employ a range of (non-exclusive)
strategies to maximize rhizobial benefits, including: 1) pre-nodule
control in which the plant evolved high levels of specificity to
achieve species, or even strain-specific selection on rhizobial
partners, and 2) control based on rhizobial performance, such
that higher performing nodules receive proportionally more
resources than poor performing nodules (Kiers and Denison,
2008; Westhoek et al., 2017). Because signaling (i.e., pre-nodule
control) can be vulnerable to partners that cheat by evolving the
correct signal while providing few resources (Edwards and Yu,
2007), it is thought that some form of basal nodule-level control is
necessary to prevent rhizobial exploitation (Denison and Kiers,
2011; Regus et al., 2017a; Kiers et al., 2003; Kiers et al., 2006; Oono
et al., 2011).

Control of exploitation is particularly important when plant
hosts have direct access to high levels of nitrogen in the soil.
Under these conditions, the nitrogen benefits provided by the
rhizobial symbiont become redundant with nitrogen provided by
the environment. Hosts are therefore expected to evolve
mechanisms which prevent nodule formation when grown in
high nitrogen soils (Regus et al., 2017b). While such regulatory
pathways have been documented in legume species (Streeter and
Wong, 1988; Cabeza et al., 2014; Soyano et al., 2014; Nishida
et al., 2016; Nishida and Suzaki, 2018), the generality of these
control mechanisms are unknown (Heath et al., 2010; Regus
et al., 2014; Regus et al., 2015).

Our aim was to study host control mechanisms outside the
legumes. We focused on the non-legume Parasponia andersonii
Frontiers in Plant Science | www.frontiersin.org 2
(Cannabaceae). The genus Parasponia is composed of pioneer
plant species typically found on nitrogen poor slopes of volcanic
hills in the Malay Archipelago. Parasponia is the only lineage
outside the legume family to be able to form a nodule symbiosis
with rhizobium (Trinick, 1973; Trinick and Galbraith, 1980;
Trinick and Hadobas, 1988). Recent phylogenomic studies
suggest that nodule symbioses with diazotrophic bacteria share
a single evolutionary origin (Griesmann et al., 2018; van Velzen
et al., 2019). As the Parasponia and legumes diverged >100
million years ago, microbial partner selection strategies were
shaped independently in both lineages (van Velzen et al., 2019).
Therefore, Parasponia is a unique evolutionary replicate of
rhizobium symbiosis that allows us to better understand the
evolutionary origins of control mechanisms.

In legumes, such Glycine max, past work has shown that the
severity of symbiont control is mediated by the addition of
external nitrate—as nitrogen availability increases, the host
reduces resources allocated to the symbiont. Because soil
nitrate is generally less costly for legumes compared to
biologically fixed nitrogen, this leads to an inhibition or severe
reduction of legume nodule formation (Streeter andWong, 1988;
Voisin et al., 2002; Wendlandt et al., 2018; Regus et al., 2017b).
This process, however, is not well understood in non-legumes.
In Parasponia, early work has shown nodules can continue to
form in high nitrogen environments (Becking, 1983b), but
whether rhizobia remain viable in nodules under high nitrogen
conditions is unknown. This is important because in Parasponia
nodules, rhizobium are not terminally differentiated (Alunni and
Gourion, 2016). This means that the endosymbiont population
within nodules can replicate, and will be added to the soil
population upon nodule senescence. Can non-legumes control
symbionts under conditions when the symbionts become a cost
rather than a benefit? Studying the existence of control patterns
has been particularly challenging in Parasponia nodules due to
the difficulty of growing these tropical trees in greenhouses, and
the small size of their nodules compared to most model legumes.
Typical metrics, such as growth parameters of individual
nodules, poly-3-hydroxybutyrate (PHB) content, and rhizobial
fitness measures, have been historically difficult to obtain.

Here we study the effects of increasing nitrogen fertilization
on the symbiosis between P. andersonii and the rhizobial
symbiont Bradyrhizobium elkanii. Our aim was to ask if
fertilization: 1) reduced or eliminate the growth benefits of
rhizobial nodulation for P. andersonii, and 2) reduced the
fitness benefits for the rhizobial symbiont. If Parasponia has
evolved effective mechanisms to control nodulation under high
nitrogen, then we expect increasing fertilization to be correlated
with negative fitness consequences for rhizobia. If these
mechanisms are costly for the host to enact, then we expect to
see a host growth depression in the presence—but not absence—
of a rhizobial symbiont under the high nitrogen treatments.

We grew plants under 0, 0.0375, 0.375, 3.75 mM ammonium
nitrate concentrations, either with or without rhizobial inoculation.
Our four levels were chosen to represent specific ecological
challenges for the host-symbiont, namely: i) when Parasponia
depends entirely on its symbiont for nitrogen input (0 and
February 2020 | Volume 10 | Article 1779
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0.0375 mM), ii) when benefits from inoculation are minimal (0.375
mM), iii) when benefits from inoculation are absent/negative (3.75
mM). After 4 weeks, we quantified shoot and root dry weight,
nodule number, and nodule fresh weight. We developed an
imaging protocol to measure the projected surface of individual
nodule areas and then converted it to volume as a secondmetric for
rhizobia benefit. We crushed nodules for measures of colony
forming units (CFU) to determine rhizobial populations per
nodule. Together, these metrics (nodule number, biomass,
volume, and CFUs) provided us with a proxy for in planta
rhizobial fitness that allowed us to better understand host control
in non-legumes.
MATERIALS AND METHODS

Seed Germination
We harvested fresh berries from in-vitro propagated Parasponia
andersonii trees genotype W1-14 (Van Velzen et al., 2018)
maintained in a tropical greenhouse. We extracted the seeds
from the berries by soaking them in water and gentle rubbing
against a fine sieve. We surface sterilized all seeds in 4% sodium
hypochlorite for 15 min and washed seven times with sterile MQ
water. We induced germination by temperature cycle (4 h 28°C,
4 h 7°C) for 12 days. We incubated seed on Schenk and
Hildebrandt medium agar plates for 10 days until cotyledons
were fully emerged.

Experimental Design and Plant Growth
We prepared the growing medium of sterile perlite and sterile
river sand. We added 210 g of each perlite mixture to 10 sterile
polypropylene containers (OS140box, Duchefa Biochemie)
allowing for better gas exchange. Per pot, we placed 4 cm3 of
the river sand mixture to transfer the seedling and avoid root
desiccation. We used a factorial design experiment consisting of
two rhizobia conditions, four nitrogen levels, and 10 replicates
per treatment (2 x 4 x 10 = 80 pots).

Inoculation and Nitrogen Treatments
To inoculate P. andersonii, we chose the highly efficient
nodulating strain B. elkanii WUR3 (Op den Camp et al.,
2012). To prepare the inoculum, we grew a WUR3 pre-culture
from a single colony in liquid peptone-salts-yeast (PSY) medium
at 28°C, 60 rpm (Regensburger and Hennecke, 1983). One
milliliter of the pre-culture OD600 = 0.8 was used to inoculate
a 200 ml Erlenmeyer culture. We harvested the culture by
centrifugation [10 min at 3,500 x relative centrifugal force
(rcf)] at OD600 = 0.8. We suspended the cells in the different
EKM (Becking, 1983a) solutions to an OD600 = 0.05. The
nitrogen treatments were based on an EKM-medium with four
levels (0, 0.0375, 0.375, and 3.75 mM) ammonium nitrate.
Nitrogen and rhizobia inoculum were added by saturating the
perlite and river sand with the four EKM-medium prior to
transferring the seedlings to pots. Non-inoculated controls
received EKM solutions (see below) but without the rhizobia
culture. We then randomly placed the pots on a growth chamber
Frontiers in Plant Science | www.frontiersin.org 3
table under a 16/8 h light cycle, temperature 26/24°C, light
intensity 185 µmol/m2/s, and a relative humidity of 90%.

Harvest
We harvested plants after 30 days. We carefully washed off the
perlite and sand from the root systems. We counted nodules and
harvested each one individually. We then used binoculars
equipped with a Nikon camera (DS–Fi2) to image each nodule.
To obtain nodule volume, we extracted and measured the area
and perimeter of the nodules photographed using FIJI
(Schindelin et al., 2012). We calculated the corresponding
prolate spheroid volume using the best fitted ellipse of each
nodule based on a previously developed formula (Nedomová
et al., 2014). We weighed nodules and kept them at 4°C in 0.9%
NaCl solution until they could be crushed for fitness assays. We
separated shoots and roots, dried them 72 h at 60°C, and
weighed them.

Metrics for Rhizobial Fitness Proxies
To determine a fitness proxy for rhizobia per plant, we surface
sterilized all nodules with 96% ethanol for 20 s, 4% sodium
hypochlorite for 1 min, and washed seven times with sterile
water. We crushed nodules in 150 µl 0.9% sterile saline solution.
Fifty microliters of the crushed nodules was diluted in series and
both 10,000 and 100,000 dilutions were streaked on PSY plates
with sterile glass beads and incubated at 28°C for 7 days. We then
counted colonies to determine total rhizobia per plant.

Statistical Analysis
We used R version 3.6.0 (2019-04-26) to conduct all statistical
tests. In case of heteroscedasticity or non-normality, a decimal
logarithm transformation of the data was performed to meet
ANOVA assumptions. If ANOVA assumption could not be met
with a transformation of the response variables, a non-
parametric Kruskal test was conducted. To compare plant
biomass among treatments, we tested the decimal logarithm
mean plant dry biomass for significant differences with two-way
ANOVA and a post-hoc Tukey tests for pairwise comparison
with a 95% confidence interval. To test for differences in
allocation to above and belowground parts, we compared mean
root to shoot ratio with a pair-wise Wilcoxon test. To compare
plant biomass as a function of rhizobial inoculation, we
compared decimal logarithm relative plant biomass among
nitrogen treatments with a one way ANOVA and a Tukey test
for multiple group comparison with a 95% confidence interval.
To test for differences in nodule formation, we compared mean
nodule number and nodule fresh per plant with one-way
ANOVA and a Tukey test for multiple group comparison with
a 95% confidence interval. For nodule volume we used the
Kruskal test and Dunn ’s post-hoc . Rhizobial fitness
components, defined as viable rhizobia per milligram of plant,
nodule mass, or volume, were compared among the four
nitrogen treatments of inoculated plants with Kruskal test and
Dunn’s post-hoc. Dunn’s test is appropriate for groups with
unequal numbers of observations (Zar, 2010), and was
corrected for multiple comparisons following Benjamini and
Hochberg method (1995) with a 95% confidence interval.
February 2020 | Volume 10 | Article 1779
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RESULTS

Plant Biomass
We first asked how increasing soil nitrogen affected plant growth
patterns in the presence and absence of rhizobial symbionts. We
found that nitrogen treatment and rhizobial treatment both had a
significant effect on total plant biomass (ANOVA; F3,72 = 330.6, p <
0.001 and F1,72 = 112.5, p < 0.001 respectively), with a significant
interaction term between the two variables (ANOVA; F3,72 = 40.2,
p < 0.001, Figure 1A). Specifically, we found the presence of
rhizobia increased total plant biomass at 0, 0.0375, and 0.375 mM
ammoniumnitrate levels. At the highest nitrate level (3.75mM),we
found that the presence of rhizobia became a cost (Figure 1A). By
quantifying the root to shoot ratio across these nitrogen levels, we
found that at the highest nitrate level, the rhizobial cost was related
to a decrease in root biomass (Figure 1B).

To assess plant biomass relative to rhizobia inoculation under
different nitrogen regime, we calculated the relative growth
benefit of inoculation for the plant (Figure 1C). Here, we took
the difference of the total dry weight of the size-matched
Frontiers in Plant Science | www.frontiersin.org 4
inoculated and non-inoculated control, divided by the total dry
weight of non-inoculated control. We found that the relative
growth benefits of rhizobial inoculation decreased with nitrogen
fertilization (ANOVA; F3,36 = 2,685, p < 0.001).

Formation of Symbiotic Organs
We then asked how nitrogen fertilization affected the formation
of symbiotic organs, namely nodule number, total nodule fresh
weight, and nodule volume. We found a significant effect of
fertilization on all three parameters: nodule number (one-way
ANOVA; F3,35 = 16.5, p < 0.001) nodule weight (one-way
ANOVA; F3,36 = 41.08, p < 0.001), and nodule volume
(Kruskal-Wallis test; chi-squared = 23.07, df = 3, p-value <
0.001) (Figure 2). This effect was driven largely by the highest
nitrogen concentration. In the three lowest nitrogen
concentrations, we found no difference in nodule number (~4–
5 per plant, Figure 2A), fresh weight (~6 mg, Figure 2B), or
volume (~70 mm3, Figure 2C). However, when fertilization was
increased to 3.75 mM NH4NO3, all nodule parameters were
reduced to nearly zero, across all replicates. This demonstrates
FIGURE 1 | Inoculated and non-inoculated Parasponia andersonii plant mass under four nitrogen levels. (A) Mean total (shoot + root) plant dry weight. Asterisks
show pair-wise comparison significance for each nitrogen level [ANOVA, Tukey honest significant difference (HSD) test]. (B) Mean root to shoot dry weight ratio.
Asterisks show pair-wise comparison significance for each nitrogen level (Wilcoxon rank sum test) NR = non-rhizobial (blue), WUR3 = Rhizobial strain B. elkanii
WUR3 (yellow). (C) Mean relative host growth response to rhizobia inoculation as the difference of the total dry weight of inoculated and non-inoculated control,
divided by the total dry weight of non-inoculated control. Letters represent groups significantly different from each other (ANOVA, Tukey HSD test). Error bars show
standard error.
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that with enough exogenous nitrogen available, P. andersonii is
able to prevent nodule organogenesis, similar as reported for
legumes and actinorhizal plants.

In legumes, it has been demonstrated that the rhizobia—as well
as exogenous fixed-nitrogen—can trigger expression of CLE
peptide encoding genes, which can trigger systemic signalling and
inhibit nodulation (Okamoto et al., 2009; Reid et al., 2011a). Studies
inLotus japonicus revealed thatwhereasLjCLE-RS1 andLjCLE-RS2
are induced upon rhizobium inoculation, only LjCLE-RS2 is
induced by application of exogenous nitrogen (Okamoto et al.,
2009). The latter gene is a close homolog of the soybean (G. max)
CLEpeptide encodinggeneGmNIC1a that is inducedby exogenous
nitrate (Reid et al., 2011b; Hastwell et al., 2017). For P. andersonii,
CLE genes have been annotated (Table S1). Of these,PanCLE5 and
PanCLE9 showed to be close homologs of LjCLE-RS1 and LjCLE-
RS2, and their counterparts MtCLE12 and MtCLE13 in Medicago
truncatula (Van Velzen et al., 2018). To obtain insight whether any
of the P. andersonii CLE genes is induced by exogenous nitrate, we
exploited available RNA sequencing (RNA-seq) data (Van Velzen
et al., 2018). This revealed that three CLE genes, namely PanCLE2,
PanCLE8, and PanCLE9, have an increased expression in
inoculated roots grown at relatively high exogenous nitrate levels
(5 mM KNO3) (Figure S1). These three genes showed a similar
induction in young, non-infected, nodule primordia (Figure S1).
This suggests that inP. andersonii rhizobiumand exogenous nitrate
trigger an overlapping CLE gene repertoire to regulate nodulation.

Rhizobial Fitness Proxies
While nodule number and weight can give some rough estimates
of rhizobial benefit, a key parameter is to directly quantify
rhizobial densities in nodules. We therefore next measured
CFUs per mg of plant and nodule biomass or volume (n = 2
for 3.75 mM as only two plants formed nodules). We found that
as exogenous nitrogen levels increased, there was a concurrent
decrease in CFUs per plant biomass (Kruskal-Wallis test; chi-
squared = 9.1, df = 3, p-value = 0.028), and CFUs per mg of
nodule (Kruskal-Wallis test; chi-squared = 8.2, df = 3, p-value =
0.041). But surprisingly, no significance difference was found for
CFUs per nodule volume (Kruskal-Wallis test; chi-squared = 4.9,
df = 3, p-value = 0.18). Despite the fact that nodule number and
fresh weight remained the same across the lowest three nitrogen
levels, we documented a decrease in viable rhizobial density in
nodules as nitrogen levels increased (Figure 3).
DISCUSSION

Plant species found in the nitrogenfixing clade rely on diazotrophic
symbionts to acquire nitrogen in poor soils (McKey, 1994; Crews,
1999; Vitousek et al., 2002). The ability to control resource
allocation to these symbionts is likely a key requirement for
evolutionary maintenance of the symbiosis (Werner et al., 2015).
We found evidence that the non-legume P. andersonii has likewise
evolved mechanisms to control rhizobial fitness, despite an
independent evolutionary trajectory from the legume lineage
of >100 million years ago. Specifically, we found that increasing
FIGURE 2 | Inoculated Parasponia andersonii nodulation under four nitrogen
levels. (A) Mean nodule number per plant. (B) Mean nodule fresh weight per
plant. (C) Mean nodule volume per plant. Letters represent groups
significantly different from each other (ANOVA, Tukey HSD test and Kruskal
test, Dunn’s test). Error bars show standard error.
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nitrogen levels lead to a decrease in rhizobial populations within
nodules. In contrast, evidence for control of nodule formation (i.e.,
organogenesis) was only evident from the highest nitrogen level, in
which nodule formation was almost completely suppressed. In the
lower nitrogen treatments, we found no evidence for differences in
nodule size, number, or volume. Together, these data suggest that
despite the continued growth and formation of nodules at lower
nitrogen levels, the host still can control the success of the rhizobial
populations within those nodules.

An open question is whether Parasponia nodulation is
somehow less advanced than in legumes (Behm et al., 2014):
our results point to similar levels of nodulation control as found
in some legume species. Specifically, it has been shown that at
high nitrogen levels, legumes can control nodule formation and
mass—a process known as autoregulation of nodulation (Cho
and Harper, 1991; Sueyoshi et al., 2003; Jeudy et al., 2010). This
has also been demonstrated in nodulated actinorhizal plants,
which likewise show a reduced investment in nodulation with
application of exogenous nitrogen (Kohls and Baker, 1989;
Thomas and Berry, 1989; Arnone et al., 1994; Markham and
Zekveld, 2007; Wall and Berry, 2007). Our findings are therefore
in line with the idea that a shared mechanism to control
nodulation investment across the nitrogen fixing clade was in
place before the evolutionary diversion of the nodulating lineages.

How does such control operate? New work has shown that
legumes employ a nitrate response to inhibit rhizobial symbiosis by
upregulating specific transcription factors (Nishida et al., 2018).
Autoregulationofnodulationworks as a negative feedback fromthe
key transcription factorNIN targetingCLEpeptides, which induces
a shoot response, production of cytokinin and inhibition of
nodulation (Nishida and Suzaki, 2018). The nitrate-induced
inhibition induces the NIN-like transcription factor NRSYM1
targeting the same CLE peptides. Furthermore, in the actinorhizal
plantCasuarina glauca, RNAinterference (RNAi)NINknockdown
also showed the essential role of NIN in controlling nodule
formation (Clavijo et al., 2015). While it is unknown if
Parasponia employs these same mechanisms, CLE peptides are
expressed in P. andersonii nodules (Figure S1), suggesting it could
be the case (Van Velzen et al., 2018).

However, the ability to control resource allocation to nodules
may be less important to Parasponia hosts, given the extremely
nutrient poor soils in which they are typically found (Achmad
and Hadi, 2016). In this ecological niche, we would not expect
hosts to be exposed to high nitrogen conditions, nor the
concurrent selection pressures against nodulation. There is also
evidence that host responses to nitrate may evolve differently
across different plant lineages. Studies of the legume Acmispon
strigosus found increases in nodule number and size at low
nitrate levels, as expected, but also revealed that nodulation
suppression was linked with high plant mortality suggesting a
high, direct sensitivity to nitrate (Regus et al., 2017b). In
L. japonicus, fertilization reduced nodule size and nodule
number, but with no apparent cost on plant fitness (Nishida
et al., 2018). In actinorhizal plant lineages closely related to P.
andersonii, added nitrate reduces and blocks nodule formation of
the Frankia symbiosis. In a split root experiment, Casuarina
FIGURE 3 | Rhizobia fitness under four nitrogen levels. (A) Mean colony
forming units per mg plant dry weight. (B) Mean colony forming units per
milligram nodule fresh weight. (C) Mean colony forming units per volume of
nodule. Letters represent groups significantly different from each other
(Kruskal test, Dunn’s test). Error bars show standard error.
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cunninghamiana showed localized control depending on
exogenous nitrate concentration (Kohls and Baker, 1989;
Arnone et al., 1994). In Parasponia, nodule size and number
did not vary with nitrogen concentration. Instead, nodulation
was nearly eliminated for the highest level of fertilization.

Our data show that P. andersonii can block nodulation, but that
this might entail a cost. We found that at the highest nitrogen level,
plant root biomass was reduced in the presence of rhizobia
compared to non-inoculated controls. But this growth depression
was not observed at lower nitrogen concentrations. Moreover, we
observed a linear decrease in the benefit to plant growth conferred
by rhizobia as nitrogen increased. Specifically, our data show that
resource allocation to root growth was negatively impacted under
high N when rhizobia were present (Figure 1B). This cost in high
nitrogen context was not linked with allocation to resources to
nodules organogenesis because nodule formation was suppressed.
Instead, this may be linked to the presence of intercellular bacteria,
nutrient uptake, or plant defensemechanisms (Bakker et al., 2018).
A similar result was also found inA. strigosus,whereby the authors
noted a cost to the presence of rhizobia under high nitrogen, even
though the cost was also not linked to nodule formation (Regus et
al., 2017b). They point to past work showing the cost of chemically
induced plants defense response to pathogens (Heil et al., 2000).
Whether our reduction in root growth (Figure 1B) is linked to the
costs of upregulating plant defense response is unknown.

Although our data suggest that Parasponia employs a
mechanism to control nodulation upon presence of exogenous
nitrogen—and that this is likely linked to CLE signaling—we also
find that rhizobial density may be likewise regulated within
nodules. Specifically, we found that P. andersonii controlled
rhizobial colonization levels at a per nodule milligram and per
plant milligram basis. While plants had similar numbers of
nodules and equivalent nodule weights across three nitrogen
levels, we found that the amount of viable rhizobia hosted in host
cells varied. Control of rhizobial fitness within nodules has been
shown in legumes, most recently in L. japonicus, in which there is
evidence that plants can differentially control fitness of effective
and ineffective rhizobia within a single nodule (Quides et al.,
2017). Similarly, sanction strength—meaning the ability to
control rhizobial fitness in individual nodules—was also
predicted (West et al., 2002) and shown (Kiers et al., 2006) to
increase with addition of external nitrate in soybeans.

While our data suggest that within nodule regulation of
rhizobial fitness depends on nitrogen levels, a broader question
is whether Parasponia has evolved a similar response to
ineffective rhizobia that fail to provide nitrogen. Increasingly,
work has shown that allocation to nodules will depend on the
quality of the rhizobial partners, such that nodules containing
low-quality partners will be sanctioned, and experience a
reduction in resources (Regus et al., 2017a; Kiers et al., 2003;
Oono et al., 2009; Oono et al., 2011). For example work in
Lupinus arboreus has shown that the size of the nodule is linked
with the quality of its occupant (Simms et al., 2006). While we
used a well-characterized effective strain, future work should aim
to understand how rhizobial partner quality and nitrogen levels
interact in the Parasponia-rhizobia symbiosis, studied in some
Frontiers in Plant Science | www.frontiersin.org 7
legumes (Grillo et al., 2016; Regus et al., 2017a; Regus et al., 2014;
Wendlandt et al., 2018).

A second open question is how the physiology of Parasponia
nodules affects the potential for hosts to control rhizobial fitness.
P. andersonii has indeterminate nodule with a central
vasculature, meaning a meristem sustains a continuous growth
of the nodule such that cells become colonized with infection
threads containing rhizobia (Behm et al., 2014). When the cells
are fully colonized, the rhizobia cells are kept in fixation threads
and do not differentiate to bacteroids (i.e., swollen bacteria
unable of cell division) (Trinick and Galbraith, 1976). Because
of this mode of growth, we had expected P. andersonii to reduce
nodule growth (meristematic cell division) upon fertilization, yet
we observed similar nodule size with an overall lower cell
colonization by rhizobia. While the mechanisms is still
unknown, this result suggests that P. andersonii can directly
reduce rhizobia cell division within its nodules or reduce rhizobia
nodule occupancy by inducing cell senescence.

More generally, future work is needed to better characterize
the costs and benefits of the symbiosis physiologically. For
example, from the host side, measurements of %Ndfa
(nitrogen derived from the atmosphere) can help us more
accurately understand the contribution of nitrogen fixation
under different fertilizer regimes. Likewise, detailed microscopy
of P. andersonii nodules could be conducted. Here, electron
microscopy would be useful to study the integrity of the fixation
threads and endosymbiotic bacteria, whereas light microscopy
on replicate nodules could help develop reliable quantifying
techniques based on visual inspection [as in (Regus et al.,
2017a)]. From the symbiont side, quantification of metrics
such as (PHB), could be helpful in understanding rhizobial
fitness, specifically how PHB is linked to reproduction and
survival during starvation [e.g., (Ratcliff et al., 2008)].

Overall ourwork suggests that rhizobial controlmechanisms are
not exclusive to legumes.While there was evidence that the relative
host growth benefits of inoculation decreased with nitrogen
fertilization, we found that Parasponia controls rhizobial fitness,
likely by mediating rhizobial density, depending on ammonium
nitrate availability. A key open question is how these processes
operate in the field, where Parasponia evolved on nutrient poor
volcanic soils. Given increasing global nutrient inputs, even to
pristine ecosystems, more data are needed to understand fitness
alignment in the Parasponia—rhizobium symbiosis under
changing nutrient conditions.
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FIGURE S1 | Expression profile of P. andersonii CLE peptide encoding gene.
Expression profile of P. andersonii CLE genes in non inoculated roots, nodule
promordia and inoculated roots under low (0.5 mM KNO3) and high nitrate (5.0 mM
KNO3) conditions. Expression is given in DESeq2-normalized read counts; error
bars represent SE of three biological replicates. Dots represent individual
expression levels.
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