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In June 2019, more than a hundred plant researchers met in Cologne, Germany, for the
6th European Workshop on Plant Chromatin (EWPC). This conference brought together a
highly dynamic community of researchers with the common aim to understand how
chromatin organization controls gene expression, development, and plant responses to
the environment. New evidence showing how epigenetic states are set, perpetuated, and
inherited were presented, and novel data related to the three-dimensional organization of
chromatin within the nucleus were discussed. At the level of the nucleosome, its
composition by different histone variants and their specialized histone deposition
complexes were addressed as well as the mechanisms involved in histone post-
translational modifications and their role in gene expression. The keynote lecture on
plant DNA methylation by Julie Law (SALK Institute) and the tribute session to Lars
Hennig, honoring the memory of one of the founders of the EWPC who contributed to
promote the plant chromatin and epigenetic field in Europe, added a very special note to
this gathering. In this perspective article we summarize some of the most outstanding data
and advances on plant chromatin research presented at this workshop.
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INTRODUCTION

Last year, the Max Planck Institute for Plant Breeding Research in Cologne hosted the 6th European
Workshop on Plant Chromatin (EWPC). A total of 110 researchers met to present the most recent
focuses, advances, and challenges in the plant chromatin and epigenetics field during this 2-day
workshop that comprised more than 25 standard talks and a similar number of short PechaKucha-
style talks. Many other topics were talked over during the poster sessions in which the participants
had the opportunity to discuss new discoveries and concepts in plant chromatin science in a
thriving atmosphere.
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Several talks emphasized the complexity of chromatin
organization within the three-dimensional space of the nucleus
and presented cutting-edge techniques developed to provide a
deeper and higher-resolution view of chromatin structure (Figure
1). As in previous EWPCs, histone variants and histone marks were
an important theme for many research laboratories. Considerable
progress has been made in recent years to understand their links to
transcriptional regulation. Also, of note have been the advances in
our understanding of the proteins and complexes that are involved
in the deposition of histone variants and marks, which, additionally,
may act as readers of these chromatin features.

Current challenges that have arisen from issues such as food
security and climate change have added a new dimension to the
study of epigenetic regulation of plant traits and epigenetic
inheritance of transcriptional stages. For that reason, the link
between chromatin dynamics, gene expression, and plant
developmental adaptation to the environment was also
Frontiers in Plant Science | www.frontiersin.org 2
substantially addressed in the meeting. To advance in this field,
analyses of chromatin architecture changes at different
developmental stages and the tissue- or cell-specific level that
have been technically challenging were presented.

Julie Law from the Salk Institute (La Jolla, USA) was invited to
present the keynote lecture, which highlighted some of the most
important past and present contributions to the DNA
methylation field from her laboratory. Julie gave an overview
of the crucial roles played by DNA methylation in gene
regulation and transposon silencing. In addition, she reported
that a family of four putative chromatin remodeling factors,
CLASSY (CLSY) 1–4, associate with the RNA-directed DNA
methylation (RdDM) pathway components Pol-IV and
SAWADEE HOMEODOMAIN HOMOLOG 1 (SHH1) (Law
et al., 2011). Further recent studies showed that CLSY proteins
function individually as locus-specific regulators of RdDM and
in global regulation of DNA methylation patterns in Arabidopsis
FIGURE 1 | Highlights of the European Plant Chromatin Workshop 2019. Chromatin organization is a central player in controlling gene expression and
concomitantly regulating plant development and plant responses to the environment. The scheme illustrates some of the aspects of plant chromatin organization
presented at the EWPC ranging from local chromatin changes touching the bricks of the nucleosome to higher-order chromatin organization. At the level of the
nucleosome, modifications of the DNA molecule and histone proteins were discussed, such as the regulation of DNA methylation involving the CLASSY (CLSY)
proteins, the incorporation of specific variants of histones H1, H3, and H2A through dedicated histone chaperone complexes, and the dynamics of non-histone
DNA-binding proteins, such as HIGH MOBILITY GROUP A (HMGA). Post-translational modifications of histones are set by specific complexes exemplified here by
COMPLEX PROTEINS ASSOCIATED WITH SET1 (COMPASS), involved in H3K4me3, Nucleosome Acetyltransferase of Histone H4 (NuA4), in H2A.Z acetylation, and
Polycomb Repressive Complex 1 (PRC1), in H2A.Z monoubiquitination. The role of chromatin remodelers in the deposition of histones is also depicted through
H2A.Z-mediated deposition by the SWI/SNF-Related protein 1 (SWR1) complex. Modification of H2A.W by phosphorylation and its association to the
heterochromatin was observed. The interplay between repressive modifications set by PRC2 and the antagonizing activity of ULTRAPETALA1 (ULT1) allows for a
dynamic transcriptional regulation. Finally, the formation of specific chromatin domains in the nucleus, such as telomeres, nucleolus/lamina associated domains
(NADs/LADs), or the association of chromatin domains via PWWP INTERACTOR OF POLYCOMB (PWO1) to CRWN1, a plant lamina component, were presented.
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(Zhou et al., 2018). The next phase of the Law’s laboratory work
aims to identify the roles of CLSY proteins in controlling DNA
methylation patterns in a tissue-specific manner.

The EWPC was also the perfect venue for honoring the
memory of Professor Lars Hennig who has recently passed
away (Mozgová et al., 2018a). Together with Claudia Köhler
and Valérie Gaudin, he established the EWPC in 2009 as one of
the main gathering platforms for the plant epigenetic research
community in Europe, bringing his enthusiasm and passion on
plant science to these workshop series. During this tribute
session, Lars’ colleagues and alumni shared with the audience
his impact and vision on the chromatin and epigenetics field.

This perspective article summarizes the main topics discussed
during the EWPC 2019 and provides insight into the future paths
that the plant epigenetic community will follow in the next years.
We thank all the laboratories, which have contributed to the
EWPC with recently published or unpublished data, and we
apologize to the researchers whose work could not be cited due to
space limitations.
SESSION 1: A VIEW ON CHROMATIN,
TECHNIQUES, AND NUCLEAR
STRUCTURE

The key bearer of genetic information in eukaryotic cells is
chromatin, which is non-randomly distributed inside the nucleus
and shows an extraordinary degree of compaction and spatial
organization. Nuclear organization is achieved by many factors,
including histone proteins, modifiers and readers, as well as
structural components of the nuclear periphery and nuclear
bodies, which together dynamically control the nuclear
architecture and may form nuclear domains (Sexton and Cavalli,
2015). The first session of the EWPC meeting dealt with the role of
these factors in chromatin and nuclear organization.

The core histones have been structurally conserved through
evolution and have evolved to accomplish two conflicting and yet
vital tasks: on one hand, the long DNA molecules have to be
packaged within the limits of the eukaryotic nucleus, preventing
knots and tangles and protecting the genome from physical damage;
on the other hand, the information that is encoded in the DNA
needs to be accessed at appropriate times (Rosa and Shaw, 2013).
The linker DNA between nucleosomes is bound by linker histones
H1 (Rutowicz et al., 2015; Kotliński et al., 2017) whose role is much
less understood than core histones. A recent study presented by
Célia Baroux (Zurich, Switzerland) provided a multi-scale
functional analysis of Arabidopsis linker histones. The work, done
in collaboration with the laboratories from Andrzej Jerzmanowski
(Warsaw, Poland) and Fredy Barneche (Paris, France), showed that
H1-deficient plants are viable but exhibit phenotypes in seed
dormancy, flowering time, as well as lateral root and stomata
formation. In addition to a role in heterochromatin compaction,
H1 seems to regulate nucleosome distribution over gene bodies. Yet,
the authors showed that H1-mediated chromatin organization may
act downstream of transcriptional control for a large number of loci
in Arabidopsis. In addition, a new connection was found between
Frontiers in Plant Science | www.frontiersin.org 3
H1 and H3K27me3. The findings suggest that H1 may act as a
chromatin organizer favoring the maintenance of this epigenetic
mark as well as others (Rutowicz et al., 2019).

Frédéric Pontvianne (Perpignan, France) focused on the
nucleolus, the largest nuclear body, which is well known as the
site of ribosomal RNA (rRNA) gene transcription, rRNA
processing, and ribosome biogenesis (Boisvert et al., 2007). In a
previous study, Frédéric and co-workers identified chromatin
regions associated with the nucleolus, termed Nucleolus
Associated Domains (NADs). NADs are primarily genomic
regions with heterochromatic signatures and include
transposable elements (TEs), sub-telomeric regions, and mostly
inactive protein-coding genes (Pontvianne et al., 2016). Recent
data now suggest that the rRNA gene copy number impacts the
organization of NADs, and this suggests a role of nucleolus
organizer regions (NORs) in establishing domains of inactive
chromatin associated with the nucleolus (Picart-Picolo
et al., 2019).

Similar to the nucleolus, the nuclear periphery is another
compartment within the nucleus that plays a crucial role in
chromatin organization and nuclear architecture. Kalyanikrishna
(Berlin, Germany) presented data showing a putative link
between Polycomb Group (PcG)-mediated repression and the
nuclear periphery in Arabidopsis. PWWP INTERACTOR OF
POLYCOMB (PWO1) is a PWWP-domain containing protein
able to interact with any of the three possible POLYCOMB
REPRESSIVE COMPLEX 2 (PRC2) histone methyltransferases
in Y2H, and PWO1-CURLY LEAF (CLF) interaction was
confirmed in planta (Hohenstatt et al., 2018; Mikulski et al,
2019). Among the putative interactors of PWO1, CROWDED
NUCLEI1 (CRWN1) has been identified (Mikulski et al, 2019).
CRWN1 is a coiled coil analog of lamin proteins, whose absence
alters nuclear morphology (Wang et al., 2013), and a set of
H3K27me3 targets were upregulated in crwn1 crwn2 double
mutants in Arabidopsis. The interaction between PWO1 and
CRWN1 suggests a role of the nuclear periphery in PRC2-
mediated gene regulation in Arabidopsis (Mikulski et al.,
2019). The Schubert laboratory continues to work on
characterizing putative interactors involved in this pathway.

The post-translational modifications of telomere histones in
plants have been investigated by Katerina Adamusova (Brno,
Czech Republic). Among the canonical and non-canonical
telomeres in plants, the authors found two kinds of epigenetic
patterns regardless of the differences in telomere length and
telomeric sequences used. One of them corresponds to the
Arabidopsis-like pattern, where telomere histones are marked
predominantly with H3K9me2. The other one is the tobacco-like
pattern marked predominantly with H3K27me3 (Adamusová
et al., 2019).

Hua Jiang (Gatersleben, Germany) discussed the role of AT-
hook proteins in the regulation of gene expression by mediating the
H3K9me2 heterochromatic mark at the nuclear matrix-associated
regions (MARs). They identified AT-Hook Like 10 (AHL10), a
member of the AT-hook family in Arabidopsis, and the SET
domain containing SU(VAR)3-9 homolog (SUVH9) as
interacting partners of ADMETOS (ADM), which functions in
February 2020 | Volume 10 | Article 1795
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establishing the postzygotic hybridization barrier in Arabidopsis.
Significantly increased expression of ADM and AHL10 in
Arabidopsis triploid seeds results in H3K9me2 hypermethylation
in MARs. Furthermore, AHL10-mediated H3K9me2
hypermethylation at MARs is independent of DNA methylation
(Jiang et al., 2017). Apart from AHL10, the authors found that the
overexpression line of another AHL also has increased H3K9me2
levels at TEs in sporophytic tissues, indicating a similar role for
other members of this family.
SESSION 2: CHROMATIN, INHERITANCE,
AND GENERATION CHANGES

Recent advances in our understanding of inter-generational
inheritance of epigenetic and chromatin marks have revealed a
variety of plant peculiarities, rendering this topic an exciting field
of study with impact on our fundamental understanding of
inheritance, phenotypic plasticity, population dynamics, and
evolution (Köhler and Springer, 2017; Miryeganeh and Saze,
2019). Nevertheless, many open questions remain concerning
what epigenetic information is inherited, the mechanisms of
inheritance, and the processes involved in eventual
reprogramming to prevent inheritance. To shed light on these
questions, an enhanced understanding of gene regulation in
gametophytes is vital. Sara Simonini (Zurich, Switzerland)
focused her presentation on gene regulation in the female
gametophyte and during early seed development by analyzing
interaction partners and direct targets of the PRC2
methyltransferase MEDEA (MEA). Previous works have
implicated MEA in the repression of seed development before
fertilization and in endosperm cellularization (Chaudhury et al.,
1997; Grossniklaus et al., 1998; Köhler et al., 2003a). The new
unpublished data indicate that MEA interacts with histone
deacetylases (HDACs), and that plants depleted in HDACs
display similar abnormal phenotypes as mea mutants,
suggesting an interplay between histone methylation and
acetylation during early seed development.

Thedouble fertilizationprocess of plants generates anadditional
complication in the understanding of trans-generational
inheritance and maternal and paternal contributions to the next
generation.Thus, being able todistinguish events takingplace in the
endosperm fromotherplant tissueswill becrucial tounderstand the
peculiarities of this triploid tissue. An exciting technical advance in
this direction was presented by Vikash Kumar Yadav (Uppsala,
Sweden). He performed modified high-throughput chromatin
conformation (mHi-C) on purified endosperm nuclei isolated by
the INTACTmethod (Moreno-Romero et al., 2017), thus enabling
Hi-Canalysis ona limitednumberofnuclei.With this technique, he
was able to observe elevated chromatin interaction levels in
endosperm tissue compared to leaf tissue and discover that self-
loopinggenes areonaverage expressedat ahigher level compared to
non-self-looping genes.

Heinrich Bente (Vienna, Austria) focused his presentation on yet
another aspect of epigenetic inheritance, the phenomenon of
paramutation, characterized by interallelic communication
Frontiers in Plant Science | www.frontiersin.org 4
between epialleles at a single locus that results in stable and
heritable silencing. Employing an epigenetically regulated
resistance marker for hygromycin in Arabidopsis, Heinrich and
his co-workers found that paramutation becomes apparent in F2
progeny of tetraploid hybrids but not in diploid ones. Small RNA
profiles differ between the two epialleles, as do DNA methylation
and chromatin marks. The fact that the paramutation is not
observed at low temperatures, where also small RNA production
is reduced (Baev et al., 2014), supports the assumption that small
RNAs may be involved in paramutations.

Before epigenetic marks such as DNA methylation can be
inherited between generations, they need to be maintained
during cell divisions in the parents. Especially for asymmetric
CHH methylation, maintenance is coupled to RdDM (Law and
Jacobsen, 2010). Gergely Molnar (Tulin, Austria) reported the
characterization of freak show (fks), a novel missense mutant of
the RNA Polymerase V-specific subunit NRPE5A (Ream et al.,
2009). The mutation displayed loss of transposon silencing due
to generally reduced CG DNA methylation as well as
hypermethylation at other loci, together leading to abnormal
phenotypes, including flowering time defects and homeotic
transformations. The findings seem to contrast canonical RNA
Pol-V function in RdDM only, which mainly affects CHG and
CHH methylation, and suggest a connection between an RdDM
component and CG methylation maintenance.
SESSION 3: MAKING VARIATIONS OF
CHROMATIN—INCORPORATING BRICKS
OF DIFFERENT COLORS

To modulate nucleosome properties, including DNA
accessibility and interactions between nucleosomes or even
chromatin fibers, different histone variants can be
incorporated. Recent years have seen accumulating evidence
for the functional importance of these different histone
variants for processes ranging from gene expression control
and reprogramming to DNA repair processes in mammals and
plants (Jiang and Berger, 2016; Buschbeck and Hake, 2017;
Dabin and Polo, 2017).

Intriguing examples for these roles, reported by Anna
Schmücke (Vienna, Austria), are the plant-specific histone
variants H2A.W.6, H2A.W.7, and H2A.W.12, highly enriched
in heterochromatin and involved in chromatin fiber–fiber
interactions (Yelagandula et al., 2014). These histone variants
are distinguished by a highly conserved KSPKK motif in their C-
terminal tail. In response to DNA damage in heterochromatin,
one of the three H2A.W variants, namely H2A.W.7, is
phosphorylated at its SQE motif, and this phosphorylation is
required for an appropriate DNA damage response (DDR)
(Lorković et al., 2017). New evidence now indicates that only
H2A.W.6, and not H2A.W.7, is phosphorylated in the conserved
KSPKK motif in a cell cycle-dependent manner in Arabidopsis.
Through a synthetic approach in fission yeast, she demonstrated
that the phosphorylation of the KSPKK motif in addition to the
phosphorylated SQE motif impairs a proper DNA damage
February 2020 | Volume 10 | Article 1795
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response. This exemplifies a highly complex relationship
between histone variants, their post-translational modification
status, and their biological function. Another interesting H2A
variant is H2A.Z, which has been associated both with
transcriptional activation and repression depending on its
position within a gene (Coleman-Derr and Zilberman, 2012;
Sura et al., 2017). Wiam Merini (Seville, Spain) presented recent
data resolving part of the mystery of this dual role of H2A.Z in
transcription. She showed that, similar to canonical H2A, H2A.Z
can be mono-ubiquitinated by PRC1 and that this post-
translational modification plays an important role in
transcriptional repression independent of PRC2 activity
(Gómez-Zambrano et al., 2019). Indeed, complementation with
a ubiquitination-resistant H2A.Z protein failed to rescue
expression of upregulated genes in h2a.z mutant plants
revealing the importance of H2A.Z ubiquitination. In contrast,
H2A.Z ubiquitination seems to be dispensable to the rescue
expression of the genes downregulated in h2a.z mutant plants;
these genes may simply require H2A.Z incorporation.
Alternatively, other post-translational modifications may play a
role; in yeast, H2A.Z is acetylated by the NuA4 complex (Lu
et al., 2009). Indeed, the confirmation that H2A.Z acetylation
occurs in plants was provided by José A. Jarillo (Madrid, Spain).
He studied the plant homologues of YEAST ALL1-FUSED
GENE FROM CHROMOSOME 9 (YAF9) proteins, which are
common components of the SWR1 complex involved in H2A.Z
deposition and the NuA4 complex. In the absence of YAF9
proteins, H2A.Z acetylation is reduced at the FLC chromatin,
and FLC expression is repressed, while H2A.Z incorporation as
such is unaffected at this locus (Crevillén et al., 2019).

Given the emerging roles of the different histone variants in
gene expression control and DNA repair reported at this
conference, it becomes clear that histone deposition needs to
be tightly controlled in time and space, and histone chaperones
play an important role in this process. As an example, loss of H3
histone chaperones, such as HISTONE REGULATOR A (HIRA)
(Nie et al., 2014; Duc et al., 2015) and the Arabidopsis ALPHA
THALASSEMIA-MENTAL REDARDATION X-LINKED
(ATRX) homologue (Duc et al., 2017), which function in
complementary pathways of histone H3.3 deposition, results in
altered gene expression. Aline V. Probst (GReD, France)
discussed work from her laboratory, showing that ATRX loss-
of-function affects H3.3 deposition at genes characterized both
by elevated H3.3 occupancy and high expression levels, whereas
hira mutants show reduced nucleosomal occupancy both at
genes and in heterochromatin translating into reactivation of
transposable elements. While some H3 histone chaperones are
highly conserved, species-specific chaperones deposit the
centromeric histone CenH3 (Müller and Almouzni, 2014). So
far, the factor responsible for escort and deposition of plant
CenH3 has remained enigmatic. Inna Lermontova (Gatersleben,
Germany) reported on the collaborative effort to search for
histone CenH3 interactors and the identification of the plant
homologue of NUCLEAR AUTOANTIGENIC SPERM
PROTEIN (NASP) as a CenH3 binding protein. Previously
shown to bind histone H3 monomers or H3-H4 dimers
Frontiers in Plant Science | www.frontiersin.org 5
(Maksimov et al., 2016), the nuclear NASP protein interacts
both with the N-terminal tail as well as with the histone fold
domain of CenH3 and reduced NASP expression negatively
affects CenH3 levels, suggesting that NASP functions as a
CenH3 escort protein (Le Goff et al., 2019).
SESSION 4: A TRIBUTE TO LARS HENNIG

Professor Lars Hennig passed away last year, leaving a gap in the
fields of chromatin biology and plant development (Mozgová
et al., 2018a). Session 4 of the meeting gave a homage
remembering him, not only as a valuable colleague, friend, and
mentor, but also by highlighting his scientific contributions and
how his work will impact future research.

Among many other topics, one of Lars’ main interests were
histone variants and chaperones. He contributed to the
identification of MULTICOPY SUPRESSOR OF IRA 1 (MSI1)
as one subunit of the CHROMATIN ASSEMBLY FACTOR 1
(CAF-1) chaperone complex (Hennig et al., 2003). Lars further
showed that transgenerational aggravation of the CAF-1 mutant
phenotype was related to a global change in DNA methylation
(Mozgová et al., 2018b). Following this curiosity on DNA
methylation levels during development, Minerva Trejo-
Arellano (Uppsala, Sweden), a former PhD student of Lars,
reported on changes of DNA methylation during dark-induced
leaf senescence (Figure 2A). She showed that senescent leaves
had expanded chromocenters, which is indicative of
heterochromatin de-condensation. These chromatin changes
were accompanied by a concerted downregulation of genes
involved in epigenetically mediated silencing pathways and a
deregulation of transposable elements. Surprisingly, no genome-
wide changes in DNA methylation were detected, only localized
differentially methylated regions (DMRs), especially in the CHH
context (Trejo-Arellano et al., 2019). Among the epigenetic
changes that occur during developmental transitions, Lars soon
focused his attention on Polycomb activity. He contributed to the
identification of MSI1 as part of the PRC2 (Köhler et al., 2003b)
and explored its role in embryo-to-seedling transitions, a work
developed by Iva Mozgová (České Budějovice, Czech Republic)
during her postdoc in Lars’ group. She found that the
characteristic embryonic phenotype of the double mutant of clf
and swinger (clf swn) (Chanvivattana et al., 2004; Mozgová et al.,
2017), which is affected in two of the three possible
methyltransferases of PRC2, depends on the presence of
sucrose. This finding fits with the idea that, during this
developmental transition, plant nutrition shifts from
heterotrophic to autotrophic growth. Following this research
line, Iva presented a progressive degradation of chloroplasts and
an increase in Reactive Oxygen Species (ROS) in clf swn and,
accordingly, the mitigation of the phenotype under reduced light
intensities. Therefore, these data suggest an unexplored role of
PRC2 in mediating the establishment and/or maintenance of
photoautotrophic growth in Arabidopsis.

To further understand the multiple functions of PcG proteins,
Lars’ laboratory found a direct interaction between MSI1 and
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LIKE HETEROCHROMATIN PROTEIN1 (LHP1) (Derkacheva
et al., 2013). Studying LHP1 protein interactors, UBIQUITIN
SPECIFIC PROTEASES (UBP) 12 and 13 were found, and it was
demonstrated that UBP12 mediates the deubiquitination of H2A
(Derkacheva et al., 2016). However, it has been shown that H2A
ubiquitination (H2Aub) by PRC1 is largely independent of PRC2
activity (Zhou et al., 2017). To further understand the link
between H2Aub and H3K27me3, Lars’ former PhD student
Lejon Kralemann (Uppsala, Sweden) presented a genome-wide
analysis of these marks in mutants deficient for UBP12 and 13.
The data suggest that H2Aub removal is required for preventing
the loss of H3K27me3. In that model, LHP1 recruits UBP12/13
to deubiquitinate H2Aub and to stabilize H3K27me3-mediated
repression (Figure 2B). Miyuki Nakamura (Uppsala, Sweden), a
postdoc in Lars’ former group, reported another role of LHP1
Frontiers in Plant Science | www.frontiersin.org 6
through its interaction with DEK proteins (Derkacheva et al.,
2013), which are linked to chromatin and associated with DNA
topoisomerase 1a (TOP1a) (Waidmann et al., 2014). Miyuki
presented that DEKs genetically interact with LHP1 by
enhancing the early flowering of the lhp1 mutant, which is
similar to what occurs in the top1a lhp1 mutant (Liu et al.,
2014). She proposed that LHP1 interaction with DEKs and
TOP1a is important for PcG target gene regulation. These
works exemplify the direction where Lars’ research has lead
the PcG field: finding new players of PcG activity and identifying
mechanisms for target-specific PcG recruitment. In that
direction, Justin Goodrich (Edinburgh, United Kingdom),
through a second invited lecture, presented new data about
ANTAGONIST OF LHP1 (ALP1), which was identified in a
suppressor screening of the clf mutant (Liang et al., 2015). The
FIGURE 2 | Overview of recent contributions from former Lars’ PhD students. (A) Dark-induced senescence causes localized changes in DNA methylation in
Arabidopsis. Senescence was induced by covering individual Arabidopsis leaves. The yellowing of the covered-senescent leaves was accompanied by changes in
the expression of transposable elements that depending on the TE family can be unaltered, up- or downregulated. Moreover, GO and pathway categories related
with the maintenance of chromatin structure were enriched among the downregulated genes (for the complete analysis see Trejo-Arellano et al., 2019). Overall, the
global DNA methylation landscape of the senescent leaves remained remarkably stable with only few localized DNA methylation changes detected, particularly in the
CHH context (B) Working model for the UBP12/13-mediated gene repression. PRC2 causes silencing via deposition of H3K27me3, which in the majority of the
cases is dependent on PRC1. However, by a mechanisms that remain to be resolved the product of PRC1 activity, H2Aub1, also creates an unstable state in which
genes can be rapidly reactivated in response to a stimulus. Stable repression requires removal of H2Aub1 by LHP1-interacting UBP12/13. Figure courtesy of (A) M.
Trejo, designed of Paulina Velasco, and (B) L. Kralemann.
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interaction of ALP1 with PRC2 depends on ALP2, which
interacts directly both with ALP1 and with MSI1, a core
subunit of PRC2. To explain PcG antagonist function, Justin
proposed that ALP1/ALP2 could compete for the core PRC2
complexes with other PcG “accessory proteins”. Interestingly,
ALP proteins are likely inactive Harbinger-type transposases that
are already demonstrated for ALP1 (Liang et al., 2015). As
Harbinger transposases are encoded as part of the sequence of
the ‘cut-and-paste’ Harbinger transposon superfamily
(Kapitonov and Jurka, 2004), this is an example of how
transposon domestication could provide novel genes for the
hosts, in particular as components of PRC2.
SESSION 5: AN OPEN VIEW
ON CHROMATIN

Session 5 focused on different mechanisms that are involved in
inducing a more relaxed and open chromatin structure, which
usually correlates with an active transcription. For instance,
Julia Engelhorn (Cologne, Germany) presented a very elegant
approach in which Fluorescence Activated Cell Sorting (FACS)
was combined with the Assay for Transposase-Accessible
Chromatin with high-throughput sequencing (ATAC-seq),
which allowed for the creation of maps with higher resolution
than with DNase-seq from low cell numbers. Lines expressing
the pDORNRÖSCHEN-LIKE::GFP in the apetala1 cauliflower
mutant background were used (Wellmer et al., 2006), which
allows for cell sorting of identical and highly synchronized
Lateral Organ Founder Cells (LOFCs) (Frerichs et al., 2016).
LOFCs-associated changes in chromatin accessibility were
positively associated with transcriptional changes. In addition,
highly accessible chromatin to the transposase corresponded
well with previously described enhancer and conserved
transcription factor (TF)-binding elements in promoters.
These results also demonstrated that this approach can be
further applied for genome-wide identification of novel
transcriptional enhancers in plant specific cells (Frerichs
et al., 2019).

Genome-wide approaches were also used to identify light-
induced chromatin dynamics that occur at a very specific
developmental switch, such as photomorphogenesis, which
corresponds to the first perception of light after germination
(Casal, 2013; Wu, 2014; Seluzicki et al., 2017). DE-ETIOLATED1
(DET1) is an atypical and conserved DAMAGED DNA BINDING
PROTEIN 1 (DDB1)-CULLIN4 Associated Factor (DCAF)
involved in the transcriptional reprogramming that occurs during
photomorphogenesis (Chory et al., 1989; Pepper et al., 1994;
Schroeder et al., 2002; Ma et al., 2003). Sandra Fonseca (Madrid,
Spain) showed that DET1 and light control genome-wide levels and
distribution of H2B ubiquitination (H2Bub) indirectly through
degradation of a deubiquitination trimeric module (DUBm). One
of the components of DUBm is UBP22, which acts as a major H2B
deubiquitinase in the plant. Thus, DET1-mediated proteolytic
degradation of DUBm is essential for chromatin reprogramming
during photomorphogenesis (Nassrallah et al., 2018).
Frontiers in Plant Science | www.frontiersin.org 7
High Mobility Group A (HMGA) proteins have also been
proposed to create a more permissive chromatin structure
competing with linker histone H1 (Catez and Hock, 2010;
Ozturk et al., 2014). Simon Amiard’s (Clermont Ferrand,
France) presentation focused on GH1-HMGA1 and GH1-
HMGA2 proteins, which comprise a conserved central globular
domain (GH1) as well as AT-hook domains (Kotliński et al.,
2017). Both GH1-HMGA1 and GH1-HMGA2-GFP fusion
proteins are present in interphase and mitotic nuclei but are
excluded from chromocenters and centromeres, and protein–
protein interaction studies indicate possible GH1-HMGA1
homodimerization and heterodimerization with GH1-HMGA2.
Mutants affected in the GH1-HMGA1 gene were impaired in
development, with an overall size reduction due to smaller roots
and leaves and a decrease in stem length, while gh1-hmga2
mutants were phenotypically normal. gh1-hmga1 mutants also
showed shorter telomeres as a result of telomere instability
(Charbonnel et al., 2018), and a transcriptome analysis of gh1-
hmga1 mutants suggested a contribution of GH1-HMGA1
proteins to gene expression control.

Another epigenetic hallmark of active chromatin is H3K4me3.
In yeast, SET DOMAINGROUP 1 (SET1) adds this mark as part of
COMPlex of proteins ASsociated with SET1 (COMPASS). Another
subunit of this complex, Swd2, is needed for the recruitment of
COMPASS to specific chromatin domains enriched in H2Bub (Sun
and Allis, 2002; Kim et al., 2009). In Arabidopsis, a more complex
scenario may exist since H3K4me3 can be placed by different
histone methyltransferases (Baumbusch et al., 2001; Thorstensen
et al., 2011; Zhang and Ma, 2012), and the function of At-
COMPASS-like complexes have not been fully characterized yet
(Fromm and Avramova, 2014; Xiao et al., 2016). Clara Bourbosse
(Paris, France) reported recent results that showed that SET
DOMAIN GROUP 2 (SDG2)/ARABIDOPSIS TRITHORAX 3
(ATX3), which has a main role in the deposition of H3K4me3 in
Arabidopsis (Berr et al., 2010; Guo et al., 2010), binds to SWD2-like
b (S2Lb), which interacts with core subunits of AtCOMPASS in a
high-molecular weight complex. In addition, S2Lb, together with
SDG2, is required for deposition of H3K4me3 and directly targets
highly expressed genes. However, mutations in S2Lb affect the
steady state levels of only a few of its target genes. Therefore, as
part of AtCOMPASS, S2Lb may be required for appropriate
transcriptional dynamics but is not essential for gene expression.
Interestingly, S2Lb recruitment and H3K4me3 deposition at target
genes are independent of H2Bub, indicating that AtCOMPASS-
S2Lb activity does not require H2Bub in contrast to yeast. Whether
there is a crosstalk between this histone mark and other
methyltransferases is still an open question (Fiorucci et al., 2019).
SESSION 6: FRIENDS AND FOES —

CHROMATIN INTERACTORS AND
TRANSCRIPTION REGULATION

Whether it is by changing large-scale chromatin conformation,
nucleosome composition, and occupancy or histone post-
translational modifications, chromatin regulation can impact plant
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development in a variety of ways, as highlighted in the previous
sessions. This complexity becomes more evident when, despite
being highly conserved among the plant species, the function of
chromatin regulators, as well as their target genes, also depends on
the context in which they act (Hennig et al., 2005; Merini et al.,
2017). The last session of the meeting focused on the interplay
between different chromatin regulators and accessory factors as well
as their role in transcription regulation and impact on
plant development.

Chromatin-based regulation allows us to quickly and
reversibly switch genes on and off through the concerted
action of antagonistic regulators. One example was presented
by Cristel Carles (Grenoble, France) with her latest work on
ULTRAPETALA1 (ULT1). It was known that ULT1 antagonizes
the activity of PRC2 and regulates levels of H3K27me3 at genes
involved in flowering and meristem determination (Carles and
Fletcher, 2009). The new work showed that ULT1 genome-wide
targets strongly overlap with those of the H3K27me3
methyltransferase CLF but not with the genes targeted by the
demethylase RELATIVE OF EARLY FLOWERING 6 (REF6).
ULT1 interacts with RNA Pol II (RNAPII) and several
chromatin remodelers, suggesting that it might be involved in
their recruitment, preventing binding of PcG proteins at
specific loci.

TFs have also been shown to play a role in recruiting
chromatin-associated regulators to control different aspects of
plant development (Vachon et al., 2018). Pawel Mikulski
(Norwich, United Kingdom) presented his work on VP1/ABI3-
LIKE 1 (VAL1), a transcriptional repressor that promotes
histone deacetylation at the FLC locus and is required for
PRC2 nucleation in cold-induced vernalization (Questa et al.,
2016). VAL1 was found to interact with subunits of the PRC1
(Yang et al., 2013; Questa et al., 2016), PRC2 (Chen et al., 2018),
and LHP1 (Yuan et al., 2016), but no differences were observed in
H2Aub in the mutants. Interestingly, the authors found that
VAL1 influences nucleosome mobility around the region of the
PRC2 nucleation site, suggesting it may act through the
recruitment of chromatin remodelers. Other ways to achieve
specificity include the formation of alternative chromatin-
associated complexes or the interaction of core components
with specific accessory proteins (Förderer et al., 2016). One
example of the former was presented by Hernan Lopez-Marin
(Cologne, Germany) with the identification of SUPER
DETERMINANT 1 (SDE1), a new regulator of axillary
meristem initiation in tomato. The sde1 mutation was mapped
to a gene closely related to the PRC1 core components BMI1 and
RING1 but which lacks the RING-finger domain required for
depositing H2Aub (Buchwald et al., 2006). SDE1 interacts with
LHP1, another component of the PRC1, suggesting it may be
part of a new PcG complex involved in regulating axillary
meristem initiation in tomato. Additionally, Sara Farrona
(NUI, Galway) presented work from her laboratory on the
identification of UBP5 as a new interactor of PWO1 and PRC2
subunits. As discussed in the first session of the meeting, PWO1
is itself an interactor of PRC2 methyltransferases and is involved
in recruiting CLF to foci associated with the nuclear lamina
Frontiers in Plant Science | www.frontiersin.org 8
(Hohenstatt et al., 2018; Mikulski et al., 2019). ubp5 mutants
show a pleiotropic phenotype and de-repression of several
meristem identity genes, known targets of PRC2, suggesting
that UBP5 acts together with PcG proteins to regulate
plant development.

Chromatin environments are also crucial for correct gene
expression since they can modulate RNA polymerase II
(RNAPII) and TF accessibility to target DNA. An interesting
example was presented by Sebastian Marquardt (Copenhagen,
Denmark), who showed that the histone chaperone complex
FACT is required for the repression of cryptic intragenic
Transcriptional Start Sites (TSSs) during RNAPII-mediated
transcription. In their repressed state, these TSSs are enriched
in H3K4me1, a hallmark for RNAPII elongation, while, in the
fact mutants, they show increased levels of H3K4me3, similar to
promoter TSSs, indicating a role for FACT in the regulation of
transcript isoform diversity (Nielsen et al., 2019). Moreover, a
computational approach presented by Dmitry Lapin (Cologne,
Germany) helped to define chromatin features predicting
dependency of gene expression on the immunity regulator
Enhanced Disease Susceptibility 1 (EDS1) in Arabidopsis.
Machine-learning methods were used to test whether this
dependency can be inferred from binding of TFs and
occupancy of histone modifications from public ChIP-seq data.
A neural network model provided the highest accuracy (up to
85%). Under non-stress conditions, EDS1-dependent loci have
low H3K36me3 and RNAPII levels. Authors proposed that initial
chromatin status contributes to the specificity of gene expression
regulation in immunity. On the other hand, taking advantage of
epigenetic hybrids (epiHybrids) from crosses with decrease in
dna methylation1 (ddm1)-derived epigenetic recombinant
inbred lines (epiRILs), Ioanna Kakoulidou (Munich, Germany)
showed that chromatin states can also impact subsequent
generations. Previous work from the laboratory had shown
that epiHybrids exhibit strong heterosis in several
developmental traits, which correlates to DMRs in the parental
lines (Lauss et al., 2018). Recently, the authors have used a high
throughput phenotyping system to analyze 382 epiHybrids, and
they were able to confirm that epigenetic divergence in the
parents is sufficient to cause heterosis in the progeny. Future
methylome, transcriptome, and small RNA-seq analyses of these
epiHybrids are expected to contribute to a better understanding
of how the parental epigenetic states affect the progeny.
CONCLUSIONS AND PERSPECTIVES

In summary, the EWPC2019 encouraged discussion about the
most recent advances in epigenetics, chromatin-related
mechanisms, and nuclear architecture in relation to the
regulation of transcription and its impact on plants traits.
Particularly, how the nuclear space is organized and how
specific histones and structures within the nucleus, such as the
nucleolus and the nuclear periphery, relate to specific chromatin
domains was thoroughly discussed in various talks. However, we
are still far from understanding the complexity that is shrouded
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by the nuclear envelope. The extent of interplay between DNA
methylation, various histone modifications, histone variants, and
regulatory RNAs taking place during epigenetic inheritance
processes remains to be elucidated. Likewise, much remains to be
understood on the importance of core histone variants and their
chaperones in chromatin structure through the control of
nucleosome assembly and occupancy or the role of linker
histones and other dynamic DNA-binding proteins. While
histone modifications have so far rarely been considered in a
variant-specific manner, combinations of histone variants with
their particular marks constitute an additional layer of complexity
tofine-tunechromatin regulation that isnow just emergingand that
will most certainly require further studies. While different
presentations exposed the complexity of chromatin-based
regulatory mechanisms in plants, it became clear that we need to
investigate how chromatin-associated proteins are regulated in
different tissues, developmental stages, and under specific
environmental conditions, in order to fully understand their role
in transcriptional regulation. Novel technical advances making use
of CRISPR/Cas9 based strategies or new developments in 3C
techniques together with a deeper characterization of multi-
subunit complexes and their functions will help to better our
understanding of the organization of plant genomes and nuclear
protein networks in the near future. Simultaneously, studying the
interplay between different regulators with the help of emerging
technologies, such as the development of imaging and image-
processing solutions that take into account the challenges of plant
systems (Dumur et al., 2019) and other cell-specific techniques, will
certainly yield important new findings. Finally, while most work
presented at the meeting used Arabidopsis as a model system, the
fundamental mechanisms identified might in the future be applied
to crop species by, for example, exploiting natural epigenetic
diversity in plant breeding or induced epigenetic variation
involved in stress priming and memory (Springer and Schmitz,
2017; Mozgová et al, 2019; Forestan et al., 2019). We expect to see
some of these questions addressed in the future and exciting new
data on chromatin regulation in model and crop plants to be
presented in forthcoming EWPCs.

The memory of Lars Hennig imbued specifically one of the
meeting sessions but was also present in many other talks,
demonstrating that the contributions of this excellent scientist
and mentor will last over time. His work had a tremendous
Frontiers in Plant Science | www.frontiersin.org 9
impact on the understanding of chromatin regulation and plant
development, particularly concerning our knowledge of the PcG
pathway, and will perpetuate through the ongoing contributions
of many of his alumni who are still actively investigating
these questions.
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