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The ionome of the rice grain is crucial for the health of populations that consume rice as a
staple food. However, the contribution of phenotypic plasticity to the variation of rice grain
ionome and the genetic architecture of phenotypic plasticity are poorly understood. In this
study, we investigated the rice grain ionome of a rice diversity panel in up to eight
environments. A considerable proportion of phenotypic variance can be attributed to
phenotypic plasticity. Then, phenotypic plasticity and mean phenotype were quantified
using Bayesian Finlay-Wilkinson regression, and a significant correlation between them
was observed. However, the genetic architecture of mean phenotype was distinct from
that of phenotypic plasticity. Also, the correlation between them was mainly attributed to
the phenotypic divergence between rice subspecies. Furthermore, the results of whole-
genome regression analysis showed that the genetic loci related to phenotypic plasticity
can explain a considerable proportion of the phenotypic variance in some environments,
especially for Cd, Cu, Mn, and Zn. Our study not only sheds light on the genetic
architecture of phenotypic plasticity of the rice grain ionome but also suggests that the
genetic loci which related to phenotypic plasticity are valuable in rice grain ionome
improvement breeding.
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INTRODUCTION

The ability of one genotype to produce multiple phenotypes in response to environmental change
has been termed “phenotypic plasticity” (Bradshaw, 1965; Via and Lande, 1985; Des Marais et al.,
2013; Kusmec et al., 2018). Variation in phenotypic plasticity in a diversity panel defines the
genotype-by-environment interaction (G×E) (Bradshaw, 1965; Des Marais et al., 2013). The
prominence of phenotypic plasticity in crops depends on traits and environmental scenarios.
Lower plasticity in disease resistance is crucial to broadly-adaptability cultivars, while phenotypic
plasticity can be harnessed to improve the cultivars' yield performance in determined environmental
scenarios with an adequate supply of water and fertilizer. For traits show G×E, incorporating G×E in
the genomic prediction can boost its accuracy, especially in field experiments performed in a wide
range of environmental scenarios (Lopez-Cruz et al., 2015; Malosetti et al., 2016; Millet et al., 2019).
The prerequisite for utilizing phenotypic plasticity in breeding practice is investigating the effect of
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phenotypic plasticity on phenotypic variance and dissecting the
genetic architecture for phenotypic plasticity.

Phenotypic plasticity has been investigated in several crop
species such as maize, wheat, rye, oat, barley, and rice for
different traits including morphology, yield, and resistance to
abiotic stress (Lacaze et al., 2009; Sasaki et al., 2015; Wang et al.,
2015; Kikuchi et al., 2017; Kusmec et al., 2017; Parent et al., 2017;
Rispail et al., 2018). The variations in phenotypic plasticity in
these traits contributed substantially to the total variance of the
phenotypes that were measured in multiple environments (Millet
et al., 2016; Gage et al., 2017; Parent et al., 2017). For example,
Gage et al. (2017) showed that phenotypic plasticity in 858
unique maize hybrids explained a considerable proportion of
the phenotypic variance (between 1% and 6% of the total
variance) for 11 morphological and agronomic traits which
were measured in 21 environments. Similar results were also
observed in a rice panel for yield in response to planting density
(Kikuchi et al., 2017). Furthermore, phenotypic plasticity is
under genetic control (Huang et al., 2016a; Gage et al., 2017),
and numerous genetic loci accounting for phenotypic plasticity
have been identified through genome-wide association studies
(GWAS) (Sasaki et al., 2015; Millet et al., 2016; Gage et al., 2017;
Kikuchi et al., 2017; Kusmec et al., 2017) or quantitative trait
locus (QTL) mapping (Ungerer et al., 2003; Lacaze et al., 2009;
Welcker et al., 2011). The candidate genes for mean phenotype
and phenotypic plasticity are distinct in maize (Kusmec et al.,
2017). In addition, the genetic loci related to phenotypic
plasticity of some traits had been selected in the breeding
history of maize (Gage et al., 2017).

The total mineral element content, known as the ionome, in
the rice grain is crucial for the health of nearly half of the world's
human population who consume rice as their staple food
(Parengam et al., 2010). Firstly, the planting environment can
significantly affect the rice grain ionome (Zhang et al., 2014;
Yang et al., 2018). Rice accessions grown under flooded can
accumulate more As but less Cd in rice grain than those grown
under unflooded, because the flooding of rice paddies can
decrease the bioavailabil ity of Cd but increase the
bioavailability of As in the soil (Norton et al., 2012; Zhang
et al., 2014; Honma et al., 2016). Secondly, the rice grain ionome
was also controlled by the genotype, and a large number of
studies have been performed to dissect its genetic basis. Dozens
of genes were identified in functional genomic studies, most of
them were found to encode transporters, such as OsHMA2 for
Cd and Zn (Satoh-Nagasawa et al., 2012), OsNRAMP5 for Cd
and Mn (Ishikawa et al., 2012; Sasaki et al., 2012), and Lsi1/2 for
As and Si (Ma et al., 2007; Ma et al., 2008). Moreover, QTL
mapping (Lu et al., 2008; Kashiwagi et al., 2009; Ishikawa et al.,
2010; Norton et al., 2010; Abe et al., 2011; Zhang et al., 2014; Yu
et al., 2015; Hu et al., 2016; Descalsota et al., 2018) and GWAS
(Norton et al., 2014; Huang et al., 2015; Nawaz et al., 2015; Yang
et al., 2018; Zhang et al., 2018) were also used to identify genetic
loci which are related to the accumulation of mineral elements in
the rice grain. Several QTLs have been cloned, such as HMA3
(Ueno et al., 2010) and OsCd1 (Yan et al., 2019) for Cd, OsHMA4
(Huang et al., 2016b) for Cu. Finally, the interaction between the
genotype and environment was also observed, and dozens of
Frontiers in Plant Science | www.frontiersin.org 2
environmental-specific genetic loci were identified. For example,
a different number of QTLs for the rice grain ionome were
identified in flooded (N = 92) and non-flooded (N = 47)
environments using the same introgression lines (ILs), while
only three QTLs were detected repeatedly under these two
conditions (Zhang et al., 2014). In a GWAS performed by
Yang et al. (2018), only two of 53 significantly associated loci
(SALs) could be detected repeatedly in two environmental
conditions which varied for soil pH and elemental
concentration. Xu et al. (2015) identified significant G×E
effects for some identified QTLs using multiple environments
test (MET). The identification of these environmental-specific
genetic loci indicates that the interaction between genotype and
environment was also under genetic control. However, the bi-
parental populations used in the majority of these studies limit
the identification of abundant genetic loci in all cultivars, and the
limited number of planting environments cannot represent the
diversity of environmental scenarios encountered during field
production. Besides, the genetic relationship between mean
phenotype and phenotypic plasticity of rice grain ionome was
not investigated in these studies. Therefore, we conducted a
systematic exploration of phenotypic plasticity of the rice grain
ionome in a large and diverse population to address the following
questions: (1) how much effect does phenotypic plasticity have
on the phenotypic variance of each element in field
environments? (2) What is the genetic architecture for mean
phenotype and phenotypic plasticity, and are they correlated?
And (3) can genetic loci which related to phenotypic plasticity be
used in molecular breeding to optimize the elemental
concentrations in rice grain?

To understand the role of phenotypic plasticity in the rice
grain ionome, the concentrations of 16 elements in rice grain of a
rice diversity panel were measured in four to eight environments.
The response of each accession to the macro-environment and
micro-environment was measured as linear plasticity and non-
linear plasticity, respectively. The relationships between mean
phenotype and two plasticity measures were investigated using
the Pearson correlation coefficient (r) and the genetic correlation
coefficient (rg). With significantly associated loci (SALs)
identified by GWAS, the genetic architectures of the three
phenotypic measures and the relationship among them were
further investigated. In addition, the effect of phenotypic
plasticity-related SALs was also estimated in each environment.
Our study paves the way toward utilizing phenotypic plasticity of
the rice grain ionome in diverse environments and will benefit
the balance of the nutritional elements for human health.
MATERIALS AND METHODS

Rice Diversity Panel and Determination of
the Rice Grain Ionome
A rice diversity panel that contains 294 indica, 239 japonica, 20
AUS, and 22 admix accessions was used in this study (Mao et al.,
2019; Tan et al., 2019). The genotyping of the entire panel was
accomplished by a whole-genome resequencing (WGRS)
February 2020 | Volume 11 | Article 12
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strategy with a mean genomic coverage of 5.4× per accession.
The genotyping procedure was described in our previous study
(Mao et al., 2019; Tan et al., 2019). In total, a set of 6,493,721
SNPs and 833,968 Indels (length <6 bp) with minor allele counts
(MAC) >5 were obtained.

The concentration of 16 elements in the rice grain of the
diversity panel was measured in four to eight environments with a
total of 20 replicates. A total of 5 to 13 soil samples (0–15 cm
depth) were collected after harvest in each environment for
analyzing the total elemental concentration and pH. These eight
environments varied with respect to soil pH (from 5.2 to 7.8) and
total element concentration; all of this information including
sowing dates are detailed in Table S1. In order to minimize the
spatial variation of soil properties, accessions of each replicate
were planted in a nearly square field with one row (eight plants)
per accession. The arrangement of all accessions in each replicate
followed a randomized complete block design with a spacing of
17 cm between plants and a distance of 20 cm between rows in
each field. All accessions growing in the same environment
followed the same water regime (flooded or unflooded) during
the period from the flowering of the first accession to the harvest
of the last accession. The unflooded field was flush irrigated about
6 h when needed to prevent water stress. The rice grains from four
plants in the middle of each row were harvested and air-dried.
Then grains were dehusked with a modified rice huller, in which
the roller was made from polyurethane instead of rubber to
prevent metal contamination. The digestion of the brown rice
(~0.25 g) was performed in Pyrex tubes with 5 mL nitric acid at
110℃ for 12 h (Lahner et al., 2003; Huang et al., 2016b). A total of
16 elements (As, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S,
Se, and Zn) were quantified using ICP-AES (Agilent 720) or ICP-
MS (Agilent 7900). The concentrations of 10 micro-elements (As,
Cd, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) were used in another
study which focused on dissecting the genetic relationships
among the trace minerals in the rice grain (Tan et al., 2019).
For each element, accessions that were measured in less than
three environments were not included in the following analysis.

Phenotype Analysis
The concentration of elements measured in each environment
was illustrated using the R (version 3.5.2, https://www.r-project.
org/) package ggplot2 (Wickham, 2016). Because the
experimental design was unbalanced, the proportion of
phenotypic variance for each element contributed by genotype,
environment, and genotype-by-environment interaction was
estimated by the linear mixed model. The calculation was
performed in the R package lmer4 (Bates, 2014).

Phenotypic plasticity of each element was estimated in the R
package FW by fitting phenotypes to Bayesian Finlay-Wilkinson
Regression (Bayesian-FWR) (Finlay and Wilkinson, 1963; Lian
and De Los Campos, 2015). The Bayesian-FWR implemented this
equation: yij = m + gi + (1+bi)hj + ϵij, on each element, where yij is
the element concentration of the ith accession measured in the jth
environment, gi is the main genetic effect of the ith accession, hj is
the mean effect of the jth environment, (1+bi) is the estimated
slope of the ith accession, and ϵij is the residual error. The value of
gi was obtained as the estimated mean phenotype value of the ith
Frontiers in Plant Science | www.frontiersin.org 3
accession, and the value of (1+bi) was obtained as the linear
response of the ith accession to macro-environments, or linear
plasticity. The log-transformed variance of ϵij for each accession
was obtained as the non-linear response to micro-environments,
or non-linear plasticity (Kusmec et al., 2017).

The skewness (g1) and kurtosis (g2) of the three phenotypic
measures (mean phenotype, linear plasticity, and non-linear
plasticity) were calculated using the R package EnvStats
(Craigmile, 2016). The overall performances of the different
rice subspecies or subgroups for the three phenotypic measures
were compared using the Kruskal-Wallis test in the R function
“kruskal.test.” The Pearson correlation coefficient (r) among the
three phenotypic measures for each element was calculated using
the R function “cor.test.” The genetic correlation coefficient (rg)
was estimated in the R function “mmer” from the package
sommar, and the Kinship (K) used in this step was calculated
from a set of 57,388 LD pruned SNPs. The same Kinship was also
obtained in the R package heritability to calculate the marker-
based heritability (h2) of each phenotypic measure. The
phenotypic divergence (PST) of each phenotypic measure
between indica and japonica subspecies was calculated in the R
package Pstat. All other data manipulation and illustrations were
performed in R.

Genome-Wide Association Study
In order to identify the genetic loci that account for the three
phenotypic measures, a genome-wide association study (GWAS)
was performed in the entire diversity panel (575 accessions), the
indica subspecies (294 accessions) and japonica subspecies (239
accessions) by the FarmCPU (Liu et al., 2016) model which was
implemented in the R package MVP (https://github.com/
XiaoleiLiuBio/rMVP). The first three principal components
(PCs), which were calculated using all SNPs in EIGENSTART
(Price et al., 2006) (version 4.2), were obtained in the FarmCPU
model to control the population structure. Because the majority
of phenotypic measures were non-normal distribution,
individuals with extreme values (departure from the mean
larger than three times of standard deviation) were discarded;
then a Box-Cox transformation was performed to minimize the
departure of data from the assumption of the GWAS model. We
observed that the thresholds calculated based on Bonferroni
correlation at 0.05 significant level were more stringent than
the thresholds estimated by permutation test at 0.05 significant
level but close to thresholds estimated at 0.01 significant level. In
order to guarantee type I error below 5%, the thresholds of the
GWAS in three panels were defined based on the Bonferroni
correction at the 0.05 significance level, which were defined as
1.8E-8 (0.05/2719301), 2.7E-8(0.05/1819762), and 5.5E-8
(0.05/847835) for the whole panel, indica, and japonica
subspecies, respectively. Variants with P values exceeding the
threshold were declared to be significantly associated loci (SALs).
The SALs for the three phenotypic measures were denoted as
either mSALs (SALs for mean phenotype), lSALs (SALs for linear
plasticity), or nlSALs (SALs for non-linear plasticity). Manhattan
plots and quantile-quantile plots of the GWAS results were
produced in the R package qqman (Turner, 2014) with few
modifications to the color, shape, and size of the SALs.
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Identification of Overlap Between SALs
The overlap between mSAL, lSAL, and nlSAL of the same
element was identified based on their confidence intervals.
Because the FarmCPU model was adopted to conduct the
GWAS, the significant P value was not expected for the
variants adjacent to the peak variant. The confidence interval
of each SAL was estimated through an LD-(linkage
disequilibrium) based procedure: First, the LD (measured as
r2) between the SAL and the flanking variable loci was calculated
with Plink (Purcell et al., 2007); Then the confidence interval of
each SAL was identified based on the criteria of r2 > 0.6.

A permutation test with 10,000 resamplings was performed to
estimate the probability of random overlap between the mSALs,
lSALs, and nlSALs for the same element. In each permutation, a
set of putative loci were randomly selected based on the number
of SALs for this element. The null-distribution of the overlap
between the three types of SAL was estimated from these 10,000
permutations. The P values for each kind of overlap were
estimated based on the corresponding null-distributions. All
analyses and the illustrations were performed in R.

Estimation of the Phenotypic Variance
Explained by Three Types of SALs
The phenotypic variances explained by three types of SAL
(mSAL, lSAL, and nlSAL) were estimated by the whole-
genome-regression approach (Meuwissen et al., 2001) which
was implemented in the R package “BGLR” (Perez and De Los
Campos, 2014). The model describes the element concentration
of the ith accession in the jth environment for each element as
follows: yij = mj + gmSAL + glSAL + gnlSAL + ϵij, where yij is the
element concentration of the ith accession measured in the jth
environment, mj is the mean concentration in the jth
environment, gmSAL is the genomic correlation matrix (GRM)
calculated using all mSALs identified for this element, glSAL is the
GRM calculated using all lSALs identified for this element, gnlSAL
is the GRM calculated using all nlSALs, and ϵij is the residual
error. The whole-genome-regression was not performed on
phenotypic measures with SALs less than two.

In order to confirm that the phenotypic variance explained by
the lSALs was not caused by its genetic correlation to the mSAL
or population structure, a permutation test was performed to
generate the null-distribution of the percent of the variance
explained (PVE). In each permutation test, the same model was
used but the lSALs of each element were replaced by the same
number of randomly selected genetic loci. The permutation test
was performed 200 times for every element in each environment.
All the permutation results were analyzed and illustrated in R.
RESULTS

Phenotypic Plasticity Explained a
Considerable Proportion of Phenotypic
Variance
The concentrations of 16 elements (As, Ca, Cd, Cr, Cu, Fe, K,
Mg, Mn, Na, Ni, P, Pb, S, Se, and Zn) in rice grains which were
Frontiers in Plant Science | www.frontiersin.org 4
harvested from 575 rice cultivars were measured in four to eight
environments that varied in soil biochemical properties,
elemental concentrations, and irrigation regimes (Table S1). A
wide range of responses were observed when averaging elemental
concentrations of the diversity panel in each environment
(Figure S1). Large variations were observed in Cd, Ni, and Se,
which showed differences of 108.52-, 50.69-, and 21.89-fold
between the highest and lowest mean elemental concentrations
in the diversity panel in these environments. Moderate variations
were observed in Cr, Pb, Fe, As, and Mg (7.76-, 6.46-, 4.72-,
2.92-, and 2.2-fold changes, respectively), and there were
relatively small variations in Zn, Mn, Ca, Cu, K, S, Na, and
P (1.96-, 1.91-, 1.88-, 1.59-, 1.24-, 1.20-, 1.17-, and 1.09-fold,
respectively). It is worth noting that the range of variation in the
non-essential elements (Cd, Ni, Cr, Pb, and As) was larger than
that of the essential elements such as Fe, Zn, Mn, and Cu. In
total, the concentrations of mineral elements in the rice grain
were significantly affected by the planting environment, but the
magnitude of the influences varied among elements.

Variation in phenotypic plasticity, termed “genotype-by-
environment interaction” (G×E), was observed in the diversity
panel. For example, the difference between the mean Cd
concentrations measured in 2016Field-2 and 2017Field-1 (2.52
and 0.13 mg/kg, respectively) was 2.39 mg/kg. For each accession
in the diversity panel, the differences between Cd concentrations
measured in these two environments showed large variations,
ranging from 0.25 mg/kg to 4.6 mg/kg with an IQR (interquartile
range) of 1.63 mg/kg. We then performed an analysis of variance
(ANOVA) for each element to determine the phenotypic variance
assigned to the genotype, environment, and G×E (Figure 1, Table
S2). The environment accounted for the largest proportion of
phenotypic variance which ranged from 4.18% (Na) to 97.80%
(As) with a mean of 43.96%. The phenotypic variance attributed
to the genotype ranged from 0.02% (Cr) to 46.25% (S) with a
mean of 14.19%. The G×E also explained a considerable
proportion of phenotypic variance with a mean of 4.62%: The
highest proportion of the variance explained by G×E was observed
for Ca (24.91%), followed by Cd (11.88%), Mn (10.33%), Cu
(9.97%), Ni (6.10%), and Zn (5.85%), and was relatively low for
the other elements (< 5%). In other words, the effect of G×E on
elemental accumulation was high in Ca, moderate in Cd, Mn, Cu,
Ni, and Zn, while low in the other elements. Therefore, in addition
to the environment and genotype which mainly affects the rice
grain ionome, the G×E, i.e. the variation in phenotypic plasticity,
played a great role in the ionome variation in the diversity panel,
especially for Ca, Cd, Mn, Cu, Ni, and Zn.

Variability in Phenotypic Plasticity
In order to systematically investigate phenotypic plasticity in the
diversity panel, we quantified phenotypic plasticity with the
Bayesian Finlay-Wilkinson Regression (Bayesian-FWR). Three
parameters including mean phenotype, slope, and residual were
estimated from the Bayesian-FWR. Specifically, the mean
phenotype refers to the main genetic effect of each accession in
all environments. The slope was termed linear plasticity, which
describes the response of each accession to the planting
environment or the macro-environment. The variance of the
February 2020 | Volume 11 | Article 12
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fitted model's residuals was termed non-linear plasticity, which
describes each accession's response to the micro-environment
within the planting environment (Finlay and Wilkinson, 1963;
Wu, 1998; Kusmec et al., 2017). All elements showed variability
in mean phenotype, linear plasticity, and non-linear plasticity
(Figures S2, 4). The dispersions of these three phenotypic
measures in all elements were investigated by calculating the
kurtosis (g2, the fourth standardized moment of distribution)
(Table S3). The kurtosis of non-linear plasticity was significantly
higher than that of the mean phenotype (P <0.05, Wilcoxon
rank-sum test), and the kurtosis of linear plasticity was in
between them. This observation indicates that the mean
phenotype shows the greatest variation in these three
phenotypic measures, followed by linear plasticity and non-
linear plasticity. The dispersions of linear plasticity were
greater than that of non-linear plasticity in the majority of
elements (As, Cd, Cr, Cu, Fe, Mg, Mn, Na, Ni, P, Pb, Se, and
Zn), suggesting that responses to macro-environments (linear
plasticity) show greater variation than responses to micro-
environments (non-linear plasticity) in the diversity panel.
Comparing the linear plasticity of these elements, As, Mg, S,
Cd, and K, showed great dispersion (g2 < 0.5), while P (g2 = 9.17)
and Ca (g2 = 25.7) showed an apparently centralized distribution.
Frontiers in Plant Science | www.frontiersin.org 5
Next, we investigated the degree of phenotypic plasticity that
resulted from genetic variation by calculating the marker-based
heritability (h2) (Table S4, Figure S5). The mean phenotypes of
all elements showed relatively high heritability which ranged
from 0.41 (Se) to 0.86 (S) with a mean of 0.61, except for Na (h2 =
0.11). The h2 of linear plasticity was lower than that of mean
phenotype but showed greater dispersion, which ranged from
0.02 (Ca) to 0.90 (Cd) with a mean of 0.43. However, the h2 of
non-linear plasticity was low and ranged from 0.01 (Pb) to 0.64
(Cd) with a mean of 0.21, which might be explained by the
random environmental error that was assigned to non-linear
plasticity in the Bayesian-FWR. This indicates that phenotypic
plasticity of rice grain ionome is also under genetic control, but
shows lower heritability than mean phenotype.

Phenotypic Plasticity Is Correlated With
Mean Phenotype in the Diversity Panel
We examined the relationship between phenotypic plasticity and
mean phenotype of the same element by calculating the Pearson
correlation coefficient (r). It was found that mean phenotype and
two measures of phenotypic plasticity tend to correlate in the
diversity panel, especially between mean phenotype and linear
plasticity (Figure 2). A total of 12 elements showed significant
FIGURE 1 | Phenotypic variance component estimation. The proportions of the phenotypic variance attributed to each term were estimated using a linear mixed
model and are shown in different colors.
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correlations (P <0.05) between mean phenotype and linear
plasticity, followed by the correlation between mean phenotype
and non-linear plasticity for 11 elements, and between linear
plasticity and non-linear plasticity for 10 elements. Comparing
their Pearson correlation coefficients, the highest correlation
coefficients were observed between mean phenotype and linear
plasticity (Kruskal-Wallis test, P <0.05), which ranged from
0.0014 (P) to 0.9077 (As) with a mean of 0.3742. The other two
pairs (between mean phenotype and non-linear plasticity,
between linear plasticity and non-linear plasticity) had lower
Pearson correlation coefficients with means of 0.1823 and 0.1322,
respectively. In addition, we also computed their genetic
correlation (rg) with the genotype of the diversity panel, and a
similar correlation situation was observed (Figure 2).

The Genetic Architecture of Phenotypic
Plasticity Is Distinct From That of Mean
Phenotype
A genome-wide association study (GWAS) was performed with
the FarmCPU (Fixed and random model circulating probability
unification) model using three phenotypic measures (transformed
Frontiers in Plant Science | www.frontiersin.org 6
with the Box-Cox procedure) as input to identify their causal
genetic loci. Loci with P values in excess of the genome-wide
threshold (0.05 significance level after Bonferroni correlation)
were declared to be significantly associated loci (SALs). A total of
319 SALs were identified, containing 133 SALs related to mean
phenotype (mSAL) of 13 elements (except for As, Na, and Pb),
116 SALs related to linear plasticity (lSAL) of 14 elements (except
for As and Pb) and 70 SALs related to non-linear plasticity
(nlSAL) of 12 elements (except for Ca, K, Na, and P) (Tables
S5, Figure S6–54). The total number of SALs related to each
element varied from two (Na) to 35 (Zn). In these SALs, a total of
91 SALs were co-located with QTLs or SALs identified in previous
studies, which contain 33 mSALs, 40 lSALs, and 18 nlSALs (Table
S5). In addition, seven previously characterized element-related
genes were hit by eight SALs, which contain four mSALs and four
lSALs, but no nlSAL (Table S5). For example, the Mn transporter
MTP8.1 was hit by the major effect SAL for linear plasticity of Mn
identified in the whole panel (P = 1.80E-10 at 6,719,733 bp on
chromosome 3). The Cd transporter HMA3 located just near the
major effect SAL for the mean phenotype of Cd concentration
(P = 7.12E-17 at 7,473,929 bp on chromosome 7).
FIGURE 2 | Correlations among the mean phenotype, linear plasticity, and non-linear plasticity for each element. (upper-triangle) The numbers are the values of the
Pearson correlation coefficients (r). The significance levels (adjusted with the Bonferroni correction) of the correlations are shown below the correlation coefficients:
“***” indicates a P value < 0.001, “**” indicates a P value < 0.01, “*” indicates a P value < 0.05, “NS” indicates a P value ≥ 0.05. (lower-triangle) The genetic
correlation coefficients (rg).
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We then compared the location of mSALs, lSALs, and nlSALs
for the same element. Six chromosomal regions that were
overlapped by different types of SALs for the same element
were identified (Figure 3A). Three of them were overlapped by
mSALs and lSALs (two related to Cd, one related to P), the other
three were overlapped by lSALs and nlSALs (related to Mg, Mn,
and Zn respectively). No chromosomal region was found to be
simultaneously overlapped by both mSAL and nlSAL or all three
types of SALs. Furthermore, the number of overlapping SALs
identified in this study was not greater than that expected by
chance in the permutation test (P > 0.05, Figure 3B). Therefore,
the majority of the genetic loci accounting for mean phenotype,
linear plasticity, and non-linear plasticity of rice grain ionome
were distinct, and the majority of the causal genes for them are
not the same.

Population Structure Shaped the
Correlation Between Phenotypic Plasticity
and Mean Phenotype
A correlation between phenotypic plasticity and mean phenotype
was detected in this study (Figure 2); however, the fact that
overlaps between their corresponding SALs were not greater than
expected by chance suggests that the correlations are not due to
gene pleiotropy or linkage disequilibrium (Figure 3). We then
tested the role of population structure, which is also a potential
causative factor in addition to gene pleiotropy and linkage
disequilibrium, on the correlation between mean phenotype
and phenotypic plasticity (Solovieff et al., 2013). Asian rice
accessions were highly stratified and were mainly comprised of
the two rice subspecies O. sativa subsp. indica and O. sativa
subsp. japonica. In this study, the phenotypic divergence between
indica and japonica subspecies was observed in three phenotypic
measures (Figures 4 and S55-56). For example, the accessions in
the indica subspecies showed higher linear plasticity for Cd, K,
Frontiers in Plant Science | www.frontiersin.org 7
Mg, Ni, and S but lower linear plasticity for Ca, Cr, Mn, Pb, Se,
and Zn when compared to the accessions in the japonica
subspecies. With the SNPs identified by whole-genome
resequencing, the indica subspecies can be further divided into
three subgroups: indica I, indica II, and indica intermediate; and
the japonica subspecies can be further divided into three
subgroups: temperate japonica (TEJ), tropical japonica (TRJ),
and japonica intermediate (Tan et al., 2019). The phenotypic
divergence was also observed between different rice subgroups
(Figures S57–59). For example, the accessions in the indica I
subgroup showed significantly lower mean phenotype and linear
plasticity for Cd than those from the indica II subgroup; however,
mean phenotype and linear plasticity of the indica I subgroup
were higher than indica II for Zn. In order to investigate the
relationship between the phenotypic divergence and the Pearson
correlation coefficients, we used the PST index to quantify the
phenotypic divergence between two rice subspecies, or between
different subgroups in each subspecies (indica I and indica II in
the indica subspecies, TEJ and TRJ in the japonica subspecies). A
simulation test showed that the Pearson correlation coefficients
(r) between two phenotypes were positively correlated with the
products of the two phenotypes' PST values in the whole panel
and two subspecies (Figure 5). This suggests that phenotypic
divergence is correlated with phenotypic correlation. In this
study, varying levels of divergence were observed for mean
phenotype (mean PST = 0.63), linear plasticity (mean PST =
0.55), and non-linear plasticity (mean PST = 0.27). For each
element, significant correlations (Pearson correlation, r = 0.4837,
P = 0.0005) were found between the products of any two
phenotypic measures' PST and the Pearson correlation
coefficients between them. Therefore, the population structure
of the diversity panel, which leads to the phenotypic divergence,
was at least in part responsible for the correlations among the
three measures of elements.
FIGURE 3 | The overlap between three types of SALs for the same element. (A) Venn plot of overlap between the mSALs, lSALs, and nlSALs. (B) The null-
distribution of overlap between different types of SALs estimated from 10,000 permutations. The vertical lines denote the number of overlaps between the three
types of SALs identified in this study. The P values of the overlaps calculated in this study are labeled in each plot.
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FIGURE 4 | Violin plots of linear plasticity in each rice subspecies. The width of each violin denotes the kernel density, the point and line in each violin denotes the
mean value and the standard deviation. The x-axes show the rice subgroups, and the y-axes show the values for linear plasticity. The letters above each violin
denote the significant differences between different subspecies (Kruskal-Wallis test, P < 0.05).
FIGURE 5 | The relationships between the products of the two phenotypes' phenotypic divergence (PST) and their correlation in the whole panel and two rice
subspecies. The x-axes show the intervals of the product of the two phenotypes' PST, the y-axes indicate the absolute value of the Pearson correlation coefficients
between the two phenotypes.
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The LSALs Were Valuable in Rice Grain
Ionome Improvement Breeding
In order to estimate the value of mSAL, lSAL, and nlSAL in rice
grain ionome improvement breeding, a whole-genome regression
approach (Gusev et al., 2014; Gage et al., 2017) was used to
estimate the proportion of phenotypic variance attributed by these
three types of SALs in each environment. Considering that minor
allele frequencies (MAFs) of the causal loci may interfere with the
estimation of the SALs' PVE, we first compared the MAFs of the
three types of SALs, and no significant differences were observed
(Figure S60, Kruskal-Wallis test, P > 0.05). Therefore, this
possibility was excluded. Large variations were observed when
comparing the PVE of the three types of SALs (Figure S61, Table
S6). Overall, the mSALs explained a relatively large proportion of
the phenotypic variance for 12 elements which ranged from 0.66%
(Ca) to 41.59% (S) with a mean of 13.15%, the lSALs explained a
smaller proportion of the phenotypic variance for 13 elements,
ranging from 0.83% (Mg) to 33.11% (Zn) with a mean of 8.13%,
while the nlSALs explained only a tiny proportion of the
Frontiers in Plant Science | www.frontiersin.org 9
phenotypic variance for 10 elements, ranging from 0.16% (Fe)
to 3.70% (Se) with a mean of 1.31%. This suggested that mSALs
and lSALs are more valuable than nlSALs in breeding. Comparing
the PVE of mSAL and lSAL of the same element, the mean PVE of
mSALs were higher than for lSALs in Cu, Fe, K, Mg, and P, while
they were lower in Ca, Cd, Cr, Mn, Ni, and Zn. It should be noted
that the PVE of lSALs was relatively high in Zn (33.11%), Cd
(18.19%), Mn (14.96%), Ni (12.69%), K (7.58%), Cr (4.67%), and
Cu (4.43%). Thus, the utilization of lSALs in rice breeding
depends on the elements and target environments.

To exclude the possibility that the PVE of lSALs estimated in the
whole-genome regression was caused by similarities between the
genetic correlation matrix (GRM) of lSALs and the GRM of the
whole genome (population structure), a permutation test was
performed to compare the PVE of lSALs with randomly selected
loci (described in Materials and Methods). The permutation results
indicated that the PVE of lSALs was significantly higher than
the null-distribution in nearly half of the environments (39/84)
for 13 elements (Figure 6, permutation test, P < 0.05). These results
FIGURE 6 | The PVE of the lSALs estimated in each environment. The x-axes indicate the eight planting environments and the y-axes indicate the percent of the
variance explained. The violin plots denote the null-distribution of the percent of the variance explained (PVE) estimated from a permutation test with 200
resamplings. The width of each violin denotes the kernel density, the point and line in each violin denotes the mean value and the standard deviation. The black
horizontal line located on the violin indicates the real PVE of the lSALs in the corresponding environments. As, Se, and Pb were excluded for their lSALs less than 2.
The blanks denote the elemental concentrations were not measured in the corresponding environments. The labels above each violin denote the significance level if
the real PVE was significantly higher than the null-distribution: “**” indicates a P value < 0.01, “*” indicates a P value < 0.05, blank indicates a P value > 0.05.
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confirmed that lSALs contributed a considerable proportion of the
phenotypic variance in some environments. Thus, lSALs can also be
used in breeding practice, especially for Cd, Cu, Mn, and Zn.
DISCUSSION

In this paper, the genetic architecture for phenotypic plasticity of
rice grain ionome was investigated for the first time using a rice
diversity panel. Based on the results of this study, it can be
concluded that: (1) A considerable proportion (from 0 to
24.91%) of the rice grain ionome variation could be attributed
to the variation of phenotypic plasticity; (2) The genetic
architecture of phenotypic plasticity was quite different from
that of mean phenotype; (3) The genetic loci involved in
phenotypic plasticity of rice grain ionome can be utilized in
breeding, especially for Cd, Cu, Mn, and Zn.

The proportions of phenotypic variance attributed to the
environment, genotype, and G×E determined the strategy of rice
grain ionome improvement. With rice grain ionome measured in
up to eight environments, we revealed that the G×E explained a
relatively large proportion (from 0 to 24.91%) of phenotypic
variance in the diversity panel. It was consistent with the result
observed in the agronomic traits of a maize panel (Gage et al.,
2017). We then dissected the G×E into linear plasticity and non-
linear plasticity with Bayesian-FWR, which reflect the responses of
each accession to the macro-environment and micro-environment
respectively. The narrow-sense heritabilities (h2) of phenotypic
plasticity were relatively high, especially for linear plasticity of
some elements such as Cd, K, Ni, and Zn. The result of our study
shows that it is feasible to improve the rice grain ionome by
harnessing linear phenotypic plasticity in rice breeding. However,
we failed to obtain a convincing relationship between
environmental factors and elemental accumulation because some
environmental factors correlated in eight environments. In
addition, environmental factors fluctuate over the duration of
the crop growing season, and the temporal and spatial variation
of different environmental factors and their effect on rice grain
ionome also need to be investigated. These can be investigated by
phenotyping cultivars in a series of environments in which more
environmental factors are strictly controlled and systematically
recorded, just as quantifying the sensitivities of wheat to water
deficiency and high temperature (Parent et al., 2017). All of these
studies require not only a high-throughput phenotyping platform
but also a high-efficiency environmental characterization system.

Dissecting the genetic architecture of phenotypic plasticity
and its relationship to mean phenotype is crucial for breeding
cultivars that can adapt to variable planting environments. Three
genetic models for phenotypic plasticity, which contain the over-
dominance model (Gillespie and Turelli, 1989), the allelic
sensitivity model (Via and Lande, 1985; Via, 1993), and the
regulatory gene model (Scheiner and Lyman, 1989; Scheiner,
1993), have been proposed. Li et al. (2016) have suggested that
phenotypic plasticity of flowering time in maize is more inclined
to be regulated by the allelic sensitively model, because most of
the environmental response QTLs are shared with flowering time
Frontiers in Plant Science | www.frontiersin.org 10
QTLs. Another study of 11 morphological and agronomic traits
in maize supports the regulatory gene model for the plastic
response to macro-environments, because more genetic loci are
located in non-genic regions of the genome (Gage et al., 2017).
The study by Kusmec et al. (2017), which investigated 23
phenotypes in maize, strongly supported the regulation model
but also found some evidence for the allelic sensitivity model. In
our study, we observed that the SALs for mean phenotype and
phenotypic plasticity for rice grain ionome were distinct. This
observation did not support the allelic sensitivity model but did
support the regulatory gene model. In addition, the relatively
large linkage disequilibrium (LD) decay distance in rice (~123 kb
and ~167 kb in indica and japonica subspecies, respectively)
(Huang et al., 2010) hinders the further dissection of the causal
genes and the regulatory network for phenotypic plasticity in this
study, such as performing gene ontology (GO) enrichment
analysis with candidate genes (Kusmec et al., 2017) and
classifying SALs based on their positions to the nearest gene
model (Gage et al., 2017). The relatively large LD decay distance
in rice also makes it difficult to find accessions with ideal allelic
combinations of adjacent genes in rice breeding. Nevertheless,
the distinct genetic bases for mean phenotype and phenotypic
plasticity revealed in this study indicate that it is feasible to
simultaneously utilize genetic loci of them in rice breeding with
the abundant alleles provided by the subspecies divergence.

The lSALs contributed to the phenotypic variance in certain
environments. These loci can be further utilized in cultivating
environment-specific accessions through marker-assisted selection
(MAS) or genomic selection (GS). However, both of these
strategies were hindered because the correspondence relationship
between the genetic locus alleles and the detailed environmental
factors were not dissected for the limited amount of data. Further
studies that systematically investigate phenotypic plasticity of the
rice grain ionome in response to various environmental factors are
needed. Firstly, phenotypic plasticity needs to be investigated in a
series of widespread planting environments such as the Global Rice
Science Partnership (GRiSP) phenotyping network, which covers a
broader range of variation on environmental factors. Limited
environmental scenarios can be clustered from these planting
environments based on their environmental factors. Thereafter,
the correspondence relationships between plasticity-related genetic
loci and environmental factors or scenarios can be investigated,
and the favorable alleles of these genetic loci can be utilized inMAS
to cultivate environmental-specific cultivars. In addition, the rice
grain ionome recorded in these studies can also be used to perform
GS across varied environments, just as the prediction of maize
yield under G×E interaction (Millet et al., 2019).
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