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Forage grasses are mainly used in animal feed to fatten cattle and dairy herds, and guinea
grass (Megathyrsus maximus) is considered one of the most productive of the tropical
forage crops that reproduce by seeds. Due to the recent process of domestication, this
species has several genomic complexities, such as autotetraploidy and aposporous
apomixis. Consequently, approaches that relate phenotypic and genotypic data are
incipient. In this context, we built a linkage map with allele dosage and generated novel
information of the genetic architecture of traits that are important for the breeding of M.
maximus. From a full-sib progeny, a linkage map containing 858 single nucleotide
polymorphism (SNP) markers with allele dosage information expected for an
autotetraploid was obtained. The high genetic variability of the progeny allowed us to
map 10 quantitative trait loci (QTLs) related to agronomic traits, such as regrowth capacity
and total dry matter, and 36 QTLs related to nutritional quality, which were distributed
among all homology groups (HGs). Various overlapping regions associated with the
quantitative traits suggested QTL hotspots. In addition, we were able to map one locus
that controls apospory (apo-locus) in HG II. A total of 55 different gene families involved in
cellular metabolism and plant growth were identified from markers adjacent to the QTLs
and APOSPORY locus using the Panicum virgatum genome as a reference in
comparisons with the genomes of Arabidopsis thaliana and Oryza sativa. Our results
provide a better understanding of the genetic basis of reproduction by apomixis and traits
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important for breeding programs that considerably influence animal productivity as well as
the quality of meat and milk.
Keywords: apospory, double reduction, forage, polyploidy, quantitative trait locus, single nucleotide polymorphism,
trait correlations
INTRODUCTION

Forage grasses play a fundamental role in the global beef
production chain. Brazil is the country with the greatest
emphasis on this sector, being the main exporter of beef and
having the largest commercial herd of beef cattle in the world,
with approximately 215 million heads distributed in 162 million
hectares of pasture (ABIEC, 2019). The main factor that led to
this scenario was the beginning of tropical forage breeding in the
1980s in Brazil, which although recent, permitted the country to
become the world's largest exporter of tropical forage seeds
(ITC, 2018).

The African forage grass species Megathyrsus maximus (Jacq.)
B. K. Simon & S. W. L. Jacobs (syn. Panicum maximum Jacq.),
also known as guinea grass, is one of the most productive forage
grasses reproduced by seeds in the Brazilian market and is also
grown in other Latin American countries (Jank et al., 2011). It has
been used mainly in intensive systems with high-fertility soils
(Valle et al., 2009). Moreover, this forage has a high biomass
potential and is promising as a biofuel feedstock (Odorico et al.,
2018). The polyploidy and domestication process of this forage
grass ensure high genetic variability to be explored (Jank et al.,
2011); however, a lack of knowledge of the biology and genetics of
the species, including its autotetraploidy and facultative apomictic
mode of reproduction (Warmke, 1954), may make breeding more
difficult and thus stimulate a need to invest in genetic studies.

The polysomic inheritance in autopolyploids makes genetic
research difficult because several types of segregation may be
involved (Field et al., 2017) and complexity increases as ploidy
increases. Thus, in a segregating population, genetic complexity
may influence the segregation and the frequencies of expected
genotypes (Field et al., 2017), even causing distortions such as
double reduction (DR), which is a type of meiosis in which the
sister chromatids are duplicated, forming an unexpected
combination of gametes. For example, an autotetraploid
genotype with the “abcd” alleles at a locus that can form six
expected combinations of gametes, namely, “ab”, “ac”, “ad”, “bc”,
“bd”, and “cd”, but a homozygous gamete can be generated, e.g.,
“aa”, “bb”, “cc”, or “dd” (Haldane, 1930; Mather, 1935; Haynes
and Douches, 1993). How to accommodate DR and its
implications in a breeding program as well as the use of these
marker loci in linkage mapping has been discussed for a long
time (Butruille and Boiteux, 2000; Luo et al., 2000; Xu et al., 2013;
Layman and Busch, 2018; Bourke et al., 2019) for some
economically important species, such as potato (Bradshaw,
2007; Bourke et al., 2015) and alfalfa (Julier et al., 2003), but
has not yet been reported in guinea grass.

Linkage maps have been used as the primary source of genetic
information for nonmodel species that do not have their genome
.org 2
sequenced, such as M. maximus. The construction of dense
linkage maps allows the identification of the structure and
evolution of the genome by mapping traits with polygenic and
monogenic inheritance and may even contribute to the assembly
of the genome of a species (Doerge, 2002; Flint-Garcia et al., 2003;
Luo et al., 2004). The majority of linkage maps available for
autotetraploids are based on single-dose segregating markers for a
parent (Aaaa x aaaa) or a single dose for both parents (Aaaa x
Aaaa). Despite the use of complex statistical methods to obtain
integrated maps that combine information from both marker
patterns, these maps cover only part of the genome because
higher-dose markers (AAaa, AAAa, and AAAA) are not
included. This limitation results in a considerable loss of genetic
information. To overcome this limitation, a new approach allows
the assignment of allele dosage information for single nucleotide
polymorphism (SNP) markers through exact allele sequencing
depth, which generates linkage maps from markers in multiple
doses with higher quality, more information and greater
applicability, including more efficient detection of loci related to
traits of economic importance (Serang et al., 2012; Hackett et al.,
2014; Pereira et al., 2018; Mollinari and Garcia, 2019).

Mapping of the aposporous apomixis region is extremely
important for the genetic breeding of M. maximus and other
forage grasses, such as Urochloa spp., Paspalum spp., and
Cenchrus ciliaris. These species undergo asexual propagation
by seeds (Nogler, 1984), which allows the fixation of hybrid vigor
in apomictic individuals and their use in the creation of uniform
pastures (Jank et al., 2011). Experimental field data showed that
aposporous apomixis in tropical forage grasses follows 1:1
Mendelian segregation, indicating monogenic inheritance
(Savidan, 1981; Valle et al., 1994; Chen et al., 2000; Savidan,
2000), although a recent study suggests that this reproductive
mode should be treated as a quantitative trait (Marcón et al.,
2019), and provide evidence of the uncoupling of apomixis in
neo-apomictic species, such as guinea grass (Kaushal et al., 2008;
Kaushal et al., 2019). Molecularly, the apospory-specific genomic
region (ASGR), which is responsible for apospory, is highly
conserved among apomictic species (Gualtieri et al., 2006). The
influence of some factors, such as epigenetics (Kumar, 2017), the
presence of retrotransposons (Akiyama et al., 2011), and gene
duplication (Conner et al., 2008), in this region has been reported
for other species. Due to the laborious and time-consuming
methods required to phenotype apomixis, several studies on
forage grasses have searched for markers intrinsically linked to
the chromosomal region for this trait (Pessino et al., 1998; Ebina
et al., 2005; Bluma-Marques et al., 2014; Thaikua et al., 2016; Vigna
et al., 2016; Worthington et al., 2016; Worthington et al., 2019);
however, a 100% efficient marker for use in M. maximus breeding
programs has not yet been identified.
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In guinea grass there are no mapping studies of loci related to
complex traits, such as those involved in forage yield and
nutritional quality. Forage yield results from the continuous
emission of leaves and tillers, ensuring the restoration of the
leaf area after grazing in perennial pastures. Additionally, the
nutritional value of a forage is directly related to animal
performance and is measured by the crude protein, in vitro
digestibility, neutral and acid detergent fiber, and lignin
percentages (Jank et al., 2011). Thus, the mapping of these and
other important quantitative trait loci (QTLs) may provide
information about the genetic architecture of traits and assist
in new strategies for breeding programs of M. maximus.

In this context, given the importance of new genomic studies
in guinea grass for both biological knowledge and support for
breeding programs, our goals were to (i) construct an integrated
consensus linkage map from a full-sib progeny of M. maximus
using allele dosage information, (ii) detect QTLs related to
important agronomic and nutritional traits in this progeny,
(iii) map the apo-locus, and (iv) search for similarity in regions
of the markers adjacent to the QTLs and APOSPORY locus in
Arabidopsis thaliana, Panicum virgatum and Oryza sativa.
MATERIAL AND METHODS

Plant Material
A full-sib progeny of 136 F1 hybrids was obtained from a cross
between a facultative apomictic genotype of M. maximus cv.
Mombaça and an obligate sexual genotype, S10. For the crosses,
100 m2 of cv. Mombaça was sown in lines with a space of 1 m
between the lines. One plant of S10 was planted in each 5 m x 5 m
grid. The sexual plants were monitored to ensure the
synchronization of flowering with the cv. Mombaça, and the
inflorescences that flowered before cv. Mombaça were cut.
According to Savidan (1982), 25 m2 of the apomictic parent is
sufficient to pollinate one sexual plant and to impede contamination
from neighboring plants. The S10 plants are wind-pollinated, and
the S10 seeds were harvested as they matured.

The sexual parent was derived from sexual x apomictic
crosses of an original diploid sexual plant that was duplicated
with colchicine (Savidan and Pernès, 1982); thus, both parents
were autotetraploid (2n = 4x = 32) (Savidan et al., 1989). In
addition to the reproductive mode, the parents have contrasting
agronomic and nutritional quality traits (Braz et al., 2017). S10 is
a medium sized plant (1.4 m tall) with medium width leaves
(2.4 cm wide). Both its leaves and stems are glabrous, and its
inflorescences consist of a panicle with short primary
ramifications and long secondary ramifications throughout. Its
spikelets are glabrous and purplish. The cv. Mombaça is a tall
plant (1.7 m tall) with wide leaves (3 cm). Its leaves have small
amount of hairs, and its stems are glabrous. Its inflorescences
comprise a panicle with short primary ramifications and long
secondary ramifications only on the inferior ramifications, and
its spikelets are glabrous and light purple.

DNA extraction followed the protocol described by Doyle and
Doyle (1987), with modifications. DNA samples were visualized
Frontiers in Plant Science | www.frontiersin.org 3
on 2% agarose gels to check their quality and integrity, and their
concentrations were estimated using a Qubit 3.0 fluorometer
(Thermo Scientific, Wilmington, USA).

To retain only true full-sibs, all possible hybrids were
previously genotyped with microsatellite markers. This analysis
revealed 24 false hybrids, which were excluded at the
construction stage of the GBS library.

Experimental Design
A field experiment following an augmented block design (ABD)
with 160 regular treatments (full-sib progeny) and two checks
(the parents ‘Mombaça’ and S10) distributed in eight blocks with
two whole replicates was performed at Embrapa Beef Cattle
(Brazilian Agricultural Research Corporation), in Campo
Grande city, Mato Grosso do Sul state, Brazil (20°27ʹS, 54°
37ʹW, 530 m). Each block consisted of a total of 22 plots (20
individuals and two checks).

Each plant was evaluated for agronomic and nutritional
quality traits, totaling 22 traits: i) agronomic traits: green
matter (GM—g/plant), total dry matter (TDM—g/plant), leaf
dry matter (LDM—g/plant), stem dry matter (SDM—g/plant),
regrowth capacity (RC), and percentage of leaf blade (PLB—%)
and ii) nutritional quality traits for the leaf and stem: organic
matter (OM_L and OM_S, respectively—%), crude protein
(CP_L and CP_S—%), in vitro digestibility of organic matter
(IVD_L and IVD_S—%), neutral detergent fiber (NDF_L and
NDF_S—%), acid detergent fiber (ADF_L and ADF_S—%),
cellulose (CEL_L and CEL_S—%), silica (SIL_L and SIL_S—
%), and permanganate lignin (PL_L and PL_S—%). The
agronomic traits were evaluated for six harvests (three harvests
in 2013 and three harvests in 2014), but RC was evaluated for
only three harvests (one harvest in 2013 and two harvests in
2014). The nutritional quality traits were evaluated for only one
harvest in 2014.

Statistical Analysis of Phenotypic Data
Descriptive analyses were performed, and the Box-Cox
transformation (Box and Cox, 1964) was applied to correct for
nonnormality of the residuals. For traits with multiple harvests
(agronomic traits), we fitted the following longitudinal linear
mixed model:

yijkl = m + hl + rk(l) + bj(l) + rbkj(l) + ti(l) + ϵijkl

where yijkl was the phenotypic value of the i
th treatment in the jth

block and kth replicate at the lth harvest; μ was the fixed overall
mean; hl was the fixed effect of the l

th harvest (l = 1, ..., L, with L =
3 for RC and L = 6 for the other traits); rk(l) was the fixed effect of
the kth replicate (k = 1, ..., K, with K = 2) at harvest l; bj(l) was the
random effect of the jth block (j = 1, ..., J, with J = 8) at harvest l,
with bj(l) ~ N(0,s2

b); rbkj(l) was the random interaction effect of
replication k and block j at harvest l, with rbkj(l) ~ N(0,s2

rb); ti(l)
was the effect of the ith treatment (i = 1, ..., I, with I = 162) at
harvest l; and eijkl was the random environmental error. The
treatment effects (ti(l)) were separated into two groups: gi(l) was
the random effect of the ith individual genotype (i = 1, ..., Ig, with
Ig = 160) at harvest l, and ci(l) was the fixed effect of the ith check
February 2020 | Volume 11 | Article 15
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(i = 1, ..., Ic, with Ic = 2) at harvest l. For genotype effects, the
vector g = (g11, ..., gIgL)` was assumed to follow a multivariate
normal distribution with a mean of zero and genetic variance-
covariance (VCOV) matrix G = GL Ⓧ IIg, i.e., g ~ N(0, G). For
residual effects, the vector e = (e1111, ..., eIJKL)` followed a
multivariate normal distribution with a mean of zero and
residual VCOV matrix R = RL Ⓧ II.J.K, i.e., e ~ MVN(0, R).

The VCOV matrices GL and RL were analyzed considering
seven different structures: identity (ID), diagonal (DIAG),
compound symmetry (CS), heterogeneous compound
symmetry (CSHet) , first-order autoregressive (AR1),
heterogeneous first-order autoregressive (AR1Het), first-order
factor analytic (FA1), and unstructured (US). First, the genetic
VCOV matrix (GL) was analyzed considering the ID for the
residual matrix (RL), and posteriorly, the residual matrix (RL)
was analyzed considering the selected VCOV matrix for genetic
effects. Model selection was performed based on the Akaike
information criterion (AIC) (Akaike, 1974) and Schwarz
information criterion (SIC) (Schwarz, 1978).

For the nutritional quality traits, we fitted the following linear
mixed model:

yijk = m + rk + bj + rbkj + ti + ϵijk

where yijk was the phenotypic value of the i
th treatment in the jth

block and kth replication; μ, rk, bj, rbkj, ti, and eijk were as
described above but not nested within harvest and with eijk ~
N(0,s2

ϵ). The treatment effects (ti) were separated into two
groups: gi as a random effect, g ~ N(0,s2

g), and ci as a fixed
effect. All analyses were performed with the R package ASReml-
R (Butler et al., 2009).

The heritability of each trait was calculated using the same
model as previously mentioned but considering the GL and RL

matrices as the ID. The equation was

Ĥ 2 =
s 2
g

s 2
P

where s2
g is the genetic variance and s2

P is the phenotypic
variance. The network analysis was carried out using the R
package ‘qgraph' (Epskamp et al., 2012).
Identification of the Reproductive Mode
The aposporic or sexual reproductive mode was determined for
106 hybrids of the progeny (Supplementary Table 1). From the
flowers collected during anthesis, we performed an analysis of 30
ovules per hybrid using the clarified ovary method described by
Young et al. (1979). Nomarski differential interference contrast
microscopy was used to view the ovaries. A chi-square test was
performed to verify the Mendelian segregation of this trait
according to the expected model of monogenic inheritance in
the base package of R (version 3.5.0) (R Core Team, 2018).
GBS Library Preparation and Sequencing
From the extracted DNA, genotyping-by-sequencing (GBS)
libraries were built according to Poland et al. (2012),
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containing 12 replicates for each parent. A total of 200 ng of
genomic DNA per sample was digested with a combination of a
rare-cutting enzyme (PstI) and a frequently cutting enzyme
(MspI). DNA fragments were ligated to the common and
barcode adapters, and the libraries were sequenced as 150-bp
single-end reads using the High Output v2 Kit (Illumina, San
Diego, CA, USA) for the NextSeq 500 platform (Illumina, San
Diego, CA, USA).

SNP Calling and Allele Dosage Analysis
First, raw data were checked for quality using NGS QC Toolkit
(Patel and Jain, 2012). SNP calling analysis was performed using
the TASSEL-GBS v.4 pipeline (Glaubitz et al., 2014) modified for
polyploids (Pereira et al., 2018) that use exact read depths. The
default parameters were changed as follows: the minimum
number of times a GBS tag must be present was changed to 5,
and the minimum count of reads for a GBS tag was changed to 2.
This pipeline requires a genome as a reference for SNP calling,
but no genome sequence of M. maximus is available. To
overcome this limitation, the switchgrass genome (P. virgatum
v1.0, produced by the US Department of Energy Joint Genome
Institute) available in the Phytozome database (http://
phytozome.jgi.doe.gov/) (Goodstein et al., 2012) was chosen
because this species is phylogenetically closely related to M.
maximus (Burke et al., 2016). GBS tags were aligned to the
reference genome with Bowtie2 2.3.1 (Langmead et al., 2009)
using the following settings: very-sensitive-local, a limit of 20
dynamic programming problems (D) and a maximum of 4 times
to align a read (R). Subsequently, only tags that aligned exactly
one time were processed. Then, SNP calling was performed
under the conditions that the minor allele frequency was
greater than 0.05 and the minor allele count was greater than
1,000. Mismatches of duplicated SNPs greater than 0.2 were not
merged. Then, in R software (version 3.5.0) (R Core Team, 2018),
we selected only the SNPs with a minimum average allele depth
equal to or greater than 60 reads. The updog package (Gerard
et al., 2018) was used to estimate the allele dosage of these
markers, with a fixed ploidy parameter of 4 and the flexdog
function considering the F1 population model. SNPs with less
than 0.15 of the posterior proportion of individuals incorrectly
genotyped were selected. GBS sequences of each individual were
deposited in the NCBI database under number PRJNA563938.

Quality Filtering of SNPs
We removed markers with more than 25% missing data and
monomorphic markers manually in R software (version 3.5.0) (R
Core Team, 2018). Subsequently, we followed Bourke et al.
(2018a) to ensure the retention of reliable markers. We first
verified the shifted markers for the polysomic inheritance model
from which SNP markers that did not correspond to an expected
segregation type were removed. A threshold of 5% was used for
missing values per marker and per individual. Duplicated
markers, which provided no extra information about a locus,
were also removed in this step. Finally, a principal component
analysis (PCA) was performed to identify individuals who
deviated from the progeny as well as possible clones.
February 2020 | Volume 11 | Article 15
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Linkage Map Construction
A linkage map was constructed using TetraploidSNPMap version
3.0 (Hackett et al., 2017), which allows the use of SNP markers
with allele dosage data for autotetraploid species. SNP markers
were checked with a chi-square test for goodness of fit, and only
markers with a simplex configuration value greater than 0.001
and a segregation value greater than 0.01 for higher dosage were
selected for mapping. Some unselected markers were classified as
having segregation distortion (SD), being incompatible with the
parental dosages (NP) and having DR. To order the selected
markers, two-point analysis and multidimensional scaling
analysis (MDS) were used to calculate recombination fractions
and logarithm of odds (LOD) scores. Outlier markers were
removed in this step. Some phases of the linked SNPs were
inferred by TetraploidSNPMap software, and other phases were
determined manually. The integrated consensus map represented
by homology groups (HGs) was plotted using MapChart 2.32
(Voorrips, 2002), in which SNP configurations were identified
with different colors.
Monogenic and Polygenic Trait Analysis
QTL mapping of six agronomic traits and sixteen nutritional
quality traits was performed with TetraploidSNPMap, applying
an interval mapping model (Hackett et al., 2014; Hackett et al.,
2017). Analyses were conducted for each HG separately using
three data files: phenotypic trait data, genotypic data and map
data with phase information. The phenotypic data for the
reproductive mode, i.e., aposporic or sexual, were considered
qualitative due to the evaluation method applied; i.e., apomictic
individuals were coded as one, and sexual individuals, as zero.
The other phenotypic traits were analyzed as quantitative. QTL
positions and significance were evaluated with a 1,000
permutation test. A QTL was declared significant if its LOD
score was above the 90% threshold. Simple models were tested
for each significant QTL to verify the best QTL model. The
lowest SIC (Schwarz, 1978) was the criterion used to define the
best model. Using TetraploidSNPMap software, if two or more
significant QTLs were identified on the same chromosome, only
the one with the greatest effect was considered.
Search for Similarity in Aposporic and QTL
Regions
We performed a search for similarity of candidate genes located
close to the detected QTL/apospory locus regions. Using the
switchgrass genome as a reference and based on chromosomal
locations of the markers adjacent to the detected QTLs and
apospory locus, we aligned the sequences found in 100-kb
regions with Basic Local Alignment Search Tool (BLAST) (e-
value cutoff of 1e-0.5) against the A. thaliana and O. sativa
genomes through the JBrowse tool in Phytozome (http://
phytozome.jgi.doe.gov/) (Goodstein et al., 2012).
Frontiers in Plant Science | www.frontiersin.org 5
RESULTS

Phenotypic Data
Different VCOV matrices were selected for the agronomic and
nutritional traits (Supplementary Tables 2 and 3). When the
AIC and SIC were not in agreement, we selected the matrices
based on the largest difference between the models. For example,
considering the GM trait and the GL matrix, US was selected
based on the AIC, and CS was selected based on the SIC (US had
567.32 for the AIC and 702.21 for the SIC, and CS had 581.66 for
the AIC and 598.53 for the SIC). The differences between these
two selected models were 14.34 for the AIC (581.66-567.32) and
103.68 for the SIC (702.21-598.53). As the SIC produced the
largest difference, this criterion was used, and the CS matrix was
selected for the GL matrix of the GM trait. The heritabilities
ranged from 0.19 (PLB) to 0.64 (GM) for the agronomic traits
and from 0.06 (SIL_S) to 0.31 (OM_L and CEL_S) for the
nutritional quality traits (Table 1). Box-Cox transformation
was performed for agronomic traits (GM, TDM, LDM, SDM,
RC, PLB) and nutritional traits of the leaves and stems (OM_L,
OM_S, CP_S, IVD_L, IVD_S, NDF_S, ADF_L, CEL_L, SIL_L,
SIL_S, PL_L, and PL_S).

The correlations between the agronomic and nutritional traits
are presented in Figure 1. Significant and positive correlations
were observed among GM, TDM, SDM, LDM, and RC.

PLB presented a negative correlation with other agronomic
traits and a positive correlation with NDF, but these correlations
were weaker than those found for the other pairs of traits.
Complex correlations between nutritional traits were obtained.
TABLE 1 | Broad-sense heritability obtained for the agronomic and nutritional
traits for the F1 mapping population of guinea grass (Megathyrsus maximus)
evaluated in this study.

Traits H²

Agronomic Green matter (GM) 0.64
Total dry matter (TDM) 0.57
Leaf dry matter (LDM) 0.58
Stem dry matter (SDM) 0.35
Percentage of leaf blade (PLB) 0.19
Regrowth capacity (RC) 0.36

Nutritional Leaf organic matter (OM_L) 0.31
Stem organic matter (OM_S) 0.15
Leaf crude protein (CP_L) 0.13
Stem crude protein (CP_S) 0.28
Leaf neutral detergent fiber (NDF_L) 0.14
Stem neutral detergent fiber (NDF_S) 0.14
Leaf acid detergent fiber (ADF_L) 0.25
Stem acid detergent fiber (ADF_S) 0.30
Leaf in vitro digestibility of organic matter (IVD_L) 0.18
Stem in vitro digestibility of organic matter (IVD_S) 0.26
Leaf cellulose (CEL_L) 0.26
Stem cellulose (CEL_S) 0.31
Leaf permanganate lignin (PL_L) 0.18
Stem permanganate lignin (PL_S) 0.18
Leaf silica (SIL_L) 0.17
Stem silica (SIL_S) 0.06
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In particular, stem-related traits were most tightly correlated
with leaf-related traits, and NDF_L and NDF_S were closely
correlated. The ADF, CEL and PL traits exhibited a significant
and positive correlation. The same pattern was observed for the
leaf and stem nutritional traits: CP and IVD exhibited a strong
negative correlation with PL, ADF, CEL and NDF.

Genotyping and Linkage Analysis
A total of 23,619 SNPs were identified through alignment using
the P. virgatum genome as the reference, and these presented a
mean depth per individual of 247.8 (SD ± 121.7). After the
genotypic analysis, 2,804 SNPs with an average allele depth
greater than 60 were selected for further filtering. After allele
dosage estimation, 275 SNPs were discarded, in addition to 15
monomorphic markers and four markers with missing data
identified manually in R software. Using the updog package, we
obtained the allele dosage information for 2,510 SNPs,
considering an autotetraploid species (Table 2). Simplex
(AAAA × AAAB, ABBB × BBBB) was the most commonly
found configuration, with 1,654 markers, followed by the duplex
(AAAA × AABB, AABB × BBBB) and double-simplex (AAAB ×
AAAB, ABBB × ABBB) configurations, with 334 and 226 SNPs,
respectively. The simplex-duplex (AAAB × AABB) configuration
Frontiers in Plant Science | www.frontiersin.org 6
was the most represented among the higher dosages, with 155
markers, and the duplex-simplex (AABB × ABBB) configuration
was the least represented, with only six SNPs. Analysis with the
polymapR package revealed that all offspring were 95%
compatible with the parents. Two individuals (B107 and C39)
were very genetically similar to the parent cv. Mombaça and were
removed, one clone (C49) of individual C44 was also removed,
and another clone (B127) similar to B126 was also excluded
(Figure 2). We subsequently discarded another 37 SNPs with
missing values and 1,151 duplicated SNPs. This filtering resulted
in 132 genotyped offspring with 1,322 markers that were used at
the beginning of the linkage analysis in TetraploidSNPMap
software. In this step, incompatible markers with the parental
allele dosages, SNPs with DR and markers showing SD were not
considered. In addition, two-point analysis identified 149 SNPs as
duplicated, and MDS analysis identified 27 outliers, which were
then excluded. In total, 858 reliable SNPs were included in the
linkage map. The apomictic parent, cv. Mombaça, presented 368
exclusive alleles; the sexual parent, S10, presented 275 exclusive
alleles; and the two parents shared 215 alleles. TetraploidSNPMap
software was used again to rank the 2,510 SNPs based on their
expected segregation. The analysis resulted in a total of 114 SNPs
with SD, 183 with NP and 243 with DR (Table 2).
FIGURE 1 | Correlations among all phenotypic traits from the guinea grass mapping population. The green lines correspond to positive correlations between the
traits, and the red lines correspond to negative correlations between the traits. The agronomic traits were green matter (GM), total dry matter (TDM), leaf dry matter
(LDM), stem dry matter (SDM), percentage of leaf blade (PLB), and regrowth capacity (RC). The leaf and stem nutritional quality traits were the following: organic
matter (OM_L and OM_S), crude protein (CP_L and CP_S), neutral detergent fiber (NDF_L and NDF_S), acid detergent fiber (ADF_L and ADF_S), in vitro digestibility
of organic matter (IVD_L and IVD_S), cellulose (CEL_L and CEL_S), permanganate lignin (PL_L and PL_S), and silica (SIL_L and SIL_S).
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Linkage Map
We constructed an integrated consensus linkage map consisting of
858 SNP markers distributed over 756.69 cM in eight HGs, with
all possible allele dosage configurations for an autotetraploid
species. (Table 2, Figure 3 and Supplementary Table 4).
Considering all integrated consensus HGs, an average density of
~1.13 SNPs/cM was obtained. The largest HG was VII, with 159
SNPs distributed over 108.573 cM, and the smallest HG was VIII,
with 49 SNPs present over 70.05 cM. The interlocus intervals were
relatively small, with a minimum value of 0.003 cM for the
majority of the HGs (I, II, IV, VI and VII) and a maximum of
8.65 cM and 7.24 cM on HG V and HG I, respectively (Table 3).
Among the markers, we identified approximately 30 double-
duplex markers (AABB x AABB), which contained all types of
doses for autotetraploid progenies (Table 2, Figure 3 and
Supplementary Table 4) (Hackett et al., 2014).

Apospory Mapping
The mode of reproduction of 106 hybrids in the mapping
population was determined and indicated that apospory had a
Frontiers in Plant Science | www.frontiersin.org 7
segregation ratio of 1:1 based on a chi-square test (X² = 5.43, p ≥
0.01), consistent with the model expected for monogenic
inheritance. The apo-locus was mapped in the HG II at a peak
position of 65 cM, with a high LOD score of 50.06
(Supplementary Figure 1). More than 80% of the phenotypic
variation in the apomictic reproductive mode was explained, and
the simple models best classified the apo-locus as a simplex
genotype (BBBB x ABBB). As expected, this locus was linked to
the apomictic parent, cv. Mombaça. Two SNP markers exclusive
to this parent, namely, S_14_29023868 and S_10_48091934,
were linked to the apo-locus at 0.8 cM (Figure 3).

Agronomic Trait Mapping
Ten significant QTLs were mapped for GM, TDM, LDM, SDM,
PLB, and RC, which were distributed in HGs II, IV, V and VI
(Table 4 and Supplementary Figure 2). Here, we will report the
QTLs that were identified for the main traits targeted in the M.
maximus breeding program. TDM was associated with two QTLs
in HGs II (qTDM3) and V (qTDM4) with LOD scores of 3.4 and
4.4 and that explained 5.8 and 9.4% of the phenotypic variation,
FIGURE 2 | Principal component analysis representing the genetic diversity among the progeny and the parents of the mapping population of guinea grass
(Megathyrsus maximus). The parents are highlighted in red (S10) and blue (cv. Mombaça).
TABLE 2 | Distribution of SNP markers among genotype classes for a mapping population of guinea grass (Megathyrsus maximus).

Marker class Genotype of the parents Segregation ratio Number DR NP Distorted Mapped

Null AAAA x BBBB 0 0 0 0 0 0
Simplex AAAA x AAAB, ABBB x BBBB 1:1 1,654 111 125 18 491
Duplex AAAA x AABB, AABB x BBBB 1:4:1 334 0 58 40 136
Triplex AAAA x ABBB, AAAB x BBBB 1:1 35 18 0 0 17
Double-Simplex AAAB x AAAB, ABBB x ABBB 1:2:1 226 60 0 5 106
X-Double-Simplex AAAB x ABBB 1:2:1 26 16 0 0 9
Simplex-Duplex AAAB x AABB 1:5:5:1 155 38 0 9 72
Duplex-Simplex AABB x ABBB 1:5:5:1 6 0 0 0 1
Double-Duplex AABB x AABB 1:8:18:8:1 74 0 0 42 26
Total 2510 243 183 114 858
February 20
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respectively. For LDM, we detected two QTLs in HGs V (qLDM5)
and VI (qLDM6) with LOD scores of 3.9 and 3.0 and that
explained 7.9 and 4.5% of the phenotypic variation, respectively.
PLB was associated with one QTL in HG IV (qPLB8) with LOD
score of 3.8 and that explained 6.8% of the phenotypic variation.
We identified two QTLs for RC in HGs II (qRC9) and VI (qRC10)
with LOD scores of 4.7 and 3.8 and that explained 10.4% and 6.3%
of the phenotypic variation, respectively.
Frontiers in Plant Science | www.frontiersin.org 8
The simple models that best represented the QTLs for each
agronomic trait were identified based on the lowest SIC values.
The QTL with the greatest effect on TDM, which was present in
HG VI, followed a duplex model (AAaa x aaaa) with an additive
effect of the A allele from the S10 parent. The same model was
verified for LDM with qLDM5, a QTL associated with the S10
parent, and qLDM6, a QTL associated with the cv. Mombaça
parent. The QTL with the smallest effect for TDM and the single
FIGURE 3 | Linkage map constructed for guinea grass (Megathyrsus maximus) using SNPs with allele dosage information, including representation of intervals of
the highest peaks of QTLs.
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QTL for PLB followed the double-simplex model (Aaaa x Aaaa)
with an additive effect of both parents. The two QTLs detected
for RC followed the simplex model, with the S10 parent
contributing the allele for qRC9 and the ‘Mombaça' parent
contributing the allele for qRC10.

Nutritional Trait Mapping
Thirty-six significant preliminary QTLs were identified for OM,
CP, NDF, ADF, IVD, PL, CEL, and SIL for the leaf and stem.
These QTLs were distributed in all HGs (Table 5 and
Supplementary Figures 3, 4). For CP_L, two QTLs were
detected in HGs III (qCP_L6) and V (qCP_L7) with LOD
scores of 3.4 and 4.3 and that explained 5.1% and 9.7% of the
phenotypic variation, respectively. For CP_S, two QTLs were
detected in HGs V (qCP_S8) and VIII (qCP_S9) with LOD
scores of 3.8 and 2.8 and that explained 8.4% and 3.2% of the
phenotypic variation, respectively. For NDF_L and NDF_S, we
detected five QTLs each, all at the same positions in HGs I
(qNDF_L10/qNDF_S15), II (qNDF_L11/qNDF_S16), III
(qNDF_L12/qNDF_S17), IV (qNDF_L13/qNDF_S18), and VII
(qNDF_L14/qNDF_S19). The QTLs with the largest effect on
NDF were found in HGs II and IV and were identified with LOD
scores of 5.5 and 4.3, respectively; qNDF_L11/qNDF_S16 in HG
II explained more phenotypic variation (12%). For the IVD_L
trait, only one QTL was found in HG III (qIVD_L27) with LOD
score of 3.8 and that explained 5.9% of the phenotypic variation.
Frontiers in Plant Science | www.frontiersin.org 9
For IVD_S, two QTLs were obtained in HGs V (qIVD_S28) and
VIII (qIVD_S29) with LOD scores of 3.6 and 3.9 and explaining
7.3 and 5.8% of the phenotypic variation, respectively. We
detected a single QTL for PL_L located in HG III (qPL_L33)
with LOD score of 3.9, and it explained 6.2% of the phenotypic
variation. Additionally, PL_S was associated with only one QTL,
which was identified in HG VIII (qPL_S34) with LOD score of
2.7 and explained 2.8% of the variation in the trait.

According to the simple model analysis, the best model for
the two QTLs of CP_L was the double-simplex model (Aaaa x
Aaaa) with an additive effect of both parents. In contrast, qCP_S8
was best represented by a duplex model (AAaa x aaaa) with a
dominant effect of cv. Mombaça. The CP_S9 QTL was
represented by a double-simplex model with an additive effect
of the S10 parent. The QTL with the greatest effect on NDF was
best represented by the double-simplex model with an additive
effect from both parents. For IVD_L, a simplex allele was verified
in the sexual parent (Aaaa x aaaa). The same model was also
observed for IVD_S and PL_L, with the A allele from the
apomictic parent associated with the trait. The single QTL for
PL_S was explained by a double-simplex model with a dominant
effect from both parents.
Search for Similarity in Aposporic and QTL
Regions
Some genes that contain conserved protein domains were found
in regions flanking the apo-locus located in HG II, such as the
Spc97/Spc98 family of spindle pole body (SBP) components,
whose proteins assist in the control of the microtubule network
(Lin et al., 2015), and the inner centromere protein (ARK-
binding region). These two genes play an important role in the
segregation of chromosomes during cell division (Kirioukhova
et al., 2011; Lin et al., 2015). In addition, a gene possibly involved
in the aposporic reproductive mode was similar to somatic
embryogenesis receptor-like kinase 1 (SERK1), which is part of
a complex associated with the induction of embryo development
(Albrecht et al., 2008).

A total of 23 regions were found due to the overlap of QTLs in
common regions in the linkage map. In these regions, 55
different gene families from P. virgatum, A. thaliana and O.
sativa were identified. Most of these genes may play important
roles in cellular metabolism and may be associated with plant
growth and development (Table 6). Further details about the
locations of the candidate genes in their respective QTL regions
are provided in Supplementary Table 5.

Among the putative genes, many participate in hormonal
signaling pathways, such as auxin efflux carrier component in
HG I region 2 (qADF_L20/qCEL_L30), which is related to the
intercellular directionality of auxin (Friml et al., 2002); RING/U-
box (XERICO) in HG II region 5 (qNDF_L11/ qNDF_S16),
which is involved in the regulation of abscisic acid (ABA) (Ko
et al., 2006); gibberellin-regulated family members (GAST1,
GASR2, GASR3, and GASR9) in HG III region 9 (qPL_L33),
which are associated with the regulation of gibberellic acid (GA)
and ABA (Hedden and Thomas, 2016); ent-copalyl diphosphate
synthase in HG IV region 11 (qNDF_L13/qNDF_S18/qPLB8),
TABLE 3 | Summary of the linkage map of guinea grass (Megathyrsus maximus)
obtained with the S10 × cv. Mombaça population.

HG* No. mapped
SNPs

Length
(cM)

Smallest interval
(cM)

Longest interval
(cM)

I 144 101.74 0.015 7.24
II 128 103.53 0.031 3.43
III 85 94.06 0.027 5.24
IV 115 87.66 0.003 6.34
V 104 96.08 0.008 8.65
VI 74 94.99 0.013 6.42
VII 159 108.57 0.009 5.63
VIII 49 70.05 0.072 6.93
Total 858 756.69
*Homology group.
TABLE 4 | QTLs identified for agronomic traits from the sexual genotype S10
and apomictic cv. Mombaça of guinea grass (Megathyrsus maximus).

Agronomic trait QTL HG Position
(cM)

LOD R² Parents

Green matter (GM) qGM1 V 71.0 3.56 6.78 both
qGM2 VI 87.0 2.91 4.29 ‘Mombaça'

Total dry matter (TDM) qTDM3 II 75.0 3.37 5.79 both
qTDM4 V 70.0 4.41 9.40 S10

Leaf dry matter (LDM) qLDM5 V 70.0 3.90 7.93 S10
qLDM6 VI 88.0 2.97 4.53 ‘Mombaça’

Stem dry matter (SDM) qSDM7 V 71.0 3.73 7.24 ‘Mombaça’
Percentage of leaf blade
(PLB)

qPLB8 IV 17.0 3.81 6.84 both

Regrowth capacity (RC) qRC9 II 75.0 4.73 10.37 S10
qRC10 VI 87.0 3.77 6.25 ‘Mombaça’
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which plays a role in GA biosynthesis (Koksal et al., 2011); and
ethylene insensitive 3 (EIN3) in HG VIII region 21 (qCP_S9/
qIVD_S29/ qPL_S34), which is associated with cell growth and
senescence processes (Munné-Bosch et al., 2018) (Table 6 and
Supplementary Table 5).

In addition, other genes with a role in plant physiology were
also identified, such as the gene encoding the enzyme
phosphoenolpyruvate carboxylase (PEPC) in HG I region 2
(qADF_L20/qCEL_L30), whose function is the catalysis of
primary metabolic reactions in plants (Toledo-Silva et al.,
2013). Glycosyltransferase was found in HG III region 7
(qIVD_L27) and is associated with the biosynthesis of
polysaccharides and glycoproteins (Hansen et al., 2012).
Pectinesterase/pectin methylesterase, which was detected in
HG V region 14 (qGM1/qTDM4/qLDM5/qSDM7/qADF_L21/
qCP_L7) and HG VIII region 23 (qSIL_S37) is related to cellular
adhesion and stem elongation (Damm et al., 2016). In addition to
these genes, we found a chloroplast envelope transporter in HG 7
r e g i o n 1 9 ( q OM _ S 4 / q ND F _ L 1 4 / q N D F _ S 1 9 ) .
Phosphatidylinositol-4-phosphate 5-kinase, which was present
in HG VIII region 22 (qOM_S5/qADF_S26/qCEL_S31), is
involved in coordinating plant growth (Kusano et al., 2008).
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Many putative candidate genes present in lignan biosynthesis
pathways were verified in some regions of QTLs. Glycosyl
hydrolase family 16 was located in HG III region 8 (qCP_L6/
qNDF_L12/qNDF_S17), and the genes associated with
secoisolariciresinol dehydrogenase and the NAD(P)-binding
Rossmann-fold superfamily were located in region 9
(qPL_L33). UDP-Glycosyltransferase superfamily protein was
present in HG V region 13 (qADF_S23). The 4-coumarate:CoA
ligase 3 gene was obtained in HG VI region 16 (qOM_L2/
qADF_L22). The gene encoding NAD(P)-binding Rossmann-
fold superfamily was also detected in HG VIII region 21
(qCP_S9/qIVD_S29/ qPL_S34).
DISCUSSION

Linkage Map
We obtained a satisfactory representative linkage map for M.
maximus, with a large genetic distance observed between the
parents, namely, cv. Mombaça. (Figure 2, quadrant I) and S10
(Figure 2, quadrant IV). This genetic distance and the
distribution of hybrids can be visualized in the PCA performed
TABLE 5 | QTLs identified for traits related to nutritional quality from the sexual genotype “S10” and apomictic cv. ‘Mombaça’ of guinea grass (Megathyrsus maximus).

Nutritional trait QTL HG Position (cM) LOD R² Parents

Leaf organic matter (OM_L) qOM_L1 V 87.0 4.15 8.3 S10
qOM_L2 VI 48.0 3.81 6.7 ‘Mombaça’

Stem organic matter qOM_S3 I 63.0 3.85 7.85 S10
(OM_S) qOM_S4 VII 68.0 4.76 11.44 both

qOM_S5 VIII 36.0 4.35 7.19 both
Leaf crude protein (CP_L) qCP_L6 III 34.0 3.43 5.10 both

qCP_L7 V 65.0 4.32 9.68 both
Stem crude protein (CP_S) qCP_S8 V 33.0 3.84 8.40 ‘Mombaça’

qCP_S9 VIII 6.0 2.84 3.17 S10
Leaf neutral detergent fiber (NDF_L) qNDF_L10 I 15.0 3.64 6.09 both

qNDF_L11 II 48.0 5.49 12.08 both
qNDF_L12 III 33.0 3.51 6.83 both
qNDF_L13 IV 14.0 4.30 6.84 both
qNDF_L14 VII 69.0 3.74 7.81 ‘Mombaça’

Stem neutral detergent fiber qNDF_S15 I 15.0 3.61 6.01 both
(NDF_S) qNDF_S16 II 48.0 5.50 12.07 both

qNDF_S17 III 33.0 3.5 6.81 both
qNDF_S18 IV 14.0 4.31 6.87 both
qNDF_S19 VII 69.0 3.75 7.85 ‘Mombaça’

Leaf acid detergent fiber (ADF_L) qADF_L20 I 57.0 3.98 8.84 S10
qADF_L21 V 59.0 4.0 8.07 both
qADF_L22 VI 45.0 3.08 2.46 both

Stem acid detergent fiber (ADF_S) qADF_S23 V 45.0 3.48 6.21 ‘Mombaça’
qADF_S24 VI 88.0 2.86 4.05 ‘Mombaça’
qADF_S25 VII 93.0 3.41 5.90 Both
qADF_S26 VIII 41.0 3.04 4.05 S10

Leaf in vitro digestibility of organic matter (IVD_L) qIVD_L27 III 20.0 3.8 5.85 S10
Stem in vitro digestibility of organic matter (IVD_S) qIVD_S28 V 37.0 3.55 7.31 ‘Mombaça’

qIVD_S29 VIII 6.0 3.91 5.84
Leaf cellulose (CEL_L) qCEL_L30 I 55.0 4.69 10.85 both
Stem cellulose (CEL_S) qCEL_S31 VIII 37.0 3.02 3.37 both
Leaf permanganate lignin (PL_L) qPL_L33 III 74.0 3.86 6.18 ‘Mombaça’
Stem permanganate lignin (PL_S) qPL_S34 VIII 7.0 2.7 2.78 both
Leaf silica (SIL_L) qSIL_L35 III 94.0 3.70 5.68 ‘Mombaça’

qSIL_LF36 VII 36.0 4.63 10.63 S10
Stem silica (SIL_S) qSIL_S37 VIII 61.0 2.96 4.23 both
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TABLE 6 | Description and function of the genes identified in APOSPORY and QTL regions from linkage map of guinea grass.

HG Region QTL Gene Description Function Reference

I 1 qNDF_L10 Rhomboid family protein Root growth, floral development and fertility Knopf et al. (2012)
qNDF_S15

I 2 qADF_L20 Phosphoenolpyruvate carboxylase CO2 fixation in the cytoplasm Toledo-Silva et al. (2013)
qCEL_L30 Auxin efflux carrier family protein Regulator of auxin efflux, differential growth and tropism Friml et al. (2002)

Inorganic H pyrophosphatase family
protein

Regulation of plant proton‐pumping homeostasis Primo et al. (2019)

Vacuolar ATP synthase subunit A Male gametophyte development and Golgi organization Dettmer et al. (2005)
Palmitoyltransferase TIP1 Stem cell or root hair and pollen tube growth Hemsley et al. (2005)
PINHEAD Regulation of cell division and axis determinacy Newman et al. (2002)

I 3 qOM_S3 Plant stearoyl-acyl-carrier-protein
desaturase family protein

Regulation of oleic acid Kachroo et al. (2007)

Exocyst complex protein Exo70 Plant cell morphogenesis Hála et al. (2008)
II 4 Apo-locus Inner centromere protein (ARK-binding

region)
Regulation of egg and central cell fate and differentiation Kirioukhova et al. (2011)

Somatic embryogenesis receptor-like
kinase 1 (SERK)

Induction of somatic embryogenesis Albrecht et al. (2008)

Spc97 / Spc98 family of spindle pole
body (SBP) component

Regulation of microtubule network Lin et al. (2015)

II 5 qNDF_L11 RING/U-box domain-containing protein
(XERICO)

Regulation of abscisic acid (ABA) Ko et al. (2006)

qNDF_S16 Wall-associated receptor kinase
galacturonan-binding (GUB_WAK_bind)

Pathogen response and cell expansion Kohorn and Kohorn (2012)

Late embryogenesis abundant (LEA)
protein-related

Seed maturation and tolerance to abiotic stress in plants Zhang et al. (2014)

II 6 qTDM3 WRKY family transcription factor family
protein

Pathogen defense, senescence and trichome development Eulgem et al. (2000)

qRC9 Eukaryotic elongation factor 5A-1 Regulation of cell division, cell growth, and cell death Feng et al. (2007)
III 7 qIVD_L27 Glycosyltransferase Biosynthesis of polysaccharides and glycoproteins Hansen et al. (2012)
III 8 qCP_L6 Xyloglucan:xyloglucosyl transferase Integral plasma membrane protein and wall‐loosening factor Ndamukong et al. (2009)

qNDF_L12 Xyloglucan endotransglucosylase/
hydrolase

Cell wall construction Yokoyama and Nishitani (2001)

qNDF_S17
III 9 qPL_L33 Protein thylakoid formation 1,

chloroplastic
Vesicle-mediated thylakoid membrane biogenesis Wang et al. (2004)

Secoisolariciresinol dehydrogenase Lignin biosynthesis Davin and Lewis (2003)
Gibberellin-regulated family protein Reproductive development and regulation of growth Hedden and Thomas (2016)
NAD(P)-binding Rossmann-fold
superfamily protein

Cinnamoyl-CoA reductase activity (lignin biosynthesis) Pan et al. (2014)

III 10 qSIL_L35 Disease resistance protein RPS2
Stripe rust resistance protein

Immune signaling in response to pathogenic fungiImmune
signaling in response to root-knot nematodes

Kourelis and van der Hoorn
(2018) Dimkpa et al. (2016)

IV 11 qPLB8 Ent-copalyl diphosphate synthase Gibberellin biosynthesis Koksal et al. (2011)
qNDF_L13 Phototropic-responsive NPH3 family

protein
Phototropic signal response pathway Roberts et al. (2011)

qNDF_S18
V 12 qCP_S8 Glucuronokinase UDP-glucuronic acid synthesis (sugar metabolism) Xiao et al. (2017)

qIVD_S28 WRKY DNA-binding domain Pathogen defense, senescence and trichome development Eulgem et al. (2000)
P-glycoprotein Auxin transport Geisler and Murphy (2006)
Protein NRT1/ PTR family 6.2 Transporting different substrates, e.g., nitrate Corratgé-Faillie and Lacombe

(2017)
Methyl esterase Hydrolysis of auxin and jasmonic acid Yang et al. (2008)

13 qADF_S23 UDP-Glycosyltransferase superfamily
protein

Mechanism of normal cell wall lignification Lin et al. (2016)

V 14 qGM1 Early nodulin-like family protein Cell differentiation and cell wall reorganization during
nodulation

Mashiguchi et al. (2009)

qTDM4 HEXOKINASE Glucose regulation Aguilera-Alvarado and Sánchez-
Nieto (2017)

qLDM5 Pectinesterase / Pectin methylesterase Pectin structure Pelloux et al. (2007)
qSDM7 NAD-dependent malic enzyme

(mitochondrial precursor)
Metabolism in mitochondria Tronconi et al. (2008)

qCP_L7 NADP-dependent malic enzyme
(chloroplast precursor)

Metabolism in chloroplasts (C4 plants) or in cytosol Tronconi et al. (2008)

qADF_L21
V 15 qOM_L1 Calcium-binding EF-hand family protein Regulation of cellular and developmental processes Day et al. (2002)

(Continued)
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with the allele dosage information of all individuals (Figure 2).
The crossing of contrasting parents makes it possible to check the
recombination frequency between loci, which is a fundamental
principle for observing the segregation of traits in hybrids and
promoting the detection of QTLs (Luo et al., 2000).

Because M. maximus does not yet have a sequenced genome,
we aligned our GBS reads to the allotetraploid genome of P.
virgatum, which is a species closely phylogenetically related toM.
maximus (Burke et al., 2016), since M. maximus previously
belonged to the Panicum genus. This genetic proximity was
confirmed based on the consistent distribution of the markers in
the genetic map (Figure 3 and Supplementary Table 4). In
addition, considering our tetraploid mapping population, the use
of a tetraploid genome as reference might be more informative
than the use of diploid genomes because there is a greater
possibility of similar chromosomal rearrangements between
these species (Daverdin et al., 2015). However, the possibility
of using the genome of P. virgatum as reference does not
preclude the need for a sequenced genome of M. maximus,
mainly due to the possibility of identifying exclusive markers of
the species, and our linkage map can contribute to the assembly
of this reference genome.

After allele depth estimation, only 10% of markers were
retained for the next analysis, in which we prioritized a
minimum average allele depth of 60 reads to suppress the
probable overestimation of allele bias due to our population
size. Gerard et al. (2018) recommend that more than 25 reads be
used to obtain a strong correlation of true genotypes under high
levels of bias and overdispersion, emphasizing that read depth
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requirements should be based on how many individuals are
included in the study. Of the genetic mapping studies involving
tropical forage grasses, only one reported the use of SNP markers
with allele dosage, and in the study, a minimum overall depth of
25 reads was considered in a biparental progeny of U. decumbens
containing 217 F1 hybrids (Ferreira et al., 2019).

Updated statistical models and the recent genome sequencing
technologies promoted advances in the knowledge of the genetics
of polyploid organisms, as demonstrated by the comparison of
our genetic map for M. maximus with the first map for this
species published over ten years ago by Ebina et al. (2005). The
first map contained 360 dominant markers obtained with
amplified fragment length polymorphism (AFLP) and random
amplified polymorphic DNA (RAPD) techniques that segregated
at a 1:1 ratio and was obtained from an apomictic cultivar used
for genetic breeding in Japan. These markers were distributed in
39 linkage groups, which is greater than the number expected for
this species (2n = 4x = 32). In this context, the use of SNPs as
codominant markers and their quantitative analysis allowed
many gains in our map, such as coverage of many regions of
quantitative traits important to breeders and the genetic effects
that influence these traits, as well as alleles of the parents that
were determinant of the characters of the hybrid.

In addition, the strategy of greater refinement of SNPs
adopted after estimating allele dosage using two programs of
mapping prevented overinflation among loci. We detected some
markers with SD (Table 2), but we chose not to use them, aiming
to increase the probability of obtaining an exact distance between
markers in the HGs. Since genotyping errors are probable, a large
TABLE 6 | Continued

HG Region QTL Gene Description Function Reference

VI 16 qOM_L2 4-coumarate:CoA ligase 3 Lignin biosynthesis Toledo-Silva et al. (2013)
qADF_L22

VI 17 qGM2 Galactinol-raffinose galactosyltransferase/
stachyose synthetase

Desiccation protectant in seeds and transporter of sugar in
phloem sap

Sengupta et al. (2015)

qLDM6 Nodulin-like/major facilitator superfamily
protein

Facilitators of water and ammonia transport Routray et al. (2015)

qRC10 Peroxidase superfamily protein Lignin biosynthesis Toledo-Silva et al. (2013)
qADF_S24

VII 18 qSIL_L36 FKBP-type peptidyl-prolyl cis-trans
isomerase family protein

Control of cell proliferation and differentiation Smyczynski et al. (2006)

VII 19 qOM_S4 Chloroplast envelope transporter Ions transport Höhner et al. (2016)
qNDF_L14 Endo-1,4-beta-xylanase/glycosyl

hydrolase family 10 protein
Xylan degradation Suzuki et al. (2002)

qNDF_S19 Alpha-galactosidase Regulation of cell wall loosening and cell wall expansion Chrost et al. (2007)
VII 20 qADF_S25 Lipoxygenase Biosynthesis of polyunsaturated fatty acids Bannenberg et al. (2008)
VIII 21 qCP_S9 3-oxoacyl-[acyl-carrier-protein] reductase Fatty acid biosynthesis Ding et al. (2015)

qIVD_S29 Sugar transporter/spinster
transmembrane protein

Transport of lipidic molecules Niño-González et al. (2019)

qPL_S34 Ethylene insensitive 3 family protein Modulation of plant growth Munné-Bosch et al. (2018)
Glycine-rich cell wall structural
transmembrane protein

Component of the cell walls of higher plants Mousavi and Hotta (2005)

NAD(P)-binding Rossmann-fold
superfamily protein

Cinnamoyl-CoA reductase activity (lignin biosynthesis) Pan et al. (2014)

VIII 22 qOM_S5 Sterol regulatory element-binding protein Regulation of sterol biosynthesis Seo et al. (2008)
qADF_S26 Alpha carbonic anhydrase C4 photosynthetic pathway Toledo-Silva et al. (2013)
qCEL_S31 Phosphatidylinositol-4-phosphate 5-

kinase
Regulator of root hair tip growth Kusano et al. (2008)

VIII 23 qSIL_S37 Pectinesterase Pectin structure Pelloux et al. (2007)
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amount of missing data and a large number of distorted loci may
promote the expansion of linkage maps as well as overestimate
the recombination fractions and limit the accuracy of the
mapping (Cartwright et al., 2007; Gerard et al., 2018).
However, SD is a phenomenon commonly found in the
genome, and some linkage maps contain distorted markers,
including those of grasses such as pearl millet (Sehgal et al.,
2012) and napiergrass (Paudel et al., 2018). Therefore, greater
knowledge of the occurrence and genetic causes of SD in plants is
important for inferring which genes are kept together or
separated by SD (Zhu et al., 2006; Anhalt et al., 2008). Thus,
future studies might aggregate information on the structure of
loci with SD in the genome of M. maximus.

Most linkage maps in grasses include only single-dose
markers with segregation ratios of 1:1 and 3:1; thus, the
heterozygous classes were grouped with one of the
homozygous classes, resulting in a loss of information (Bourke
et al., 2018b). The use of linkage maps with simplex SNPs for
most linkage groups and a high density of higher-dosage markers
provides greater confidence in the modeling of allelic effects of
QTLs (Hackett et al., 2014). The markers present in our map
were mostly simplex, while higher-dosage markers comprised
approximately 28.4% of the map, as shown in Table 2. Similar
values were also verified in the genetic map of U. decumbens
(Ferreira et al., 2019), probably due to the complexity of scoring
and analyzing these types of markers. Our map presented a
greater number of alleles exclusive to the apomictic parent than
sexual parent, as observed in the previous map of M. maximus
(Ebina et al., 2005) and in the genetic maps of other forage
grasses (Worthington et al., 2016; Ferreira et al., 2019). This
difference is likely due to the origin of the genotypes: "Mombaça"
and S10 have natural tetraploid genomes, but S10 was obtained
from a sexual x apomictic cross of an original diploid sexual plant
that was duplicated with colchicine.

Our linkage map was sufficient for the identification of an
oligogenic trait with a genomic region responsible for 80% of the
phenotypic variance and polygenic traits. Therefore, our map
will also be useful for the detection of other important
characteristics in M. maximus and can contribute to the
assembly of the genome of this species, as well as to studies
about the biology and evolution of other phylogenetically closely
related tropical forage grasses, such as those in the Urochloa and
Paspalum genera.

Double Reduction in Guinea Grass
We reported for the first time the occurrence of DR in M.
maximus. Autotetraploids may undergo this type of segregation
when in multivalent pairing, two pairs of chromatids pass to the
same pole in anaphase I of meiosis (Haynes and Douches, 1993).
In guinea grass, irregular chromosome segregation has already
been verified in cytogenetic analysis in hybrids and parents from
the breeding program of the Embrapa Beef Cattle (Pessim et al.,
2010; Pessim et al., 2015). The distribution of the markers with
DR between the dosage types was proportional to the number of
SNPs with each configuration. DR has been extensively studied
using SNPs with dosage data in autotetraploid linkage maps in
potato (Hackett et al., 2017; Bourke et al., 2018a). Approximately
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6% of markers in potato have DR (Bourke et al., 2015),
corroborating our results (9.68%). Despite some studies
suggesting that DR should be included in genetic map
construction and in QTL analysis (Li et al., 2010), other studies
verified that such markers exert only minor positive effects on the
power and accuracy of mapping analysis using single-dose
markers (Bourke et al., 2015) and higher-dose markers (Bourke
et al., 2016). In addition, statistical models have been created to
include DR in linkage mapping (Huang et al., 2019), but no
software currently implements them.

The occurrence of DR inM. maximus has many implications
for breeding programs, being that the effects of DR and how to
handle them have been the targets of several studies (Luo et al.,
2000; Xu et al., 2013; Layman and Busch, 2018). This type of
segregation exposes alleles located in distal regions of the
chromosomes to homozygosis and thus is effective in
eliminating the lethal alleles in a population (Butruille and
Boiteux, 2000). A low rate of DR is sufficient to considerably
reduce the equilibrium frequency of a deleterious allele at one
locus (Luo et al., 2006). As an alternative, DR could be used to
accelerate the accumulation of favorable rare alleles through
marker-assisted selection (MAS) (Bourke et al., 2015). In
addition, it is possible to obtain genotypes with loci having a
higher homozygosis rate for use in specific crosses (Bourke et al.,
2015). In this context, more detailed molecular study could
elucidate the influence of DR on the phenotypes of hybrids of
our study species.
Apospory Mapping and the Search for
Gene Similarity
A chi-square test (X² = 5.43, p ≥ 0.01) performed for qualitative
analysis of the reproductive mode of the 106 hybrids followed the
Mendelian inheritance model, corroborating the results obtained
with progeny tests in guinea grass performed by Savidan (1980)
and Savidan (1981), in which sexual x apomictic progenies
exhibited a 1:1 ratio that could be explained by an Aaaa
genotype for apomictic because the aposporous apomixis of M.
maximus is dominant over sexuality. We also proved this finding
through SNPmarkers. Other studies of grasses such as Pennisetum
(Akiyama et al., 2011), Paspalum (Martínez et al., 2003) and
Urochloa (Valle et al., 1994; Vigna et al., 2016) also verified this
segregation for the reproductive mode. Evidence suggests that this
locus is present in a conserved region of the plant genome;
however, further molecular genomic studies on aposporous
apomixis in forage grasses are needed because the recent studies
have led to other hypotheses, such as a possible influence of
epigenetics (Kumar, 2017). Interestingly, more advanced studies
on apomixis inM. maximus genotypes from a germplasm bank of
India reported the decoupling of apomixis into three components,
namely, apospory, parthenogenesis and pseudogamous-
endosperm. These components are three distinct genetic
determinants that determine an individual as apomictic, and
recombination might occur among these components,
supporting the hypothesis that more major genes are involved in
apomixis control (Kaushal et al., 2008; Kaushal et al., 2019). This
decoupling in neo-apomictics might be the target of an adaptive
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mechanism to maintain variability through hybridization and
could be beneficial to the breeding program (Kaushal et al., 2019).

The aposporous region in M. maximus was previously
mapped (Ebina et al., 2005; Bluma-Marques et al., 2014), and
similar to our results, no markers were in perfect linkage with the
region. Nonetheless, we mapped markers at a shorter distance
(0.8 cM) from the apo-locus (Figure 3). Genetic markers linked
to apomixis have been sought in other tropical forage grasses
(Vigna et al., 2016; Worthington et al., 2016; Worthington et al.,
2019), aiming at the efficient and rapid identification of the
reproductive mode of progenies. Once identified, such markers
may be transferred among forage grasses, based on evidence of
conservation of the ASGR. Thus, markers near the apospory
region that were identified in our map may be validated and
useful for the breeding program of this species.

In addition, we observed that the markers closer to the peak
region of the apo-locus were in a genomic region of P. virgatum
similar to a region of the genome of A. thaliana that contains the
SERK1 gene. This gene is involved in the signaling pathway
active during zygotic and somatic embryogenesis in A. thaliana,
and its overexpression increases the efficiency of somatic
embryogenesis initiation (Hecht et al., 2001). In nucellar cells
of apomictic genotypes of Poa pratensis, the SERK gene is
involved in embryo sac development (Albertini et al., 2005).
Recently, SERK was reported in Brachypodium distachyon grass
as having a domain conserved among monocots and plays a
prominent role in apomixis (Oliveira et al., 2017). Scarce studies
have investigated the genes involved in the regulation of
reproductive events in guinea grass, and these previous studies
mainly utilized of transcriptome data (Toledo-Silva et al., 2013;
Radhakrishna et al., 2018).

QTLs for Agronomic and Nutritional Traits
A QTL mapping approach is required for the characterization of
the genetic architecture of traits. In our study, QTL analysis of
autotetraploid progeny was performed using interval mapping
(IM) of markers with allele dosage. This same methodology was
successfully applied in QTL mapping in signalgrass, another
important forage grass (Ferreira et al., 2019). The multiple
interval mapping (MIM) method was recently implemented in
polyploids and is a new alternative for other mapping studies
using data with allele dosage information (Pereira et al., 2019).
The mapping method used here considered only the peak with
the largest effect as a QTL, but it is worth mentioning that peaks
were present near the peak QTL for all agronomic traits
(Supplementary Figure 2).

QTLs associated with important agronomic traits were
mapped in HGs I, III, VII and VIII, with the phenotypic
variation explained ranging from 4.3% to 10.4% (Table 4).
Because M. maximus is undergoing a domestication process,
the crop can still be greatly improved by the selection of large-
effect QTLs. Therefore, QTL qRC9, located at 75 cM in HG II,
which explained 10.3% of the phenotypic variation in RC
(Supplementary Figure 2, HG_2(B)) and had a predominant
additive effect of the female progenitor S10, may be a candidate
for the marker-assisted selection program of guinea grass.
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We found more than one QTL for TDM, LDM, and RC, again
supporting the hypothesis of complex genetic control.
Conversely, we found only one QTL for PLB in both parents.
TDM and LDM showed high broad-sense heritability (<0.5),
followed by RC (0.3) and PLB (0.1), as shown in Table 1. Higher
heritability values (<0.85) for LDM and RC and a value for PLB
above 0.4 were recently reported in M. maximus (Lara et al.,
2019), using the generalized heritability formula (Cullis et al.,
2006). For this species, a greater amount (g/plant) of TDM and
LDM in the progenies has been associated with considerable
heritability from the most productive parents (Braz et al., 2013;
Braz et al., 2017). Matias et al. (2019) also verified the same
pattern in interspecific hybrids from Urochloa spp., another
genus adapted to tropical conditions. The intermediate
heritability of RC and the QTLs associated with this trait that
were detected in both parents resulted in hybrids with a good
capacity for regrowth. This trait is also considered fundamental
in forage grasses because it is directly related to the persistence of
the forage after defoliation (Jank et al., 2011).

The negative correlation between PLB and SDM was expected
(Figure 1), and Braz et al. (2017) verified the higher PLB values
in the experiment of this progeny. PLB is related to plant
structure, and plants with a high percentage of leaves are
desirable because this trait is related to higher forage quality. A
higher PLB was observed in the male parent, cv. Mombaça,
which is often used as a check in experiments. Since its release in
the 1990s, along with cv. Tanzania, cv. Mombaça has promoted
pasture intensification in the country due to its very high
productivity and forage quality (Jank et al., 2014). Progenies
whose female parent is S10 generally also present good yield
(Resende et al., 2004). Breeding programs target these traits in
search of superior genotypes with greater foliar mass and a
higher percentage of leaves due to the higher digestibility of
leaves than of stems for animals. Thus, forage breeding is not
restricted to the obtaining of more productive plants; it also
contributes to greater efficiency in their transformation into
animal production (Valle et al., 2009).

Significant and positive correlations among the traits GM,
TDM, SDM, LDM, and RC corroborated the positions of QTLs
associated with agronomic traits in the linkage map (Figures 1
and 3). The traits GM and LDM exhibited high heritability
(Table 1) and strong positive correlation (Figure 1), which
suggests that genetic improvements in these traits could be
achieved by selective phenotyping for only one of these traits,
without the need to do separation of plant part. We detected
qTDM3 and qRC9 in a common region in HG II; qGM1,
qTDM4, qLDM5, and qSDM7 in the same region in HG V;
and qGM2, qLDM6, and qRC10 in part of a common region in
HG VI. Each region containing several QTLs for different traits
suggests the occurrence of four QTL hotspots. Interestingly,
QTLs for PLB were not detected in any region with other
agronomic traits, and a negative correlation has also been
observed; however, a positive correlation with NDF was
verified, and such a QTL was detected in a similar region with
qNDF_L13 and qNDF_S18 in HG IV (Figure 3), suggesting a
fifth QTL hotspot.
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Clustering of QTLs for genetically correlated traits in the
same or adjacent regions of HGs in several organisms may be due
to physical linkage, pleiotropy or natural selection for coadapted
traits (Studer and Doebley, 2011; Wu et al., 2015). We have taken
the first step in the identification of loci that lead to these trait
correlations and the degree to which these patterns affect
productivity in M. maximus. QTLs colocated in the same
region of HGs for agronomic traits have also been identified in
some grasses (Fang et al., 2016; Sartie et al., 2018).

All HGs contained QTLs related to nutritional traits, with
those related to the leaf and stem being found mainly in HG III
and HG VIII, respectively. Again, some traits had more than one
peak that could not be considered due to the methodology
adopted (Supplementary Figures 3, 4). The phenotypic
variance explained by these QTLs ranged between 2.5%
(qADF_L22) and 12.1% (qNDF_L11 and qNDF_S16).
Interestingly, both parents contributed alleles for most of the
identified QTLs, providing evidence that the genotypes have high
nutritional quality.

The selection of a superior genotype of perennial tropical
forages is based on the analysis of traits through repeated
measures over a number of harvests, seasons, and years
(Fernandes et al., 2017). The nutritional QTLs found in our
study need further investigation because only one harvest was
analyzed and interactions could not be measured. In a selection
study of U. decumbens and U. humidicola, Figueiredo et al.
(2019) identified a significant Genotype x Harvest Interaction
(GHI) effect (p<0.05) for different agronomic and nutritional
traits, which reflect differences in the relative performances of
genotypes across harvests. GHI also has been reported as
significant in M. maximus, and the average number of harvests
needed for a reliable selection of nutritional traits, such as OM
and CP, would be 3 and 5 at accuracy levels of 0.80 and 0.85,
respectively (Fernandes et al., 2017). Thus, GHI directly affects
the selection of the genotypes and further studies with more
harvests are needed to consolidate our results about putative
QTLs to nutritional traits.

The heritability of the nutritional traits varied from low
(0.06), obtained for SIL_S, to moderate (0.32), obtained for
OM_L. This result also reinforces the necessity of more
harvests for the efficient selection of superior genotypes for
nutritional traits (Fernandes et al., 2017). Traits IVD_L and
IVD_S presented the same standard as the crude protein, with
the H² of the stem being higher than that of the leaf (Table 1).
Historically, cv. Mombaça has stood out due to its high
productivity, but with slightly lower values for forage quality
when compared to ‘Tanzania', and in biparental crosses, the
hybrids obtained from “Mombaça” also presented these features
(Braz et al., 2017). This finding was corroborated by the
heritability verified above in our study of agronomic and
nutritional traits.

The nutritional quality of forage grasses is important in
several aspects and is directly related to the production of meat
and milk. M. maximus shows a high value of CP compared to
other tropical forages. However, the values for lignin and fiber
are expected to be low because lignin hampers the enzymatic
Frontiers in Plant Science | www.frontiersin.org 15
hydrolysis of cellulose and hemicellulose and, thus, the digestion
of the cell wall of the leaf tissue and the stem (Jung and Allen,
1995). The relationship between the biomasses of leaves and
stems is important due to its effects on nutritional value and
voluntary consumption by animals. The NDF is associated with
fibrous fractions and with voluntary consumption. The fractions
that are not digested by the animal take up space in the digestive
tract, impairing the digestion and consumption of dry matter
(Euclides et al., 1999).

NDF_L and NDF_S showed a strong positive correlation, and
their respective QTLs were in the same regions in the HGs. In the
linkage map, qCEL_L30 and qADF_L20 QTLs were in the same
region, and qCEL_S31 and qADF_S26 were both located in HG
VIII and were significantly correlated (Figure 1). The traits CP
and IVD showed a weak positive correlation, but the qCP_S8 and
qIVD_S28 QTLs were present in the same region of HG V, and
qCP_S9 and qIVD_S29 were identified in the same region of HG
VIII. Interestingly, qPL_S34 was verified in HG VIII in the same
region as CP and IVD QTLs, and qADF_L21 shared a similar
region with qCP_L7 in HG V. In addition, qCP_L7 extended to
QTLs related to agronomic traits (qGM1, qTDM4, qLDM5 and
qSDM7). A total of 8 probable QTL hotspots have been
identified, supporting the need for further studies in search of
a specific gene controlling all these traits or several genes
acting together.

Notably, in the progenies ofM. maximus from lower-yielding
parents, the nutritional value is generally higher. With the
identified QTLs, more in-depth studies of this correlation will
be possible. In addition, QTLs related to forage quality have not
been found in other important tropical species, such as Urochloa
spp. Therefore, our results can contribute to the search for
important genomic regions in other forage species.

Search for Similarity in QTL Regions
The search for putative candidate genes was based on all 23 QTL
regions. Generally, the same gene families from A. thaliana, O.
sativa, and P. virgatum were identified for a common QTL
region. These genes are also found in the literature and are
described in Table 6 and Supplementary Table 5.

Exploration of genes involved in plant growth and
development, especially those related to hormone regulation, is
crucial in forage grass breeding programs. Interestingly, the
gibberellin family (GAS) was identified in HG III region 9
(qPL_L33), whose QTL is related to lignin, a complex phenolic
polymer deposited in the secondary cell wall of all vascular plants
(Zhao, 2016). The interrelations between cell wall components
cause cellulose and lignin to be codependent, a normal cellulose
deposition pattern may be necessary for lignin assembly, and
alterations of lignin content may lead to changes in the cell
orientation of cellulose fibrils and, consequently, in digestibility
(Anderson et al., 2015; Liu et al., 2016). GAs promote biochemical,
physiological and anatomical plant changes (Hedden and
Thomas, 2016). The induction of cellulose synthesis by GAs
promotes the release of secondary regulators of cell wall
proteins and, consequently, can boost lignin deposition and
increase lignin content (Zhao, 2016). GAS at increased light
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levels have been shown to promote cell wall thickness and increase
lignin deposition in xylem fibers (Falcioni et al., 2018).

Other important genes identified are associated with
pectinesterase/pectin methylesterase and were present in HG V—
region 14 (qGM1/qTDM4/qLDM5/qSDM7/qADF_L21/qCP_L7)
and HG VIII—region 23 (qSIL_S37), which also contained
agronomic QTLs. Pectinesterase is responsible for the
hydrolyzation of pectin, the major component of cell walls
(Pelloux et al., 2007). In addition, this enzyme is involved in
developmental processes such as stem elongation in A. thaliana
(Damm et al., 2016) and in B. distachyon grass (Feng et al., 2015).
However, more in-depth research should be performed to ensure an
understanding of the signaling pathways of these genes and make
this understanding applicable to tropical forage breeding programs.

In conclusion, the present study produced a high-resolution
linkage map with allele dosage information obtained from a full-
sib progeny of M. maximus with high genetic variability. Even
without the availability of a sequenced genome for this species, the
approach adopted for the construction of our map was sufficient
to detect many QTLs associated with agronomic and nutritional
traits that are important for forage breeding. Our genetic map also
allowed us to map the apo-locus to a single linkage group and
provided a more up-to-date study of the mode of reproduction of
M. maximus. The knowledge about the genetics of these traits that
we obtained is the first step in discovering genes involved in
relevant biological processes as well as understanding the genetic
architecture of relevant traits in this species.
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FIGURE S1 | Identification of the apospory region position (cM) in HG II from
guinea grass mapping population. Dotted line indicate the LOD thresholds of
90% and 95% obtained after the permutation tests.

FIGURE S2 | Interval mapping (IM) for agronomic traits from the guinea grass
(Megathyrsus maximus) population in HGs II, IV, V and VI. Agronomic traits:
green matter (GM), total dry matter (TDM), leaf dry matter (LDM), stem dry matter
(SDM), regrowth capacity (RC) and percentage of leaf blade (PLB). Dotted lines
indicate the LOD thresholds of 90% and 95% obtained after the permutation tests.

FIGURE S3 | Interval mapping (IM) for forage quality from the guinea grass
(Megathyrsus maximus) population in HGs I to IV. Nutritional quality traits for the
leaf (L) and/or stem (S): organic matter (OM_S), crude protein (CP_L), in vitro
digestibility of organic matter (IVD_L), neutral detergent fiber (NDF_L and NDF_S),
acid detergent fiber (ADF_L), cellulose (CEL_L), silica (SIL_L), and permanganate
lignin (PL_L). Dotted lines indicate the LOD thresholds of 90% and 95% obtained
after the permutation tests.

FIGURE S4 | Interval mapping (IM) for forage quality from the guinea grass
(Megathyrsus maximus) population in HGs V to VIII. Nutritional quality traits for
the leaf (L) and/or stem (S): organic matter (OM_L and OM_S), crude (CP_L
and CP_S), in vitro digestibility of organic matter (IVD_S), neutral detergent fiber
(NDF_L and NDF_S), acid detergent fiber (ADF_L and ADF_S), cellulose (CEL_S),
silica (SIL_L and SIL_S), and permanganate lignin (PL_S). Dotted lines indicate
the LOD thresholds of 90% and 95% obtained after the permutation tests.
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