
Frontiers in Plant Science | www.frontiersin

Edited by:
Fabio Marroni,

University of Udine, Italy

Reviewed by:
Davoud Torkamaneh,

University of Guelph, Canada
Francois Belzile,

Laval University, Canada

*Correspondence:
Jochen C. Reif

reif@ipk-gatersleben.de

Specialty section:
This article was submitted to Technical

Advances in Plant Science,
a section of the journal

Frontiers in Plant Science

Received: 15 October 2019
Accepted: 13 January 2020

Published: 14 February 2020

Citation:
Chu J, Zhao Y, Beier S,

Schulthess AW, Stein N, Philipp N,
Röder MS and Reif JC (2020)
Suitability of Single-Nucleotide
Polymorphism Arrays Versus

Genotyping-By-Sequencing for
Genebank Genomics in Wheat.

Front. Plant Sci. 11:42.
doi: 10.3389/fpls.2020.00042

ORIGINAL RESEARCH
published: 14 February 2020
doi: 10.3389/fpls.2020.00042
Suitability of Single-Nucleotide
Polymorphism Arrays Versus
Genotyping-By-Sequencing for
Genebank Genomics in Wheat
Jianting Chu1, Yusheng Zhao1, Sebastian Beier1, Albert W. Schulthess1, Nils Stein2,
Norman Philipp1, Marion S. Röder1 and Jochen C. Reif1,3*

1 Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany,
2 Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany, 3 Faculty of
Sciences III - Agricultural and Nutritional Sciences, Earth Sciences and Computer Science, Martin-Luther-University Halle-
Wittenberg, Halle/Saale, Germany

Genebank genomics promises to unlock valuable diversity for plant breeding but first, one
key question is which marker system is most suitable to fingerprint entire genebank
collections. Using wheat as model species, we tested for the presence of an
ascertainment bias and investigated its impact on estimates of genetic diversity and
prediction ability obtained using three marker platforms: simple sequence repeat (SSR),
genotyping-by-sequencing (GBS), and array-based SNP markers. We used a panel of
378 winter wheat genotypes including 190 elite lines and 188 plant genetic resources
(PGR), which were phenotyped in multi-environmental trials for grain yield and plant
height. We observed an ascertainment bias for the array-based SNP markers, which led
to an underestimation of the molecular diversity within the population of PGR. In contrast,
the marker system played only a minor role for the overall picture of the population
structure and precision of genome-wide predictions. Interestingly, we found that rare
markers contributed substantially to the prediction ability. This combined with the
expectation that valuable novel diversity is most likely rare suggests that markers with
minor allele frequency deserve careful consideration in the design of a pre-
breeding program.

Keywords: single-nucleotide polymorphism (SNPs), genotyping-by-sequencing (GBS), simple sequence repeats
(SSR), genebank genomics, molecular diversity, genome-wide prediction, wheat
INTRODUCTION

Global agricultural production must be increased by 60% compared to 2005–2007 levels in order to
supply an estimated world population of 9 billion in 2050 (Ray et al., 2013; FAO, 2017). The annual
yield increases for the four main crops (wheat, corn, rice, and soybean) are about 0.9%–1.6%, which
is far below the required one (Ray et al., 2013). It is becoming increasingly difficult to meet this rising
global demand as arable land and water become scarcer, average living standards rise, and
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investments to increase agricultural productivity grow slowly
(Fischer et al., 2014; Laidig et al., 2014). Wheat breeding is a
viable and sustainable solution for increasing grain yield and
improving yield stability (Borlaug, 1968; Voss-Fels et al., 2019).

The success of wheat breeding strongly depends on the
availability of a valuable diversity within breeding populations
(Jannink et al., 2010; Rufo et al., 2019). The effective population
size in European wheat breeding populations is small with an
estimated value of ~30 individuals (He et al., 2017). Therefore,
the extension of the genetic diversity of elite wheat breeding
pools through the introgression of valuable variation is crucial
for increasing the grain yield potential. Moreover, the systematic
genotyping of collections was proposed as a first step toward
developing new ways and approaches to unlock wheat genetic
resources for breeding (Mascher et al., 2019). Genotyping of
plant genetic resources (PGRs) was performed for some
important crops such as barley (Milner et al., 2019), maize
(Romay et al., 2013), and rice (Wang et al., 2018). As far as
wheat is concerned, many efforts have focused on how genomic
technologies can be used to genotype PGRs (Rasheed et al.,
2018). For example, the global landrace collection “Watkins” was
genotyped with 41 simple sequence repeat (SSR) markers for 826
landraces from 32 countries (Wingen et al., 2014). A collection of
295 accessions including 136 landraces from 25 countries from
the Australian Grains genebank was fingerprinted by
genotyping-by-sequencing (GBS) and Diversity Arrays
Technology (DArT-seq) (Riaz et al., 2017). An 820k Axiom
single-nucleotide polymorphism (SNP) array as well as a 35k
subset were developed by genotyping 43 bread wheat lines
including their wild accessories (Winfield et al., 2016; King
et al., 2017). The GBS platform was also used for genotyping
“Creole” landraces conserved in CIMMYT's genebank (Vikram
et al., 2016), a sample of 62 diverse wheat lines including 26
landraces (Jordan et al., 2015), a set of 1,143 accessions of
Aegilops tauschii (Singh et al., 2019) and a set of 1,423 spring
bread wheat germplasm including 561 landrace accessions
(Sehgal et al., 2015). These recent works present the potential
of introducing exotic alleles present in these PGRs to improve
elite wheat lines. In this sense, the genomic data not only allow to
estimate the neutral molecular diversity of genetic resources as
compared to that of elite lines (He et al., 2019) but also to
combine it with phenotypic information in order to find novel
valuable functional genetic variation, i.e. genes/alleles/haplotypes
(e.g., Milner et al., 2019) or to build up genome-wide prediction
models to select promising candidates for (pre)breeding (Yu
et al., 2016). Whole-genome sequencing of entire collections is
currently not affordable in large-genome species such as wheat
and therefore attempts have been mainly focused on cost-
effective genotyping platforms (Milner et al., 2019). Several
marker platforms have been developed in wheat in the past
(Elbasyoni et al., 2018). SSR markers (Röder et al., 1995; Röder
et al., 1998) were replaced by diversity array technology (DArT
markers; Wenzl et al., 2004), GBS (Elshire et al., 2011; Poland
et al., 2012), and array platforms for scoring SNPs (Cavanagh
et al., 2013; Wang et al., 2014; Winfield et al., 2016). The
disadvantage of most cost-efficient genotyping platforms in
Frontiers in Plant Science | www.frontiersin.org 2
contrast to whole-genome sequencing is that an ascertainment
bias can be introduced by designing the marker platforms using a
limited set of individuals (Clark et al., 2005). This has been
described for instance in maize (e.g., Frascaroli et al., 2013). An
ascertainment bias can impact the estimates of the diversity
within populations but seems to be of minor relevance for the
estimates of the overall population structure (Heslot et al., 2013;
Alipour et al., 2017; Eltaher et al., 2018; Bhatta et al., 2018) or
further downstream applications such as genome-wide
predictions (Heslot et al., 2013; Jiang et al., 2015; Elbasyoni
et al., 2018). For wheat, only a few studies have compared the
accuracy of genome-wide prediction between SSR and SNP array
markers (e.g., Jiang et al., 2015), between GBS and DArTmarkers
(e.g., Heslot et al., 2013), and between GBS and SNP array
markers (e.g., Elbasyoni et al., 2018). The results heavily
depend on the underlying germplasm, while studies on the
relevance of an ascertainment bias on diversity estimates and
genome-wide predictions in wheat genetic resources are rare.
Furthermore, it is also promising to test whether genetic
information from different marker platforms is complementary
and whether their integrated use can boost prediction accuracies.

The objectives of our study were to 1) compare the relevance
of an ascertainment bias on the genetic diversity estimated by
SSR, GBS, and SNP array markers in a wheat population
comprising PGRs and European elite lines, 2) contrast the
prediction ability obtained using the three marker platforms,
and 3) investigate the potential and limits of genome-wide
prediction models exploiting the complementarity of different
marker platforms.
MATERIALS AND METHODS

Genotyping and Population Genetic
Analyses
We fingerprinted 378 winter wheat (Triticum aestivum L.)
genotypes: 190 lines represent the elite breeding pool exploited
in Europe (Elite) and 188 genotypes represent a random sample
of PGRs maintained at the genebank of the IPK Gatersleben,
Germany. Details on the plant material have already been
published (Philipp et al., 2018). The 378 wheat lines were
characterized using (1) an Infinium 90,000 SNP array for 174
genotypes out of 571 samples (Wang et al., 2014) and a derived
Infinium 15,000 SNP array for 204 genotypes out of 782 samples
(Boeven et al., 2019), (2) GBS (Wendler et al., 2014), and (3) 19
SSR markers (Plaschke et al., 1995; Röder et al., 1995; Röder et al.,
1998). The 90,000 SNP array data were used from a previously
published study (Zanke et al., 2014a; Zanke et al., 2014b; Zanke
et al., 2015). The development of the 15,000 SNP array and
genotyping was performed by TraitGenetics GmbH
(www.traitgenetics.com) and the SNPs represent a subset of
markers from the 90,000 SNP array (Wang et al., 2014). The
GBS data were generated and processed following established
protocols (Himmelbach et al., 2014; Wendler et al., 2014).
Briefly, digestion of genomic DNA was done with the enzymes
PstI and MspI (New England Biolabs). Up to 190 individually
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barcoded samples were pooled per lane equimolarly and
sequenced on the Illumina HiSeq 2000 device with 1 x 107
cycles in single-end mode using custom sequencing primer
(Meyer and Kircher, 2010) according to the manufacturer's
instructions. In total, five lanes of a single flow cell were
sequenced with an average output of 3,052,589 raw reads per
sample (ranging from 322,285 to 10,758,745 reads per sample)
for 378 individuals (Supplementary Table 1). Following adapter
trimming with cutadapt (Martin, 2011), reads were mapped to
the reference genome sequence of bread wheat cultivar Chinese
Spring (IWGSC, 2014) with BWA-MEM version 0.7.13 (r1126)
(Li, 2013) using the -M option to mark shorter split hits as
secondary. Mappings were transformed into the BAM format
with SAMtools version 1.3 (Li et al, 2009). Novosort version
3.02.12 1 was applied to sort and index records by position. BAM
files were merged by genotype with Picard2. We called variants
using the SAMtools/BCFtools pipeline version 1.3 (Li et al, 2009)
with mpileup parameter set to “-DV”. A custom awk script was
applied for initial filtering of genotype calls in the following
manner: Bi-allelic sites with a minimum mapping quality score
of 40 were called for homozygous and heterozygous genotype
calls that were supported by at least two and four reads,
respectively. We coded the SNP array and GBS marker data as
(0, 1, 2, NA), where 0 and 2 represent the homozygous state for
the first and second allele at a particular SNP locus, respectively,
1 represents the heterozygote class, and NA refers to missing
values. As to multi-allelic SSR markers, if the allele appears for a
certain genotype, it was coded as 1, if not, then 0. After that, this
coding was also used for SSR markers assuming that each allele is
a marker. We assessed the quality of the marker data in two steps:
firstly, we deleted markers showing more than 5% of missing
values, and then, we excluded the monomorphic markers [allele
frequency (AF) = 0 or = 1]. After the quality assessment, 12,490
SNP array markers, 31,230 GBS markers, and 170 SSR alleles
remained in the matrix. We then explored the genetic diversity
based on these filtered markers without imputation and imputed
the missing values according to the distribution of allele
frequency for genomic prediction.

In order to compare properties between Elite and PGRs for
each marker dataset, we calculated the minor allele frequency
(MAF), population heterozygosity (H), and polymorphism
information content (PIC). The standard deviations (SD) of
these parameters were derived by means of bootstrapping with
1,000 rounds. We evaluated the genetic diversity from each
group and calculated the Rogers' distances (RD) between pairs
of genotypes. SDs were obtained by resampling genotypes
without replacement with 1,000 rounds. Principal coordinates
analysis (PCoA, Gower, 1966) was performed to investigate the
population structure. PCoA was implemented with the function
“cmdscale” from the R package “stats” 3. The relatedness of each
pair of marker datasets was assessed through the Mantel
correlation of their corresponding RD matrices (Mantel, 1967).
1www.novocraft.com/documentation/novosort-2/
2https://broadinstitute.github.io/picard/
3https://cran.r-project.org/web/packages/STAT/STAT.pdf
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Detailed information on the implementation of the population
genetic analyses is outlined in the Supplementary Material.
Field Trials and Phenotypic Data Analysis
For 339 genotypes (188 Elite and 151 PGR), phenotypic data
were available. The 339 genotypes (or subsets) were phenotyped
for grain yield (GY) (Mg ha−1) and heading date (HD) (days
since 1 January) in three field experiments (Table 1). Experiment
1 comprised field trials of up to 278 genotypes evaluated in
Gatersleben, Germany, and Malchow, Germany. The trials were
performed in the year 2015 following an alpha-lattice design with
two replicates (for details, see Philipp et al., 2018). Plot sizes were
5 m2 in Gatersleben and 3.75 m2 in Malchow. Experiment 2
included 166 out of the 188 elite lines and further 164 varieties
(for details, see Zanke et al., 2014b; Kollers et al., 2013; Schulthess
et al., 2017). Briefly, the experimental design was an alpha design
with two replicates. The field trials were conducted in five
locations during years 2009 and 2010, giving rise to eight
location × year combinations (environments). Plot sizes ranged
from 5 to 6.75 m2. Experiment 3 comprised field evaluation at
five locations during 2016 and included 12 out of the 188 elite
lines and 61 out of the 151 PGR. Briefly, the experimental design
was an unreplicated alpha design (for details, see Boeven et al.,
2019). Plot sizes ranged from 7.56 to 12 m². Across the three
experiments, the 188 elite lines and the 151 PGR were evaluated
in up to 15 environments for grain yield and in up to 11
environments for HD, respectively.

We performed outlier tests and implemented a Bonferroni-
Holm test standardized by the re-scaled median absolute
deviation (MAD) (BH−MADR) at a significance level (P <
0.05) (Bernal-Vasquez et al., 2016). Thereafter, best linear
unbiased estimations (BLUEs) and heritability for GY and HD
were independently obtained using a two-stage approach.
TABLE 1 | Description of the environments used for evaluating grain yield and
heading date (HD).

Experiment Location Year No. of
Elite

No. of
PGR

Grain
yield

Heading
date (HD)

1 Gatersleben 2015 187 91 ×
Malchow 2015 186

(184)*
91 × ×

2 Andelu 2009 166 0 × ×
Andelu 2010 166 0 × ×
Janville 2010 166 0 × ×
Saultain 2010 166 0 × ×
Seligenstadt 2009 166 0 × ×
Seligenstadt 2010 166 0 × ×
Wohlde 2009 166 0 × ×
Wohlde 2010 166 0 × ×

3 Hohenheim 2016 12 61 × ×
Renningen 2016 12 61 × ×
Gatersleben 2016 12 61 ×
Schackstedt 2016 12 61 ×
Böhnshausen 2016 12 61 ×
Febru
ary 2020 |
 Volume 1
* The number of elite lines for Malchow (2015) are different between grain yield (186) and
HD (184).
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First, BLUEs of each genotype within each single
environment were estimated by fitting the following model:

P  =1nm+G+R+B+e (1)

in which, P contains the phenotypic values of GY or HD for
each plot, µ corresponds to the overall mean, G represents the
genotype effect, R stands for the effect of the replication, B is the
effect of incomplete blocks, and e refers to the error term of the
model. In the model, only µ and G were treated as fixed effect,
while all other components were assumed to be random effects.

Second, the BLUEs of genotypes across all environments were
estimated fitting the following model:

Y=1nm+G+E+G�E+e (2)

in which, Y contains the genotypic effects estimated within
each environment using Equation (1), µ is the fixed effect of the
overall mean, G corresponds to the fixed effects of genotypes
across environments, E stands for random environment effects,
G×E indicates the random effects of interaction between
genotype and environment, and e is a random error term.
Equations (1) and (2) were fitted using the mixed model R
package ASReml-R (Butler et al., 2009).

Model (2) was also used to estimate the variances and
heritability of each trait. During the computation for variances
and heritability, µ is taken as fixed effect, while all other
components in the model are assumed as random. Thereby, we
calculated the broad-sense heritability (H2) as:

H2=
s 2

G

s 2
G+s 2

G�E=n+s 2
e= r��nð Þ (3)

in which, s 2
G is the variance of genotypes, s 2

G�E indicates the
variance of genotype times environment interaction, s 2

e stands
for the variance of error terms, �n is the average number of
environments in which genotypes were evaluated, and r
represents the average number of replications.

Genome-Wide Prediction
A genomic best linear unbiased prediction (GBLUP) model was
implemented, with the co-variance matrix (G matrix) derived
from SNP array, GBS, or SSR marker datasets. We employed
single G matrix (single-kernel) or their combination (multi-
kernel). The GBLUP model of the multi-kernel model was:

Y=1nm+gSNP+gGBS+gSSR+e (4)

Where Y contains the BLUEs for each trait, gSNP, gGBS and gSSR
are random genetic effects derived from differentmarkers, with gSNP

∼N(0, ASNPs 2
G1
), gGBS∼N(0,AGBSs 2

G2
),  gSSR∼N(0,ASSRs 2

G3
),

and e ∼N(0,Is 2
e ), while ASNP, AGBS and ASSR are the numerator

relationship matrix calculated using SNP array, GBS, or SSRmarker
datasets, respectively, according toVanRaden (2008) ands 2

G1
tos 2

G3

are the respective genetic variances of each component of themodel.
For single-kernel models, we used the gSNP, gGBS, and gSSR
individually. The implementation of the models is described in
detail in the Supplementary Material.

We applied a random resampling method for fivefold cross
validation to investigate the prediction ability. In each cross
Frontiers in Plant Science | www.frontiersin.org 4
validation, the population was divided into a training (80%) and
a test set (20%). We used the training set to build the mixed
model function, which was then used to predict the genetic value
of the test set. The prediction ability was calculated as the
Pearson correlation between estimated genetic values and the
observed values in the test set. We performed 1,000 rounds of
cross validation and recorded the mean and SD for these 1,000
correlation coefficients. The genomic prediction model was fitted
using the “BGLR” R-package (Pérez and de los Campos, 2014).
Besides GBS data generation, all computational methods were
implemented in R environment (R 3.4.3, R Core Team, 2018).
RESULTS

Molecular Diversity Estimated From SNP
Array, GBS, and SSR Marker Data
We found for the SNP array markers ~5–6 times higher
estimates of MAF, H, PIC, and RD than for the GBS markers
considering the total population of 378 lines (Table 2;
Supplementary Figures 1 and 2). In contrast, the values of H,
PIC, and RD for the SNP array markers were only half as large as
for the SSR markers, however, MAF for SNP array markers are
roughly two times larger than for the SSR markers. Moreover, the
mean values of these indices within the sample of 190 elite lines
were generally lower compared to the population of PGR,
regardless of the marker system. This shows the large
molecular diversity of wheat accessions hosted at the genebank
of the IPK Gatersleben.

The SNP array markers followed a uniform pattern of MAF
ranging from 0 to 0.5 (Figure 1), especially for the PGR
population. In contrast, GBS markers were characterized by
very low MAF in the range between 0 and 0.05. This suggests
that GBS markers are more reliable in detecting the profile of rare
alleles compared to SNP array markers. The distribution of MAF
from SSR was derived from only 19 markers, and therefore the
index spectra were quite sparse, which has to be considered when
TABLE 2 | The mean and standard deviations (SD) of minor allele frequency
(MAF), population heterozygosity (H), polymorphism information content (PIC),
and average Rogers' distances (RD) for SNP array (SNP), genotyping-by-
sequencing (GBS), and SSR markers.

Index Marker
set

All genotypes Elite lines PGRs (plant genetic
resources)

Mean SD Mean SD Mean SD

MAF SNP 0.2438 0.0023 0.2172 0.0029 0.2480 0.0034
GBS 0.0439 0.0006 0.0382 0.0005 0.0463 0.0009
SSR 0.1382 0.0004 0.1381 0.0006 0.1385 0.0006

H SNP 0.3299 0.0027 0.2961 0.0035 0.3336 0.0038
GBS 0.0662 0.0009 0.0571 0.0008 0.0702 0.0015
SSR 0.6765 0.0059 0.6286 0.0082 0.6924 0.0081

PIC SNP 0.2418 0.0019 0.2177 0.0025 0.2443 0.0027
GBS 0.0525 0.0008 0.0448 0.0006 0.0555 0.0012
SSR 0.6449 0.0064 0.5930 0.0084 0.6655 0.0087

RD SNP 0.3312 0.0528 0.2987 0.0472 0.3368 0.0532
GBS 0.0651 0.0143 0.0561 0.0094 0.0696 0.0155
SSR 0.6880 0.1190 0.6482 0.1186 0.7045 0.1190
February 202
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interpreting the results. In this context, we observed a peak at the
MAF range between 0.05 and 0.2 for SSR markers.

The picture of the relatedness among the lines estimated on
the basis of SNP array or GBS markers was similar
(Supplementary Figure 3) and the correlation between
distance matrices was up to r = 0.83 for the PGR population
(Table 3). The correlations were significantly lower between
SSR- and SNP array-based distance matrices with maximum
Frontiers in Plant Science | www.frontiersin.org 5
r values of 0.48 and 0.52 when comparing SSR- with GBS-based
and SNP array-based distance matrices, with both maximum
values observed again in PGR.

The first, second, and third principal coordinates (PC1, PC2,
and PC3) calculated based on the SNP-array data explained
10.42%, 4.62%, and 2.95% of the molecular variation,
respectively (Figure 2, Supplementary Table 2). Elite lines and
PGR were separated with respect to PC1. The distribution along
PC2 and PC3 reflected the diversity within elite lines and PGR. A
similar pattern was observed for the principle coordinate analysis
based on the GBS data: Elite lines were separated from PGR with
respect to PC1 and diversity within subpopulations was
represented mainly by PC2 and PC3. The molecular variance
explained by PC1, PC2, and PC3 was lower for the GBS
compared to the SNP array data and amounted to 5.73%,
2.31%, and 1.74%, respectively. Similarly, the range of PC for
the GBS marker was about 1/10 times of that of the SNP array
data (Figure 2, Supplementary Table 2). For the SSR data, the
differentiation between elite lines and PGR was less pronounced.
FIGURE 1 | Distribution of minor allele frequencies (MAF) (x-axis) for single-nucleotide polymorphism (SNP) array, genotyping-by-sequencing (GBS), and SSR
markers. Results are shown for the total population (All), the elite lines (Elite), and the plant genetic resources (PGR).
TABLE 3 | Correlation between Rogers’ distance (RD) matrixes calculated using
data from SNP array (SNP), genotyping-by-sequencing (GBS), and SSR markers.

All Elite PGR

SNP—GBS 0.818 0.683 0.830
GBS—SSR 0.454 0.414 0.476
SNP—SSR 0.500 0.442 0.520
Results are shown for the total population (All), the elite lines (Elite), and the plant genetic
resources (PGR). Correlations were significantly (P < 0.001) larger than zero according to a
Mantel test.
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In this case, PC1, PC2, and PC3 accounted for 4.08%, 3.09%, and
2.99% of the molecular variation.
Comparison and Application of SNP Array,
GBS, and SSR Markers in Genome-Wide
Prediction
We estimated BLUEs of grain yield and HD for 339 of the 378
fingerprinted genotypes, including 188 Elite lines and 151 PGR.
The BLUEs approached a bell-shaped distribution for both traits
(Supplementary Figure 4). Heritability was 0.94 and 0.98 for
grain yield and HD, respectively, which illustrates the high
quality of the phenotypic data.

The phenotypic data were combined with the different
marker datasets and the prediction abilities for the
combination of the different marker kernels in the total
population of 339 lines were evaluated. We observed
comparable prediction abilities for grain yield for the GBS and
Frontiers in Plant Science | www.frontiersin.org 6
SNP array data, amounting to an average of 0.829 (Figure 3).
The same picture was observed when comparing the prediction
abilities for HD, but with a slightly lower level (0.741 and 0.710
for SNP array and GBS marker data, respectively). In contrast,
the prediction abilities of SSR markers for grain yield (0.633) and
HD (0.571) were significantly lower compared to SNP array and
GBS markers. For grain yield, the prediction ability of the two-
kernel model from the combination of SNP array and GBS
markers (S-G) was slightly higher than that of the combination
of GBS and SSR (G-S), followed by the combination of SNP array
and SSR markers (S-S) (Figure 3). The highest prediction ability
was achieved for the three-kernel model of the combination of
SNP array, GBS, and SSR markers (S-G-S) (Figure 3). All in all,
prediction abilities of the different kernel models were
comparable with the only exception being the single model
based on the G matrix derived from SSR markers. For the HD,
the trends in prediction abilities of the different models were
similar, but with lower values.
FIGURE 2 | Principal coordinate analyses using data from single-nucleotide polymorphism (SNP) array, genotyping-by-sequencing (GBS), and SSR markers. Results
are shown for the total population (All), the elite lines (Elite), and the plant genetic resources (PGR). PC1, PC2, and PC3 refer to the first, second, and third principal
coordinate, respectively. Explained proportion of molecular variation is given in brackets.
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To discard the influence of marker density, we randomly
selected 158 SNP array (S.158) or GBS markers (G.158),
calculated the G matrices, and evaluated prediction abilities of
single-kernel models applying cross validations. In general, the
prediction ability of S.158 and G.158 was up to 34.4% lower than
the total marker set (Figure 3). Interestingly, we observed lower
prediction ability with the SSR compared to the S.158 and G.158
panels with the exception of the G.158 prediction for HD. In
addition, the decrease in prediction ability was much more
pronounced for the G.158 than for the S.158, suggesting an
influence of the allele frequency distribution. We further
inspected therefore the total set of GBS markers and tested the
decrease in prediction abilities for GBS markers in dependence
with MAF. The prediction ability decreased for both traits, grain
yield and HD, with increasing thresholds of MAF (Figure 4). The
number of markers decreased mostly in the interval between
Frontiers in Plant Science | www.frontiersin.org 7
MAF 0 < 0.05. Thus, markers with very low MAF contributed
substantially to the prediction ability for both traits, suggesting
that they are actually important for genome-wide prediction.

Linkage disequilibrium (LD) between markers can impact the
prediction ability for the multi-kernel models. We calculated
therefore the LD between each pair of SNP array and GBS
markers across the 339 lines and deleted the corresponding
GBS markers if their LD was higher than r² = 0.95. After
removing 2,826 (9.5%) GBS markers, which were in tight LD,
we combined SNP array and remaining GBS markers to build a
new dataset (CGS). We then did two in-silico experiments: first,
we used the double-kernel model based on the SNP array and the
GBS data excluding the linked markers (S.G.LD); second, we
applied a single-kernel model for CGS. We observed for both
traits that the performance of these two models was very close to
that of S-G (Figure 3). Thus, the influence of linked markers was
FIGURE 3 | Bar plot of average prediction abilities derived from 1,000 cross-validations from different prediction models for (A) grain yield and (B) heading date
(HD). Single kernel models (green) were used for data from single-nucleotide polymorphism (SNP) array, genotyping-by-sequencing (GBS), and SSR markers.
Double-kernel models (light blue) were used combining SNP array and GBS markers (S-G), SNP array and SSR markers (S-S), as well as GBS and SSR markers
(G-S). The three-kernel model (dark blue) combined SNP array, GBS, and SSR markers (S-G-S). Subsets of 158 markers from SNP array markers (S.158) and GBS
markers (G.158) were used to run the single kernel models (yellow). Moreover, after ignoring the GBS markers with higher linkage equilibrium with SNP array
markers, a double-kernel model combing SNP array and remained GBS markers (S-G.LD) and a single-kernel model of the combination of SNP array and remained
GBS markers (CGS) (orange) were used. The corresponding standard deviations are illustrated as red bars.
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ignorable; however, if a huge number of markers are available,
these results also indicate that the computational load can be
decreased if linked markers are removed.
DISCUSSION

Data from GBS is typically characterized by a significant
proportion of missing values (Elshire et al., 2011). We used a
robust strategy to confront the challenges of dealing with missing
values and, in a first step, filtered reliable SNPs with less than 5%
of missing values. Then we imputed the missing values according
to the original distribution of allele frequency for the
implementation of genomic prediction. Nevertheless, it has
already been shown that increasing the marker density beyond
3,000 SNPs in wheat populations of the size used in our study
does not increase the genome-wide prediction ability nor does
affect significantly the estimates of the relatedness among
accessions (Liu et al., 2016). This is not the case for genome-
wide association mapping studies, for which imputing missing
values and increasing the marker density boosts the power of
QTL detection (e.g., He et al., 2015; Negro et al., 2019). We would
like to note that association mapping, however, was not the target
of our study.
Frontiers in Plant Science | www.frontiersin.org 8
Genotyping-By-Sequencing Enables
Unbiased Estimates of the Genetic
Diversity in Wheat Populations
Entire genebank collections have been fingerprinted using
different marker technologies (e.g., Romay et al., 2013; Wang
et al., 2018; Milner et al., 2019; Singh et al., 2019). In order to
limit the costs, the sequence variation being represented is
usually reduced. SSR markers, array-based scoring of SNPs,
and GBS differ dramatically in the way sequence variation is
reduced: GBS depends on the restriction enzymes used (Elshire
et al., 2011), while SSR markers and also SNPs from arrays are
selected using a subpopulation with limited size (Frascaroli et al.,
2013). The 90k SNP array in wheat (Wang et al., 2014), for
instance, was developed using data resulting from sequence
information of 19 bread wheat and 18 tetraploid lines, as well
as previous sequence information on 24 (M Ganal unpublished
data; for details see Wang et al., 2014), 23 (Allen et al., 2011), 28
(Cavanagh et al., 2013), and 8 (Pont et al., 2013) wheat
genotypes. The panel was selected to cover the global wheat
diversity and included several elite wheat lines. The limited
number of individuals used for SNP array discovery and the
array design can led to a distorted picture of the molecular
diversity denoted as ascertainment bias (Clark et al., 2005). Signs
of an ascertainment bias are that rare alleles are missed,
FIGURE 4 | Average prediction ability derived from 1,000 cross-validation using the single-kernel model with a kernel matrix from genotyping-by-sequencing (GBS)
markers for grain yield (GY, blue) and heading date (HD, red) for (A) decreased minor allele frequency (MAF) interval and (B) fixed MAF interval. The percentage (from
the total number) of markers within frequency intervals is indicated within brackets. In (B), bars indicate the average differences in prediction ability, and the average
prediction abilities are indicated in the legend.
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polymorphic markers have a high frequency of major alleles and
genetic diversity is underestimated in the non-ascertained
population (Clark et al., 2005). As already mentioned, H, PIC,
and RD absolute estimates were ~5–6 times higher when
computed from array-based SNPs than those obtained from
GBS data (Table 2). Nevertheless, these results must be
carefully interpreted, because this observation can be simply
caused by a scale issue. In fact, we observed 23%, 24%, and 24%
higher values based on H, PIC, and RD within the PGR
population compared to elite lines as revealed by GBS, but this
increased diversity amounted to only 13%, 12%, and 13%
according to SNP array results, respectively. Moreover, for the
SNP array data, the number of rare alleles was lower in the PGR
population compared to elite lines (Figure 1). This was not the
case for SNPs resulting from GBS data. Although it is true that
the amount of SSR markers is substantially lower when
compared to SNP array and GBS markers, which is mainly due
to the high cost per data point of SSR markers, SSR markers are
still being used by many researchers to study the genetic diversity
existent in important crop species like potato (Wang et al., 2019),
wheat (Sajjad et al, 2018), and maize (Adu et al, 2019). Moreover,
it is interesting to observe that SSR markers are much capable to
catch and portray the genetic diversity even with such a low
number (19 markers and altogether 170 alleles). Altogether, these
findings point to an underestimation of the diversity within the
population of PGR versus the set of elite lines using the 90k SNP
array, which can be explained by a large proportion of elite lines
used to design the 90k SNP array.

The principal coordinate analyses revealed a comparable
picture of the overall population structure across the three
marker technologies (Figure 2). The total population clustered
into a set of elite lines and PGRs. Similar findings have been
reported by Cavanagh et al. (2013) investigating the diversity of
2,994 accessions of hexaploid wheat including landraces and
modern cultivars and by Balfourier et al. (2019) examining the
phylogeography of 4,506 landraces and cultivars originating
from 105 different countries. Moreover, we observed that the
estimates of the RD matrices using the array-based scoring of
SNPs and GBS were similar, which is reflected by correlations for
the total population of 0.83 (Table 3). This finding is in
accordance with a previous study in wheat with U.S. elite lines
(Elbasyoni et al., 2018) but also for other crops such as maize
(e.g., Frascaroli et al., 2013) or barley genetic resources (Darrier
et al., 2019). In contrast, the moderate correlations between
distance matrices calculated based on SSR and GBS or SNP
array markers (Table 3) are most likely caused by the limited
number of SSRmarkers used in our study, which is in accordance
with previous study in wild and cultivated barley (Hübner et al.,
2012). This can be deduced from a high correlation (r = 0.85, P <
0.01) observed between kinship matrices calculated using a 90k
SNP array and 782 SSR markers for 372 elite wheat lines
observed in the study of Jiang et al. (2015). The low number of
SSR markers, however, reflects comparable cost scenarios and
shows that SSR markers are less suitable for large-scale
characterization of wheat collections.
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Use of Genome-Wide Prediction to
Provide Detailed Information for Entire
Wheat Collections
More than half a million wheat genetic resources are conserved
worldwide in genebanks (Longin and Reif, 2014). Detailed
information on their phenotypic diversity is lacking, but is
necessary to enable a targeted selection of promising accessions
for (pre-)breeding. In a proof-of-concept study in sorghum, Yu
et al. (2016) demonstrated the potential to use genome-wide
predictions to efficiently provide phenotypic information about
entire genebank collections. Our study confirmed the results in
wheat for the two important agronomic traits grain yield and HD
(Figure 3). The high prediction ability can be explained by the
large genetic variation in our study. The population we used
contained about 50% of PGRs, with grain yields ranging from
4.75 to 10.14 Mg ha−1 (Supplementary Figure 4) and a genetic
variance of 0.98 (Mg ha−1)². We observed four times higher
genetic variance compared to elite wheat lines in Europe (He
et al., 2017). Although the genetic structure of the traits
influences the prediction accuracy, it is difficult to say if this
was the main driving factor of the prediction ability in our study.
The lower predictability for HD reported in our study is
consistent with the study of Bentley et al. (2014). They used a
similar population size with 376 European elite wheat lines (from
France, Germany, and the UK) and reported the average
prediction accuracy of flowering time (0.52) to be considerably
lower than grain yield (0.68), despite the higher heritability of
flowering time compared to yield. The choice of marker systems
did not strongly influence the prediction abilities, except for the
SSR markers, which is presumably mainly due to the low number
of markers (Jiang et al., 2014). Our results are consistent with a
recent study in wheat that contrasted the potential and
limitations of array-based scoring of SNPs and GBS to perform
genome-wide prediction (Elbasyoni et al., 2018). The
combination of marker information with two- or three-kernel
models slightly improved prediction ability (Figure 3) and
represents a solid approach for populations genotyped with
different marker platforms. Interestingly, we found that very
low frequency markers contributed to the improvement of
prediction ability (Figure 4). However, such markers are
usually deleted as outliers in SNP arrays but can be reliably
captured by GBS. The potential of rare alleles to improve
prediction ability combined with the expectation that valuable
novel diversity is most likely rare (Mascher et al., 2019) suggests
that rare markers deserve careful consideration in the design of
the pre-breeding program.

CONCLUSION

We observed an ascertainment bias for wheat caused by array-based
SNP markers, which particularly impacts the estimates of the within
population diversity. This was not the casewithGBS, whichmakes it an
interesting marker system to fingerprint entire genebank collections. In
summary, our study showed the potential of genebank genomics to
unlock the genetic diversity maintained in genebanks.
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