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Intraspecific trait variation (ITV) is common feature of natural communities and has gained
increasing attention due to its significant ecological effects on community dynamics and
ecosystem functioning. However, the estimation of ITV per se has yet to receive much
attention, despite the need for accurate ITV estimation for trait-based ecological
inferences. It remains unclear if, and to what extent, current estimations of ITV are
biased. The most common method used to quantify ITV is the coefficient of variation (CV),
which is dimensionless and can therefore be compared across traits, species, and
studies. Here, we asked which CV estimator and data normalization method are
optimal for quantifying ITV, and further identified the minimum sample size required for
±5% accuracy assuming a completely random sample scheme. To these ends, we
compared the performance of four existing CV estimators, together with new simple
composite estimators, across different data normalizations, and sample sizes using both a
simulated and empirical trait datasets from local to regional scales. Our results consistently
showed that the most commonly used ITV estimator (CV1= ssample/msample), often
underestimated ITV—in some cases by nearly 50%—and that underestimation varies
largely among traits and species. The extent of this bias depends on the sample size,
skewness and kurtosis of the trait value distribution. The bias in ITV can be substantially
reduced by using log-transforming trait data and alternative CV estimators that take into
consideration the above dependencies. We find that the CV4 estimator, also known as
Bao's CV estimator, combined with log data normalization, exhibits the lowest bias and
can reach ±5% accuracy with sample sizes greater than 20 for almost all examined traits
and species. These results demonstrated that many previous ITV measurements may be
substantially underestimated and, further, that these underestimations are not equal
among species and traits even using the same sample size. These problems can be
largely solved by log-transforming trait data first and then using the Bao's CV to quantify
ITV. Together, our findings facilitate a more accurate understanding of ITV in community
structures and dynamics, and may also benefit studies in other research areas that
depend on accurate estimation of CV.
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INTRODUCTION

Intraspecific trait variation (ITV) is the overall difference in traits
values among conspecific individuals in one or more traits, such
as height, specific leaf area, and wood density (Albert et al.,
2011). Such variation widely exists in nature (Darwin, 1859;
Siefert et al., 2015) and has large ecological effects on population
dynamics (Agashe, 2009; Abbott and Stachowicz, 2016),
community assembly (Siefert and Ritchie, 2016; Griffiths et al.,
2018), and ecosystem functioning (Bukowski and Petermann,
2014; Souza et al., 2017). Because of its wide ranging ecological
consequences, the ecological effects of ITV and the extent of ITV
are increasingly attracting research attention (Des et al., 2018).

Accurate estimation of ITV is essential for fully
understanding species distributions and abundances from a
trait-based perspective because the absolute extent of ITV is
thought to be closely linked with species tolerances to the abiotic
environment and responses to neighborhood interactions (Clark,
2010). Specifically, it is hypothesized that, because species'
responses to the environment manifest through functional
traits, the higher the ITV of a species is, the more diverse
abiotic environments the species may be able to adapt to
(Umaña et al., 2015). Therefore, if we underestimate ITV,
species' distributions across heterogeneous environments might
be underestimated as well (Helsen et al., 2017). Consequently,
their resilience to current environmental fluctuation may be
underestimated and their extinction risk overestimated.
Similarly, the magnitude of ITV is thought to be linked with
niche overlap among species (Li et al., 2017). Large ITVs may
increase species niche overlap and interactions (Williams et al.,
2017) and that in turn promote or hamper species coexistence
(Hart et al., 2016). If estimated ITVs of co-occurring species were
biased, we likely largely bias the estimation of interspecific
interactions and lose accuracy in the predictions of species
abundance and coexistence status. However, compared to the
current enthusiasm surrounding the ecological effects of ITV,
little attention has been paid to the estimation of ITV itself (but
see Mitchell and Bakker, 2014). At present, it is still unclear
whether ITV estimation is unbiased and accurate enough to
facilitate reasonable ecological inferences.

Most current studies use the coefficient of variation (CV=s/m) to
quantify the absolute extent of ITV and evaluating whether ITV
varies among species or traits, and ultimately in thinking about the
response of populations or communities to environmental change
(see our literature review in Tables 1 and S1). As a single value
summary statistic, CV is less informative than other quantifications
of ITV (e.g., parametric probability distribution), but it is simple and
its definition does not require ad hoc assumptions of the underlying
probability distributions for each trait. Importantly, CV is unitless,
and thus offers a convenient way to directly compare variation (e.g.,
trait-based niche width) among species with different abundances
under various environments (Helsen et al., 2017). For example,
comparative studies have shown a positive relationship between
species ITV and niche breadth (Clark, 2010): species with larger ITV
tend to have larger geographical ranges than species with smaller
ITV (Brown, 1984).
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Despite the widely appreciated merits of CV and the
importance of accurate ITV estimation, it is less well-known
that the most commonly used CV estimator (CV1= ssample/
msample) is biased (Sokal and Rohlf, 1995), which means that
the real ITV of an entire population of a species cannot be
accurately estimated from trait samples when the sample size is
small (e.g., 10). Other CV estimators do exist (e.g., Bao, 2009)
and may perform better than CV1, but no studies, to our
knowledge, have compared the performance of these CV
estimators using large empirical trait datasets, which may be
considerably different from commonly used simulated data. For
example, large trait datasets often contain few extreme values,
and it is not clear if these values bias the ITV estimations and
whether there are data normalization methods could reduce
these biases.

In addition to choosing a suitable CV estimator and data
normalization method, few studies quantify the minimum
sample size needed for accurate estimation of ITV. As
reviewed by Bastias et al. (2017), and here (Table 1), fewer
than 50 individuals were sampled per species in more than 77.7%
of reviewed studies. Although measuring traits on a very large
number of individuals per species is not always feasible, such a
small sample size may introduce large bias into the estimation of
ITV and subsequent ecological inferences. For arbitrary trait
distributions, the bias of CV1 has an approximate and negative
reciprocal relationship with sample size (Bao, 2009). This reveals
the possibility that the true ITV in many contemporary studies is
likely underestimated by CV1, and this underestimation may be
more serious when the sample size is small (<10). Despite the
potential importance of ITV in many ecological disciplines, no
study has yet examined the effect of sample size. Moreover,
because traits have various distributions and often take extreme
values, whether there exist bounds for the minimum sample size
of ITV estimation remains largely unknown.
TABLE 1 | A summary of CV estimation methods, data normalizations and the
minimum number of samples for each species used in conventional studies.

Groups Category No. of papers Percentage
(%)

ITV Estimation method CV1 51 94.4
SD 4 7.4
Range 1 1.9
Min, Max 1 1.9

Data normalization No
normalization

49 90.7

Log-
transformation

3 5.6

Cube-root
transformation

1 1.9

Min-max
transformation

1 1.9

Minimum No. of trait
samples

≤20 28 51.9
[21, 50] 14 25.9
[51, 100] 10 18.5
>100 2 3.7
Februar
y 2020 | Volume 1
CV, SD, Range, Max, and Min represent the coefficient of variation, standard deviation,
range, maximum, and minimum of sampled trait values, respectively. Detailed results of
our literature survey about ITV estimation was given in Table S1.
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Here, we attempt to address the above knowledge gaps and
improve the estimation of ITV by answering the following three
questions: (i) To what extent the current estimations of ITV are
biased? (ii) Are there more accurate estimators and data
transformations for estimating ITV? (iii) Are there prescriptive
rules for identifying the minimum sample size needed for a given
level of accuracy (here ±5%)? To answer these questions, we
reviewed the previous literature and evaluated the performance
of CV estimators using simulated and empirical trait datasets.
Finally, we evaluated the accuracy of the best performing ITV
estimator across various sample sizes.
MATERIALS AND METHODS

Surveying Methods Commonly Used to
Estimate ITV
To find the most commonly used methods for the quantification
of ITV in recent literature, we searched the Web of Knowledge
(http://thomsonreuters.com/web-of-knowledge/) in Sep. of 2019
for research articles containing the topic “intraspecific variation”,
or “intraspecific variability”, or “individual variation” (including
wildcard terms such as vari*, var*, and intra*) in the past 19
years, from 2000 to 2019. Studies that only used quantitative
statistical tests such as ANOVA, Levene's test, and linear mixed-
effects models to analyze or account for ITV were omitted,
because comparing ITV among populations, species, studies,
and regions requires knowledge about the absolute extent of ITV.
We downloaded the full text of each remaining article and
checked if and how ITV was calculated. Specifically, we
summarized the absolute and relative number of studies that
used each ITV estimation method, data normalization scheme,
and the minimum sample sizes for each species in our literature
survey (Tables 1 and S1). These data revealed that a great
majority (94%) of researchers used CV1 (see below) as their
estimator of ITV.

Existing CV Estimators
There are four CV estimators (regression estimators of the CV
such as described by Archana and Rao (2011) were ignored
here). The first estimator, CV1, is

CV1 =
ssample

msampe
,

where ssample and msample are the standard deviation and mean of
a given sample, respectively. This is the most commonly used
estimator of CV despite its bias (Sokal and Rohlf, 1995). If the
value of a trait follows the normal distribution, the bias of CV1 is
-CV1/(4N) (Sokal and Rohlf, 1995), where N is the sample size.
Thus, the second estimator, CV2, is formulated by subtracting
CV1 with the bias term:

CV2 = CV1 +
CV1

4N
:

Because CV2 is derived under the assumption of a normal
distribution, it may underperform when trait values are not
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normally distributed. Breunig (2001) proved mathematically that
the bias of CV1 also depends on the skewness and kurtosis of the
distribution of trait values. Therefore, Breunig (2001) and Bao
(2009) proposed two approximate estimators, CV3 and CV4 (also
called Bao's CV estimator), respectively, which do not assume
any specific trait distribution:

CV3 ≈ CV1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

CV1

N
(3CV1 − 2g1)

r
,

CV4 ≈ CV1 −
CV3

1

N
+
CV1

4N
+
CV2

1 g1
2N

+
CV1g2
8N

,

where N is the sample size, and g1 and g2 are the Pearson's
measures of skewness and kurtosis of the trait sample
distribution, respectively.

New Composite CV Estimators
In our performance evaluation of CV estimators (below), we
found that CV3 and CV4—which are only approximate
estimators of CV—often underestimate or overestimate the
population CV in our simulation and empirical data (see
Figures 1A, S1A, S1E, S2I, S4A, and S4E). Therefore, we
propose four simple composite estimators, CV5, CV6, CV7, and
CV8. CV5 and CV7 are defined as the arithmetic and geometric
means of CV2 and CV3, respectively, and CV6 and CV8 are
defined as the arithmetic and geometric means of CV2 and CV4,
respectively.

CV5 =
CV3+CV4

2 , CV6 =
CV2+CV4

2 ,

CV7 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CV3CV4

p
, CV8 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CV2CV4

p
:

We found CV7 and CV8 have almost identical performance
compared to CV5 and CV6, respectively, so we will only present
the results of CV5 and CV6 in the remainder of the text. Note that
CV3 and CV4 were derived without any assumption of trait value
distribution, thereby their composite estimators, CV5 and CV7,
also make no assumptions of the true trait value distribution.

Identifying the Minimum Sample Size
Accurate estimation of ITV not only depends on the choice CV
estimator and data transformation, but also on sample size.
Generally, the accuracy of any estimator increases with the
sample size. Therefore, it is crucial to know how many samples
are sufficient to reach a specific accuracy requirement in the
estimation of ITV. Here, we defined the minimum sample size
ki,min for estimator i as the minimum integer k that reaches ±5%
accuracy of the ITV estimation. Because different traits of species
may have different distributions, we calculated ki,min for each trait
of each selected species separately.

Performance Evaluation With Simulated
Trait Data
To find the optimal CV estimator and data transformation, we
evaluated the performance of the above estimators using
simulated trait data. First, 200 trait pools were generated by
simulation. Specifically, for each trait pool, 9,520 trait values were
February 2020 | Volume 11 | Article 53
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drawn from a gamma distribution with a shape parameter b1 and a
scale parameter b2, which were two independent random variables
following a uniform distribution from 1 to 10 and from 5 to 30,
respectively. The ranges of b1 and b2 were determined by fitting
empirical trait value distributions using a gamma distribution for
each trait of each species with abundance ≥100 in our trait plot (see
details of the trait plot below). We chose the gamma distribution
here because its domain, like empirical functional trait value, is
always positive and its shape is flexible enough to model various
distributions of traits. Additionally, empirical trait data often have a
few (4.8% on average) extreme large values, which are defined here
as trait values greater than three standarddeviations fromthemean.
These extremevaluesmayhave large impacts on the accuracy ofCV
estimators. Therefore, we added 480 extreme large values to each
simulated trait pool. The extent of the extreme value follows a
truncated exponential distribution from mean+3*standard
deviation of the trait pool to infinity and parameter l equals 1.
Note that we recognize that we cannot simulate all possible trait
distributionsobserved innatural communities; here,we tried as best
as possible to cover a large portion of the ranges of empirical
trait distributions.

For each sample size k(k∈N and {N: 10, 15, 20, … 400}), k
trait values were sampled from each simulated trait pool and
CVi,k was calculated for each CV estimator i(i∈{1,2,3,4,5,6}).
The mean CV, CVi,k, and its standard error were calculated
from 9,999 replicates of sample size k. Then the bias of the ith

estimator under sample size k was defined as B(i, k) = CVi,k −
CVtrue, where CVtrue is the population CV that is known in our
simulated data. Note that CVtrue is only required in our
performance evaluation, and is not demanded in the
estimation of ITV. The sign of B(i,k) indicates whether CVi,k

under- or overestimates ITV. To facilitate estimator
comparison, we calculated the proportion of bias (PB
(i, k) = B (i, k)/CVtrue) for each sample size and estimator

combination, and total absolute bias (TPB(i) = okjB(i, k)j) for
each estimator.

Our literature review further found that three types of data
normalization methods are used in the estimation of ITV in
conventional studies (Table 1). The first is min-max
transformation defined as (x-xmin)/xmax, where x is the raw
trait value and xmin and xmax are the minimum and maximum
values of all sampled trait values, respectively. The second
method is log-transformation with the natural logarithm base.
For trait with values smaller than 1, 1 was added to all values of
that trait before log-transformation. The last is cube-root
transformation. To compare the effect of data normalizations
on ITV estimation, PB(i,k) and TPB(i) were calculated for the
raw trait data and three types of data normalizations for each
CV estimator.

Performance Evaluation With Empirical
Trait Data
The performance of all the above estimators and data
normalizations were also evaluated using three individual-
based trait datasets, each representing a different geographic
scale. For each dataset, we used the same sampling scheme as in
Frontiers in Plant Science | www.frontiersin.org 4
the simulated data: 9,999 replicates were drawn with replacement
for each sample size k from the observed trait values for each trait
of each species, then PB(i, k) and TPB(i) were calculated for all
CVi,k. Here, CVtrue was estimated by the value of CV1 based on all
individuals for each trait and each selected species.

The first dataset contained four traits: mean leaf area (MLA),
specific leaf area (SLA), leaf dry mass content (LDMC) and
individual height (Height). The dataset included 20,248
individuals (DBH≥1 cm or Height >1.3 m) belonging to 108
tree species in a 5ha subtropical forest plot, Tiantong (hereafter
called Tiantong tree data), Zhejiang Province, China (Yan et al.,
2018). This dataset represents ITV measurements at a local scale.
Of the 108 species, we calculated ITV for seven species which had
more than 400 individuals. We selected this abundance threshold
because our performance criteria PB(i, k) and TPB(i, k), which
depend on the CVtrue, can be estimated within ±0.55% accuracy
by any of the above estimators when the sample size is larger
than 400. The second trait dataset contained two traits (SLA and
LDMC) from four tree species from 72 small (20 m × 20 m) plots
in the whole Ningbo region (hereafter called Ningbo tree data),
Zhejiang Province, China. It distributed along a 30 km gradient
from seaside to inland—and is thus representative of regional
scale data. The number of trait measurements for each trait in the
Ningbo tree dataset was larger than 170. The third trait dataset
contained five traits, head length (HL), interorbital distance
(IOD), tympanum diameter (TYD), outer metacarpal tubercle
width (OPTW), and tibia width (TW), of a mountain frog species
(Feirana quadrana) from the mountain region covering
Longmen-Qinling-Daba Mountains (hereafter called Mountain
frog data), Central China. A total of 545 individuals were
measured for each trait.

We implemented all of the above CV estimators in R
functions, and made them available as an R package called
“CV” (https://www.github.com/guochunshen/CV). All other
performance tests and sample size analyses were performed in
R environment (version 3.5.0, R Core Team, 2018).
RESULTS

Analyses of both simulated and empirical trait data showed that
CV1, the most commonly used estimator of ITV, consistently
underestimated ITV, particularly at small sample sizes (Figures 1
and 2 and S1–S4). Furthermore, among all examined estimators,
CV1had the largest proportional bias at each sample size (left panels
inFigures 1 and 2) and total absolute bias across sample sizes (right
panels in Figures 1 and 2). The averaged proportional bias of CV1

increased with the extent of extreme values (Figure S5) and
exceeded -23% of the true ITV at the sample size of 10 based on
Ningbo tree data (black dotted lines in Figure 2C). For particular
pairs of species and traits, the underestimations varied largely
(Figures S1–S4)—reaching a maximum underestimation of ITV
of 48.9% inLDMCof Schima superba in theNingbo tree data (black
dotted lines in Figure S3K).

This underestimation was substantially reduced by substituting
CV1 for other estimators andby log-transforming trait data.Among
the examined estimators, CV4 had the lowest bias using raw
February 2020 | Volume 11 | Article 53
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simulated and empirical trait datasets (bluish green dotted line and
bar inFigures 1 and2). The log-transformation further reduced the
proportional bias of ITV for all estimators (solid lines inFigures 1–
3 andS1–S4), particularly at small sample sizes (<20), and especially
for some species-traitpairs (e.g., SLAofCamellia fraternal inFigure
3). Pairwise Wilcoxon tests showed log-transformation
significantly reduced mean proportional bias of CV4 in Tiantong
tree data (V = 506, P < 0.001), Ningbo tree data (V = 87, P < 0.005),
andMountain frog data (V = 529, P < 0.001). CV4was again found
to be the most accurate estimator with log-transformed data, with
one exception: CV6 was the most accurate in the Mountain frog
data. The cube-root transformation produced a similar, but
relatively weaker reduction of ITV bias, and min-max
normalization had no significant effects (right panels in Figures 1
and 2). Overall, CV4 combined with log-transformed trait data was
the most robust combination for accurate ITV estimation.

The CV1 and CV4 estimators allowed for the smallest
minimum sample sizes to achieve a given level of accuracy
(Table 2 and S2). For the CV1 estimator, the minimum sample
size varied largely, ranged from 10 to 295, depending on the
extent of the max extreme values for each trait (Figure S6). The
CV4 estimator could largely reduce the minimum sample sizes
required for the same accuracy, but some species-trait pairs (e.g.,
C. fraternal-MLA) still required more than 100 samples. Finally,
combined use of CV4 with log-transformed trait data reduced the
minimum sample size need to reach ±5% accuracy to just 20
samples for almost all examined traits and species.
DISCUSSION

By applying performance tests to both simulated and empirical
data, we provided the first evidence that ITV quantified by CV1 is
Frontiers in Plant Science | www.frontiersin.org 5
often biased under sample sizes that are commonly applied (e.g.,
<50). When the sample size is around 10, the underestimation of
ITV can exceed 48.9%. This pervasive underestimation of ITV by
CV1 has largely been ignored in previous studies and has therefore
potentially misled subsequent ecological inferences when
comparing ITVs among species. The bias of CV1 was different
among traits and species and these differences cannot be completely
removed by using the same sample sizes, because the source of bias
in CV1 includes the skewness and kurtosis of the underlying trait
distributions (Breunig, 2001), which generally differ among species
and traits (Figures S7–S9). For example, using CV1 and a sample
size of 20, Eurya loquaiana appears to have significantly smaller
ITV than Symplocos setchuensis; however, using the full empirical
data yields exactly the opposite finding (Figure S10A). In this case,
after log-transformation, both CV1 and CV4 correctly estimate the
relativelymagnitudes of ITVof the two species andCV4 is very close
to the true ITV (Figure S10B). Future studies of ITV based on CV
should be aware of and address these biases. Below, we propose a
few strategies to reduce bias based on our comparisons of
estimators, data transformations, and samples sizes.

One easily adoptable solution to underestimation is to use a
less biased and more robust CV estimator. Our results show that
simply replacing the commonly used CV1 for CV4 substantially
improved the accuracy of ITV estimation—sometimes by more
than 58% (e.g., the average of height ITV of all species in
Tiantong tree data). The higher accuracy of CV4 results from
its consideration the skewness and kurtosis of the trait
distributions. However, CV4 may overestimate ITV when the
distribution of raw or log-transformed trait data is close to the
normal distribution. CV4 is an approximate form of CV, and
therefore can only be truly unbiased when the underlying trait
distribution is known exactly. Like CV1, CV2 is derived under the
assumption that trait values follow a normal distribution, which
FIGURE 1 | (A) Proportional bias on sample size k(k∈{10,20,30,…1,000}) based on raw (dotted line) and log-transform (solid line) simulated trait values and (B) sum
of absolute proportional bias across all sample size for the ith(i∈{1,2,3,4,5,6})CV estimator based on raw, log-transform, min-max transform and Cube-root transform
simulated trait values. Gray area is the region in which the absolute mean proportion of bias is less than 0.05.
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https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Yang et al. Accurately Estimate ITV
has no skewness and kurtosis. The contrasting behaviors of CV4

and CV2 allowed us to construct a simple composite estimator
CV6, which was more accurate when the distribution of trait
values is close to the normal distribution (Figure S11). In
general, we suggest two alternative ITV estimators that apply
in different contexts: CV4 will be the least biased when trait data
is non-normal—which we believe to be more common—
otherwise, CV6 is the best ITV estimator.
Frontiers in Plant Science | www.frontiersin.org 6
In additional to CV estimator selection, we recommend log-
transforming raw trait data before using any ITV estimator. This
normalization method can substantially improve the accuracy of
ITV estimation because the raw trait data often have multiple
extreme values that ITV estimators are very sensitive to. The log-
transformation places less weight on these extreme large values,
which results in a more robust estimation of ITV than the raw trait
data.However, therewere a fewscenarioswhere log-transformation
FIGURE 2 | Mean proportion of bias (left panels) on sample size from 10 to 400 for all traits and species based on observed raw (dotted lines) and log-transform
(solid lines) trait values and sum of absolute mean proportion of bias across all sample size (right panels) for the ith(i∈{ 1,2,3,4,5,6, }) CV estimator based on observed
raw, log-transform, min-max transform, and cube-root transform trait values in three individual-based trait datasets. Gray area is the region in which the absolute
mean proportion of bias is less than 0.05.
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slightly increased the bias of ITV estimation (e.g., Figures S1C
and S3) and additional caution is required when comparing ITVs
among species based on log-transformed data. While log-
transforming data can help reduce the skewness of data, it is more
suited for comparisonof ITVon the same log scale. If one feelsmore
comfortable to quantify ITV at the scale of trait measurement or
want to compare ITVswith conventional studies basedon rawdata,
log-transformation, or any other data normalization, is not
recommended. Instead, researchers should focus their efforts on
increasing sample size (e.g., >140) to achieve comparable accuracy.
In these cases, ITV can be variously biased, which makings
comparisons of ITV challenging.

Next, although labor-intensive, increasing sample size will
increase the accuracy of ITV estimation. If CV1 is used, the
minimum sample size needed to accurately estimate ITV is often
larger than 50; although few conventional studies approach this
number. Furthermore,minimumsample sizes requiredbyCV1vary
greatly amongtraits andspecies.These largedifferences likely reflect
variation in traits’ distributions and extreme values, which is
common in empirical data (Albert et al., 2010b). We showed that
the minimum sample size of CV1 depends on the extent of the
extreme values, which suggests that the more extreme values
present, the more samples may be required for the accurate
estimation of ITV (Figure S6). The variation in the minimum
sample size of CV1 posits a unique practical challenge to determine
the exactminimum sample size for a particular trait of a species. No
‘magic’minimum sample size will work for all traits from different
species. Fortunately, using CV4 and log-transformation
simultaneously can reduce sample sizes to about 20 while
achieving ±5% accuracy in almost all examined combinations of
species and traits. This minimum sample size can be more easily
satisfied in the field of functional ecology.
FIGURE 3 | Mean proportion of bias of the CV1 and the best estimator CV4 on sample size k(k∈{10,15,20,…400}) for specific leaf area of each species (colored line)
with abundance ≥ 400 based on the raw (dotted line) and log-transform (solid line) trait values in Tiantong tree data. Gray area is the region in which the absolute
mean proportion of bias is less than 0.05.
TABLE 2 | Minimum sample sizes of the most commonly used CV estimator
CV1 and our best-performed estimator CV4 to reach ±5% accuracy for each trait
(SLA, specific leaf area; MLA, mean leaf area; LDMC, leaf dry mass content,
Height, individual height) of each species with abundance ≥400 based on the raw
and log-transformed Tiantong tree data.

Species Trait Raw data Log-transformed data

ITV1 ITV4 ITV1 ITV4

Eurya loquaian SLA 65 30 25 10
MLA 70 30 15 10
LDMC 40 20 40 20
Height 15 10 10 10

Litsea elongata SLA 60 25 35 15
MLA 20 10 10 10
LDMC 35 15 40 20
Height 25 15 10 10

Camellia fraterna SLA 150 70 50 20
MLA 295 140 25 10
LDMC 35 15 40 15
Height 15 10 10 10

Distylium myricoides SLA 90 40 20 10
MLA 45 20 10 10
LDMC 40 20 45 20
Height 10 10 10 10

Neolitsea aurata SLA 85 45 20 10
MLA 35 15 10 10
LDMC 25 10 40 15
Height 25 15 10 10

Adinandra millettii SLA 95 45 25 10
MLA 55 25 10 10
LDMC 30 15 30 10
Height 20 10 10 10

Simplices anomala SLA 100 50 40 20
MLA 25 10 15 10
LDMC 20 10 45 20
Height 55 25 10 10
February 2020 | Volume 11 | Article 53

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Yang et al. Accurately Estimate ITV
Besides the above mentioned suggestions, there are other
ways to improve the estimation of ITV. A smart sampling design
other than the complete random sampling used in this study
might be helpful. For example, the random sampling scheme
may not be effective enough if a large amount of ITV is caused by
heterogeneous abiotic environments and the individuals are not
proportionally distributed among environmental types. In this
situation, a sampling scheme that proportionally covers all types
of environments may provide a more efficient representation of
the true trait value distribution in the entire population and
consequently may improve the accuracy and efficiency ITV
estimation (e.g., Albert et al., 2010a; Baraloto et al., 2010 and
van de Pol, 2012 but see Burton et al., 2017). Detailed exploration
of these different sampling schemes is beyond the scope of this
study but worth attention in future studies. Finally, there are
other types of methods besides CV (e.g., mixed effect models)
that could be used to quantify the relative extent of ITV. For
example, if one's aim is to understand the consequences of ITV
for community dynamics, directly modeling the trait’s
distribution be more fruitful than simply expressing ITV with
a single CV value. Detailed comparisons among these methods
can be found in Mitchell and Bakker (2014).

In summary, we evaluated the bias in the estimation of ITV
using the coefficient of variation with both simulated and
empirical trait data. Our results clearly showed that the
commonly used estimator CV1 often underestimates ITV, and
thus results of ITV studies based on CV1 and small sample sizes
should be interpreted with caution. The CV4, or Bao’s CV
estimator, combined with log-transformed trait data can
largely reduce this bias across many sample sizes, species, and
traits. This combination can provide a more accurate tool for
comparing trait variability within and among species and studies,
facilitating a more robust inferences of the population dynamics
(Abbott and Stachowicz, 2016), community assembly (Dibble
and Rudolf, 2016; Mitchell et al., 2016) and ecosystem
functioning (Barabás and D'Andrea, 2016), as well as facilitate
an understanding of global climate change (Moran et al., 2016).
More generally, the application of our results may also help
reduce bias in any study that uses CV to estimate scientific
phenomena, in other fields outside ecology.
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