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FACT is a heterodimeric histone chaperone consisting of the SSRP1 and SPT16 proteins
and is conserved among eukaryotes. It interacts with the histones H2A-H2B and H3-H4
as well as with DNA. Based on in vitro and in vivo studies mainly in yeast and mammalian
cells, FACT can mediate nucleosome disassembly and reassembly and thus facilitates in
the chromatin context DNA-dependent processes including transcription, replication and
repair. In plants, primarily the role of FACT related to RNA polymerase II transcription has
been examined. FACT was found to associate with elongating Arabidopsis RNA
polymerase II (RNAPII) as part of the transcript elongation complex and it was identified
as repressor of aberrant intragenic transcriptional initiation. Arabidopsismutants depleted
in FACT subunits exhibit various defects in vegetative and reproductive development.
Strikingly, FACT modulates important developmental transitions by promoting expression
of key repressors of these processes. Thus, FACT facilitates expression of DOG1 and FLC
adjusting the switch from seed dormancy to germination and from vegetative to
reproductive development, respectively. In the central cell of the female gametophyte,
FACT can facilitate DNA demethylation especially within heterochromatin, and thereby
contributes to gene imprinting during Arabidopsis reproduction. This review discusses
results particularly from the plant perspective about the contribution of FACT to processes
that involve reorganisation of nucleosomes with a main focus on RNAPII transcription and
its implications for diverse areas of plant biology.

Keywords: SSRP1, Pob3, SPT16, histone chaperone, Arabidopsis, chromatin
CHAPERONING HISTONES

In eukaryotes, the nuclear DNA is packaged into nucleosomes, which represent the basic repeat unit
of chromatin. The nucleosome contains 147 bp of DNA wrapped around an octamer composed of
two copies each of the four core histones H2A, H2B, H3, and H4. Adjacent nucleosomes are
connected by linker DNA of variable length (10–80 bp depending on cell type and species) that
typically associates with linker histones such as H1 (McGhee and Felsenfeld, 1980; Luger and
Richmond, 1998; Kornberg and Lorch, 1999). The general stability of nucleosome particles imposes
major obstacles to transcription and other DNA-dependent processes (Li et al., 2007). Therefore,
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Grasser Plant FACT
different mechanisms have evolved that facilitate chromatin
transcription by destabilising/disassembly of nucleomes
(Henikoff, 2008; Zhou et al., 2019). In the regulation of
nucleosome dynamics, in addition to other factors so-called
histone chaperones are critically involved. Histone chaperones
are a heterogeneous class of proteins that functionally interact
with core histones to assemble/disassemble nucleosome particles
without consuming energy in form of ATP and they are not
necessarily part of the final product (De Koning et al., 2007).
There are various types of histone chaperones that contribute to
different chromatin-related processes including transcription,
replication, and DNA repair (Das et al., 2010; Avvakumov
et al., 2011; Gurard-Levin et al., 2014; Hammond et al., 2017).
Often histone chaperones are classified as either H2A-H2B or
H3-H4 chaperones, reflecting their preferential interaction with
different core histones. Some histone chaperones even display
selectivity towards specific H3 or H2A isoforms such as
replicative or replacement variants (De Koning et al., 2007;
Hammond et al., 2017). Beyond that histone chaperones have
been functionally linked with the occurrence of certain post-
translational modifications of core histones and thus with the
establishment, maintenance and propagation of specific
chromatin states (Avvakumov et al., 2011).

Due to the extensive evolutionary conservation of the
structure of the nucleosome particle, many of the histone
chaperones that have been studied in detail in yeast and
metazoa also occur in plants. Thus, a variety of H2A-H2B and
H3-H4 chaperones have been identified throughout the plant
kingdom (Tripathi et al., 2015; Zhou et al., 2015; Kumar and
Vasudevan, 2020). By modulating local chromatin structure
histone chaperones were found to contribute to the regulation
of plant growth and development (Ramirez-Parra and Gutierrez,
2007; Otero et al., 2014; Takatsuka and Umeda, 2015; Zhou et al.,
2015). Moreover, tuning of chromatin states by histone
chaperones to mediate altered gene expression programs can
assist plants to cope more efficiently with environmental stress
conditions (Zhu et al., 2013; Liu et al., 2015; Probst and
Mittelsten Scheid, 2015).

In this article, the current knowledge about the histone
chaperone FACT will be summarised, particularly its role in
Arabidopsis, as most studies in plants were performed using this
model. At first, though the discovery of FACT and its mode of
action in yeast and metazoa is introduced.
DISCOVERY OF FACT AND ITS
MOLECULAR ROLE IN CHROMATIN
TRANSACTIONS

Originally, FACT (FAcilitates Chromatin Transcription) was
identified in yeast and mammalian cells (Brewster et al., 1998;
Orphanides et al., 1998; Orphanides et al., 1999; Wittmeyer et al.,
1999). Its name originates from the finding that FACT promoted in
vitro transcription from reconstituted chromatin templates by
destabilising nucleosomes, facilitating RNA polymerase II passage
during elongation (Orphanides et al., 1998; Orphanides et al., 1999;
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Belotserkovskaya et al., 2003). Over the years it became clear that
besides chromatin transcription, FACT is also involved in other
chromatin-dependent processes such as replication, recombination,
and repair (Belotserkovskaya et al., 2004; Singer and Johnston, 2004;
Winkler and Luger, 2011; Formosa, 2012; Gurova et al., 2018), and
hence, the established name may well stand more broadly for
facilitates chromatin transactions. FACT is a heterodimer
consisting of the SSRP1 (Structure-Specific Recognition Protein 1;
termed Pob3 in yeast) and SPT16 (SuPpressor of Ty 16). The main
feature of FACT is its ability to disassemble and reassemble
nucleosomes, and thus its involvement in overcoming and
maintaining the nucleosomal barrier to DNA-dependent processes
occurring in the chromatin context. Accordingly, FACT can interact
with various nucleosomal targets including H2A-H2B dimers, H3-
H4 tetramers and DNA (Jamai et al., 2009; Winkler et al., 2011;
Hondele et al., 2013; Kemble et al., 2015). The nature of FACT-
histone interactions has been further elucidated in a recent cryo-EM
study of human FACT in complex with partially assembled sub-
nucleosomes (Liu et al., 2020). This work illustrates that structure of
FACT resembles a unicycle, consisting of a saddle and fork that is
engaged in extensive interactions of SSRP1 and SPT16 with
nucleosomal DNA and all histones. Competition between FACT
and DNA for histone binding seems to be critical for reversible
nucleosome reorganisation and uncoiling of the nucleosomal DNA
from the histone core that generally leads to increased DNA
accessibility (Xin et al., 2009; Hondele et al., 2013; Kemble et al.,
2015; Tsunaka et al., 2016; Valieva et al., 2016; Wang et al., 2018).
Following transient nucleosome destabilisation, for instance, during
passage of transcribing RNA polymerase II, FACT promotes
nucleosome reassembly that is important to maintain proper
chromatin signature and to prevent aberrant transcriptional
initiation from cryptic promoters (Kaplan et al., 2003; Mason and
Struhl, 2003; Cheung et al., 2008; Jamai et al., 2009; Wang et al.,
2018). Further intriguing molecular and structural details of
numerous studies on yeast and metazoan FACT are summarised
in various excellent review articles (Belotserkovskaya et al., 2004;
Winkler and Luger, 2011; Formosa, 2012; Gurova et al., 2018).
BASIC FACTS ABOUT PLANT FACT

The FACT heterodimer consisting of SSRP1 (71.6 kDa) and
SPT16 (120.6 kDa) was demonstrated by reciprocal
coimmunoprecipitation from Arabidopsis cells (Duroux et al.,
2004). SPT16 comprises an N-terminal domain, a dimerisation
domain, a middle domain, and an acidic C-terminal domain
(Figure 1), and the overall domain organisation of plant SPT16
closely resembles the counterparts of other eukaryotes
(Supplementary Figure S1). SSRP1 contains an N-terminal
domain that mediates dimerisation with SPT16, a middle
domain, an acidic domain, and a C-terminal HMG-box
domain (Figure 1). Metazoan SSRP1 differs from the plant
orthologues by a more pronounced C-terminal extension,
while the fungal orthologues lack the HMG-box domain
(Supplementary Figure S2) that in yeast is provided by
separate small HMGB-box proteins termed Nhp6a/b (Formosa,
2012; Gurova et al., 2018). Proteins closely related to Arabidopsis
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SSRP1 and SPT16 are encoded by monocot and dicot plants, as
well as by Selaginella and Physcomitrella (Figure 2).

Since SSRP1 contains an HMG-box domain that typically
mediates DNA-interactions (Antosch et al., 2012; Malarkey and
Churchill, 2012), the DNA-binding properties of maize SSRP1
were examined. These experiments revealed that SSRP1 does not
interact with DNA sequence-specifically, but according to a
binding-site selection assay, it binds preferentially to sequences
containing deformable dinucleotide steps (Röttgers et al., 2000).
In line with this finding, mediated by its HMG-box domain
SSRP1 can bend linear DNA and bind selectively to certain DNA
structures (Röttgers et al., 2000; Pfab et al., 2018b). Furthermore,
SSRP1 is phosphorylated by protein kinase CK2 and
phosphorylation of two residues C-terminal of the HMG-box
domain modulates the structure-specific interaction with DNA
(Krohn et al., 2003). The HMG-box domain of SSRP1 is not only
important for DNA-binding, but contributes also to nucleosome
interactions (Lichota and Grasser, 2001; Pfab et al., 2018b). In
view of the relevance of the HMG-box domain for in vitro DNA/
nucleosome interactions, it was surprising that based on
fluorescence recovery after photobleaching experiments intact
SSRP1 and SSRP1 lacking its HMG-box domain (termed
SSRP1ΔHMG) displayed the same mobility within nuclei of
Arabidopsis cells. Beyond that, expression of SSRP1ΔHMG was
almost as efficient as that of intact SSRP1 in supporting normal
growth and development of the otherwise nonviable ssrp1-1
mutant (Pfab et al., 2018b). This suggested that the HMG-box
domain, which is conserved among SSRP1 proteins of plants and
Frontiers in Plant Science | www.frontiersin.org 3
metazoa, is not critical in Arabidopsis under standard growth
conditions. Possibly, FACT containing SSRP1ΔHMG (or intact
SSRP1) functionally interacts with small abundant HMGB
proteins similar to the mechanism reported for yeast FACT.
Yeast Pob3 lacks the C-terminal HMG-box domain (thus
structurally resembling Arabidopsis SSRP1ΔHMG; cf.
Figure 1) and the HMG-box function is provided by small
Nhp6a/b HMG-box proteins (Brewster et al., 2001; Formosa
et al., 2001). However, fusing a C-terminal HMG-box domain to
Pob3 is insufficient for full, Nhp6-independent activity. Both
yeast FACT containing the Pob3-HMG fusion and human FACT
were dependent on the presence of Nhp6 for efficient
nucleosome reorganisation (McCullough et al., 2018).
Collectively, these findings suggest that SSRP1-SPT16 of
plants/metazoa may need assistance of small HMGB proteins
in a way analogous to the cooperation of Pob3/SPT16 with Nhp6
in yeast. However, this issue requires further investigations.

Both SSRP1 and SPT16 are nuclear proteins and are
ubiquitously expressed in all/most Arabidopsis tissues, but
expression is not detectable in certain terminally differentiated
cells such as mature trichoblasts or cells of the root cap (Duroux
et al., 2004; Ikeda et al., 2011; Pfab et al., 2018a). Consistent with
the enrichment of SSRP1 in the highly micrococcal nuclease-
sensitive fraction of chromatin (Lichota and Grasser, 2001), both
SSRP1 and SPT16 are detected by indirect immunofluorescence
microscopy in the euchromatin of interphase nuclei, but not in
heterochromatic chromocenters (Duroux et al., 2004). Using
chromatin immunoprecipitation SSRP1-SPT16 was detected
FIGURE 1 | Schematic representation of the FAcilitates Chromatin Transcription (FACT) subunits SPT16 and SSRP1. While the overall structure of SPT16 is
essentially conserved throughout eukaryotes, there are differences in the C-terminal region of SSRP1 (Pob3 in fungi). SPT16 consists of N-terminal domain (NT),
dimerisation domain (D), middle domain (M), and acidic C-terminal domain (AC), while SSRP1/Pob3 proteins of different eukaryotes are composed of N-terminal
domain (that is required for heterodimerisation (NT/D) with SPT16, indicated by an arrow), middle domain (M), acidic region (AC), and HMG-box domain (HMG),
which in case of yeast Pob3 is provided by the separate protein(s) Nhp6a/b. Plant SSRP1 contains a nuclear localisation signal (NLS, indicated by an arrow) within a
short basic region linking the acidic domain and the HMG-box (Röttgers et al., 2000).
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along the transcribed region of genes transcribed by RNAPII, but
not at loci transcribed by RNA polymerases I and III or
intergenic regions. Moreover, association with the chromatin
of active protein-coding genes occurred in a transcription-
dependent manner (Duroux et al., 2004; Perales and Más,
2007; Lolas et al., 2010; Antosz et al., 2017). In accordance
with that an affinity-purification approach combined with mass
spectrometry demonstrated that FACT efficiently copurified
with elongating RNAPII (CTD-phosphorylated at residues S2P,
S5P) from Arabidopsis cells as well as with known transcript
elongation factors including TFIIS, SPT4/SPT5 and PAF1C
Frontiers in Plant Science | www.frontiersin.org 4
(Antosz et al., 2017). Moreover, SSRP1 and SPT16 genetically
interact with TFIIS encoding a modulator of RNAPII activity and
with HUB1/2, encoding factors catalysing elongation-related
mono-ubiquitination of histone H2B (Lolas et al., 2010; Antosz
et al., 2017). Taken together these findings indicate a role of
Arabidopsis FACT in RNAPII transcriptional elongation (Van
Lijsebettens and Grasser, 2014; Zhou et al., 2015; Grasser and
Grasser, 2018), in line with the function of FACT as regulator of
mRNA synthesis in other organisms (Reinberg and Sims, 2006;
Formosa, 2012; Gurova et al., 2018), although the exact
mechanism in vivo is still obscure.

Intriguing insight provided a study analysing genome-wide
intragenic transcriptional initiation from cryptic promoters in
Arabidopsis. Thousands of discrete, mostly exonic transcriptional
start site positions were mapped in ssrp1 and spt16mutants and the
majority of these sites were detected in both mutants (Nielsen et al.,
2019). This suggested that FACT is required for repression of
aberrant intragenic transcript initiation, whereas no evidence was
found for an involvement in repression of cryptic transcription by
other elongation factors such as PAF1C, Elongator and the SDG8
H3K36-methyltransferase. At FACT-repressed intragenic start sites
an enrichment of the RNAPII elongation signature H3K4me1 was
detected that may contribute to suppress intragenic transcriptional
initiation (Nielsen et al., 2019). Since FACT has been implicated in
repressing cryptic transcription also in other organisms (Kaplan
et al., 2003; Mason and Struhl, 2003; Cheung et al., 2008; Jamai et al.,
2009), ensuring transcriptional fidelity by restricting transcript
initiation to promoters may be a key function of FACT.
FACT IN PLANT GROWTH AND
DEVELOPMENT

In various organisms including Arabidopsis, FACT is essential for
viability (Cao et al., 2003; Lolas et al., 2010; Formosa, 2012; Frost
et al., 2018). Arabidopsismutant plants expressing reduced amounts
of SSRP1 or SPT16 similarly show various defects in vegetative and
reproductive development. Thus, the mutant plants display an
increased number of leaves and inflorescences as well as altered
leaf architecture (Lolas et al., 2010). In addition, these plants are
early bolting, have abnormal flower morphology and a severely
reduced seed set. The early bolting phenotype is associated with
reduced expression of the floral repressor FLC in ssrp1 and spt16
plants relative to the wild type controls (Lolas et al., 2010).
Germination assays with freshly harvested seeds demonstrated
that in contrast to the wild type control, ssrp1 mutant seeds
germinated efficiently without stratification (Figure 3), indicating
reduced seed dormancy (Michl-Holzinger et al., 2019). In line with
this phenotype, ssrp1 seeds exhibit decreased transcript levels of the
DOG1 gene, which is a known quantitative trait locus of seed
dormancy. Introduction of an additional copy of DOG1 into ssrp1
resulted in increased DOG1 transcript levels and consistently in
more robust seed dormancy (Michl-Holzinger et al., 2019).
Therefore, SSRP1 is required for efficient expression of DOG1 and
FACT is a modulator of seed dormancy in Arabidopsis. These
FIGURE 2 | Sequence similarity of FAcilitates Chromatin Transcription (FACT)
subunits. The amino acid sequences of SSRP1 (A) and SPT16 (B) proteins
from various organisms (Arabidopsis thaliana (At), Drosophila melanogaster
(Dm), Glycine max (Gm), Homo sapiens (Hs), Hordeum vulgare (Hv), Oryza
sativa (Os), Physcomitrella patens (Pp), Populus trichocarpa (Pt),
Saccharomyces cerevisiae (Sc), Selaginella moellendorfii (Sm), Sorghum
bicolor (Sb), Triticum aestivum (Ta), Vitis vinifera (Vv), Zea mays (Zm)) were
aligned by multiple sequence alignment (cf. Supplementary Figures S1, S2)
using Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/) that served
to cluster the sequences (unweighted pair group method with arithmetic
mean). The sequences of plants are indicated in green and those of metazoa
in red, while the yeast sequence is labelled blue.
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findings reveal that FACT is involved in two of the most important
plant developmental switches, namely, the transition from seed
dormancy to germination and from vegetative to reproductive
development. Interestingly, both processes in addition to FACT
are regulated by other modulators of transcriptional elongation and
chromatin structure. Thus, factors including FACT, PAF1C, SWR1,
SDG8 and HUB1/2 contribute to the expression of FLC in the
induction to flowering (He et al., 2004; Oh et al., 2004; Zhao et al.,
2005; Choi et al., 2007; Cao et al., 2008; Lázaro et al., 2008; Lolas
et al., 2010), while factors such as FACT, TFIIS, H2B-
monoubiquitinases, and H3-methylases influence the expression
of DOG1 in the switch from seed dormancy to germination (Liu
et al., 2007; Zheng et al., 2012; Molitor et al., 2014; Michl-Holzinger
et al., 2019). Furthermore, FACT was identified as cofactor of the
transcriptional regulation of circadian rhythms in Arabidopsis.
Initially, it was observed that FACT rhythmically associates with
the circadian oscillator gene TOC1 (Perales and Más, 2007).
Subsequently, protein interactions were detected between FACT,
elongating RNAPII and clock-related components termed LNKs. By
interaction between LNKs and the MYB factor RVE8 the
transcription machinery is recruited to target promoters, leading
to rhythmic occupancy of clock gene promoters (Ma et al., 2018).
FACT could be involved in this scenario facilitating the transition
from RNAPII transcript initiation to productive elongation.
Frontiers in Plant Science | www.frontiersin.org 5
Recent transcript profiling of 10-day-old Arabidopsis ssrp1 and
spt16 seedlings in comparison to the wild type demonstrated that a
relatively small subset of genes is differentially expressed in the
mutants (Pfab et al., 2018a). The alterations in the transcript
profile of both mutants relative to wild type were very similar,
consistent with the function of SSRP1 and SPT16 as a
heterodimer. Among the downregulated genes, those encoding
enzymes of anthocyanin biosynthesis were remarkably
overrepresented. Upon exposure to moderate high-light stress
several of the anthocyanin biosynthetic genes were induced in
the ssrp1/spt16 plants to a lesser extent than in the wild type, and
accordingly the mutant plants depleted in FACT accumulated
lower amounts of anthocyanin pigments. Expression of SSRP1 and
SPT16 was increased under these conditions (Pfab et al., 2018a).
Therefore, FACT is required for transcriptional induction leading
to anthocyanin accumulation in response to light stress.

A special role of FACT that was discovered in Arabidopsis is
its involvement in parent-of-origin specific gene expression
(genomic imprinting). Initially, SSRP1 was found to be
required for DNA demethylation and activation/repression of
parentally imprinted genes in the central cell of the female
gametophyte (Ikeda et al., 2011). The authors proposed that
SSRP1 might contribute to altering the chromatin state,
facilitating demethylation by the DNA demethylase DEMETER
FIGURE 3 | Reduced dormancy of ssrp1 seeds. Germination assays with opened siliques harvested 14 days after flowering. They are shown at day 0 and 7 days
after incubation, either with or without prior stratification. Note the smaller siliques of ssrp1 containing a severely reduced number of seeds compared to wt. After
stratification almost all seeds germinate, whereas without stratification wt seeds germinate inefficiently (< 50%), whereas ssrp1 seeds due to reduced seed dormancy
germinate efficiently (~90%).
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(DME). Subsequently, bimolecular complementation assays
indicated that SSRP1 and SPT16 colocalised with DME in the
nucleus. Genome-wide analyses demonstrated that SSRP1 and
SPT16 are required for demethylation at over half the DME-
mediated demethylation sites in the central cell (Frost et al.,
2018). DME demethylation sites that are particularly dependent
on FACT occur in heterochromatic domains with high
nucleosome occupancy and are enriched in H3K9me2 and
H3K27me1 marks, whereas euchromatic DME targets
apparently can be demethylated by the enzyme without
assistance of FACT (Frost et al., 2018). Therefore, FACT may
be required for DME targeting by facilitating its access to
heterochromatic sites, but the exact molecular role of FACT in
this process is unknown. Moreover, the authors suggest that the
mode of FACT action in conjunction with DME during
reproduction differs from that during transcriptional elongation.
PERSPECTIVES

There is substantial evidence that FACT in yeast and metazoa is
involved in addition to transcription in various other DNA-
dependent processes including replication, recombination and
repair. To date essentially the role of plant FACT in transcription
has been addressed, and therefore, broader approaches are
required to gain insight to which extent it contributes to
additional biologically crucial processes in plants. Open
questions regarding FACT include how it is recruited to its
target sites in chromatin. Analyses in yeast, for instance, indicate
that FACT associates with the transcribed regions of all active
RNAPII-transcribed genes (Mayer et al., 2010). However, various
studies suggest that the absence of FACT causes rather moderate
changes in gene expression of relatively small subsets of genes
(Gurova et al., 2018). This raises the question, of why the
transcription of certain genes is more dependent on FACT
than the majority of other genes. Which gene characteristics
determine the requirement for FACT action? There exist many
potentially influencing parameters including DNA sequence,
Frontiers in Plant Science | www.frontiersin.org 6
chromatin structural features, inducibility and expression level
of the gene, RNAPII density and elongation rate, as well as
cotranscriptional mRNA processing. Perhaps a combination of
these and additional parameters defines the requirement of
FACT for efficient transcription. Finally, because of the various
functions of FACT in nucleosome reorganisation in different
biological contexts it appears likely that FACT activity is
regulated, but currently this is largely obscure. Although many
facts about FACT have been elucidated in recent years, there
remain important open questions.
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