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Vienna, Austria

Plants are exposed to a variety of abiotic and biotic stresses that may result in DNA
damage. Endogenous processes - such as DNA replication, DNA recombination,
respiration, or photosynthesis - are also a threat to DNA integrity. It is therefore
essential to understand the strategies plants have developed for DNA damage
detection, signaling, and repair. Alternative splicing (AS) is a key post-transcriptional
process with a role in regulation of gene expression. Recent studies demonstrate that the
majority of intron-containing genes in plants are alternatively spliced, highlighting the
importance of AS in plant development and stress response. Not only does AS ensure a
versatile proteome and influence the abundance and availability of proteins greatly, it has
also emerged as an important player in the DNA damage response (DDR) in animals.
Despite extensive studies of DDR carried out in plants, its regulation at the level of AS has
not been comprehensively addressed. Here, we provide some insights into the interplay
between AS and DDR in plants.
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DNA DAMAGE RESPONSE IN PLANTS

The genomic integrity of living cells is perpetually challenged by a variety of environmental and
internal cellular factors. Environmental stresses, such as drought, salinity, ultraviolet (UV), ionizing
radiation, xenobiotic toxicity, heavy metals, and mutagenic chemicals damage DNA and affect its
stability (Hu et al., 2016; Nisa et al., 2019). Cellular replication, recombination errors, and reactive
oxygen species resulting as a byproduct of metabolism also cause DNA damage. A cell's reaction to
genotoxic stress, referred to as DNA damage response (DDR), starts with cell cycle arrest and, in the
case of plants, endoreplication (De Veylder et al., 2011). To ensure the repair of a variety of different
types of DNA lesions, several DNA repair mechanisms are active and constitute the DNA repair
phase of DDR. Should the repair of DNA damage not be sufficient, programmed cell death
eliminates the damaged cell and ensures homeostasis (Manova and Gruszka, 2015; Kim et al., 2019).
Due to their sessile nature, plants find themselves at increased risk to detrimental environmental
factors. It has also been shown that light and temperature conditions affect DNA repair mechanisms
such as homologous recombination and photoreactivation (Li et al., 2002; Boyko et al., 2005).

The repair of UV-induced lesions by photoreactivation appears to be an ancient conserved DNA
damage repair mechanism. It relies on the activity of photolyase, utilizing the energy of UV-A or blue
light to reverse UV damage in the DNA (Manova and Gruszka, 2015; Kavakli et al., 2017; Zhang et al.,
2017a). Another mechanism of UV damage repair is nucleotide excision repair (NER), which identifies,
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removes, and repairs the damaged base(s) using the other DNA
strands as a template. In addition to UV lesions, NER repairs bulky
adducts that change the DNA conformation. Global genomic repair
(GGR) and transcription-coupled repair (TCR), although differing
in their mode of damage recognition, share similarities in their
mechanisms of action (Hanawalt, 2002). The DNA glycosylases,
which initiate base excision repair (BER) at damaged sites, facilitate
the repair of a variety of DNA lesions (Wallace, 2014). There is
evidence for BER being active in chloroplasts to counter the effects
of reactive oxygen species production during photosynthesis
(Gutman and Niyogi, 2009). The mismatch repair (MMR)
pathway is responsible for the repair of replication errors, such as
mismatches and indels, UV, and oxidative damage (Li et al., 2016;
Liu et al., 2017; Belfield et al., 2018). Double-strand breaks (DSBs)
are repaired via non-homologous end joining (NHEJ) and
homologous recombination (HR). While HR requires
homologous sequences to ensure efficient repair, NHEJ joins
DSBs without considering sequence context and is, thus, an error
prone mechanism, which can result in mutations and DNA changes
(Manova and Gruszka, 2015).

Two protein kinases, ATM (ATAXIA-TELANGIECTASIA
MUTATED) and ATR (ATAXIA TELANGIECTASIA-
MUTATED AND RAD3-RELATED), initiate eukaryotic DDR.
Once activated, they signal via checkpoint kinases 1 and 2
(CHK1 and CHK2), respectively. Human homologs of CHK1
and CHK2 activate p53, which in turn controls cell cycle arrest,
DNA damage repair, and programmed cell death. While the
downstream processes of ATM, ATR, and p53 have been studied
extensively, data on their upstream activation and regulation
remains scarce. Neither orthologs of CHK1 and CHK2, nor of
p53, have been identified in plants so far. However, a functional
homolog of p53, SUPPRESSOR OF GAMMA RESPONSE 1
(SOG1), transcriptionally regulating DDR downstream of
ATM and ATR was found (Preuss and Britt, 2003; Yoshiyama
et al., 2009; Yoshiyama, 2016). Indeed, SOG1 was identified as a
master regulator transcription factor of the plant DDR,
influencing expression of genes related to the cell cycle and
DNA repair (Ogita et al., 2018). About 300 direct targets of SOG1
were identified, including transcription factors, DNA repair
genes, and regulators of the cell cycle (Bourbousse et al., 2018).

A recent research update highlights the growing interest in
DDR in plants but also serves to show that a role for
alternative splicing (AS) remains to be established (Gimenez
and Manzano-Agugliaro, 2017).
OVERVIEW OF ALTERNATIVE SPLICING

Most messenger RNAs in higher eukaryotes are synthesized as
precursors, which contain intervening sequences, known as
introns. To provide a template for protein synthesis, messenger
RNA (mRNA) introns have to be removed and exons joined in a
process termed pre-mRNA splicing. However, exons and introns
or their parts can be differentially included in mRNA by AS. AS
produces transcript and protein variants from a single gene with
different fates and functions, and is a fundamental aspect of RNA
Frontiers in Plant Science | www.frontiersin.org 2
biology that has a key role in our understanding of gene
expression regulation. Up to 95% of human and 70% of plant
multi-exonic genes are alternatively spliced (Pan et al., 2008;
Wang et al., 2008; Marquez et al., 2012; Chamala et al., 2015;
Zhang et al., 2017b). Further studies report that about 50% of the
genes in soybeans, 46% in rice, 40% in maize, and over 60% in
tomatoes and barley undergo AS (Thatcher et al., 2014; Chamala
et al., 2015; Clark et al., 2019; Rapazote-Flores et al., 2019),
emphasizing its importance in crop plant development and
environmental response. AS has a broad role in many aspects
of plant biology, but its role in responding to DNA damage is
mostly unknown and requires further investigation.

Pre-mRNA splicing requires the core splicing signals, which
consist of the 5' and 3' splice sites and a branch site (Wang and
Burge, 2008). However, multiple additional features, such as
intronic and exonic splicing regulatory cis-elements (splicing
enhancers and silencers), length of introns and exons, and
differential guanine-cytosine content between exons and
introns, affect the recognition and selection of the core splicing
signals (Braunschweig et al., 2013). The secondary structure of
the pre-mRNA can alter access to splicing signals and binding
sites for splicing factors (SFs) or change the distance between
these elements (Shepard and Hertel, 2008). Differential DNA
methylation, histone modifications, and nucleosome positioning
modulate RNA polymerase II elongation speed and recruitment
of SFs, thus also resulting in alternative splice site selection [for a
recent review see (Jabre et al., 2019)].

Common types of AS events include exon skipping, usage of
alternative 5' and 3' splice sites, mutually exclusive exons, and
intron retention. Exon skipping is the predominant event in
animals, whereas it is infrequent in plants (Marquez et al., 2012;
Braunschweig et al., 2013). Intron retention is widespread both
in plants and animals (Marquez et al., 2012; Braunschweig et al.,
2014). Interestingly, intron retention transcripts are often not
substrates for nonsense-mediated mRNA decay due to their
nuclear localization (James et al., 2012; Kalyna et al., 2012;
Leviatan et al., 2013; Gohring et al., 2014). Retention of introns
may regulate protein abundance during developmental
transitions and in response to stress (including DNA damage).
When transcripts with retained introns are recognized as
incompletely processed they remain in the nucleus until a
change in the cellular environment results in post-
transcriptional splicing (Yap et al., 2012; Boothby et al., 2013;
Boutz et al., 2015; Brown et al., 2015). Microexons (ultra-short
exons of 3-30 nucleotides) found in hundreds of animal genes,
and recently identified exitrons (alternatively spliced internal
regions of protein-coding exons), which occur in ~7% of
Arabidopsis and 4% of human protein-coding genes,
complement the repertoire of AS events (Marquez et al., 2012;
Irimia et al., 2014; Marquez et al., 2015; Staiger and Simpson,
2015; Sibley et al., 2016; Ustianenko et al., 2017; Zhang
et al., 2017b).

Hundreds of proteins participate in the splicing process
(Chen and Moore, 2015). However, the modulation of splice
site recognition is mainly governed by two families of SFs -
serine/arginine-rich (SR) proteins and heterogeneous nuclear
February 2020 | Volume 11 | Article 91
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ribonucleoproteins (hnRNPs) - through binding to regulatory
cis-elements in the pre-mRNA (Barta et al., 2010; Manley and
Krainer, 2010; Yeap et al., 2014; Howard and Sanford, 2015). SR
proteins and hnRNPs act as activators and repressors of splice
site selection, respectively, however, the effect often depends on
their binding position. Expression levels, localization, and post-
translational modifications (PTMs) (phosphorylation,
acetylation, ubiquitination, and sumoylation) of SFs in a
particular cell are one of the components of the splicing code,
which governs the AS outcomes (Barash et al., 2010; Baralle and
Baralle, 2018). Interestingly, SR proteins and hnRNPs participate
in multiple cellular processes, such as mRNA export, RNA
stability and quality control, and translation.
ALTERNATIVE SPLICING AND DNA
DAMAGE RESPONSE, INSIGHTS FROM
STUDIES IN ANIMALS

It is becoming clear that RNA-binding proteins and AS are
important in DDR. One of the first pieces of evidence that SFs
may have a role in DDR came from a study which demonstrated
that the depletion of a canonical human SR protein, SRSF1 (SF2/
ASF), resulted in increased DSB formation and genome
instability (Li and Manley, 2005). Several studies in animals
have unexpectedly identified SFs and other RNA processing
proteins associated with response to irradiation and DNA
damaging chemicals. For example, genome-wide siRNA
knockdown of multiple genes have shown that splicing and
RNA processing factors are the most enriched functional
category within factors whose depletion mediates DNA
damage (Paulsen et al., 2009; Lackner et al., 2011). Studies of
individual SFs, including SR proteins, have demonstrated
changes in their expression levels, AS profiles, phosphorylation
state, and subcellular distribution in response to DNA damage
(Matsuoka et al., 2007; Busa et al., 2010; Sakashita and Endo,
2010; Ip et al., 2011; Adamson et al., 2012; Leva et al., 2012). The
importance of AS and splicing factors in DDR in animals has
been reviewed extensively (Naro et al., 2015; Shkreta and Chabot,
2015; Giono et al., 2016; Kai, 2016; Mikolaskova et al., 2018).

The interplay between DDR and AS occurs at multiple levels
(Figure 1). One of the most rapid responses to stress and DNA
damage is the change in activity of already translated proteins by
PTMs. Multiple SFs have been identified in DDR-regulated
phosphoproteomes (Bennetzen et al., 2010; Bensimon et al., 2010;
Beli et al., 2012). The kinases ATM and ATR are directly activated
by DNA lesions and phosphorylate hundreds of proteins in
response to ionizing radiation, including several hnRNPs and SR
proteins (Matsuoka et al., 2007). Studies using the treatment of
mammalian cells with several genotoxic agents revealed reduced SR
protein phosphorylation levels affecting their accumulation in
nuclear granules. These studies also found differential AS of genes
involved in DNA repair, cell cycle control, and apoptosis
(Bennetzen et al., 2010; Leva et al., 2012; Shkreta et al., 2016).
Remarkably, detained introns, a recently identified subgroup of
Frontiers in Plant Science | www.frontiersin.org 3
retained introns, are enriched in genes involved in DDR. Moreover,
DNA damage and the activity of certain Clk kinases, which
maintain the hyperphosphorylated status of SR proteins, can
modulate splicing of detained introns (Boutz et al., 2015).
Changes in the activity of SR proteins also have been associated
with their acetylation state in response to cisplatin-induced DNA
damage (Edmond et al., 2011; Nakka et al., 2015). Interestingly,
acetyltransferases can indirectly impact the translocation of SR
proteins via the modification of SR protein kinases (Edmond
et al., 2011). Recent studies also demonstrated the acetylation of
hnRNPs in response to DNA damage (Magni et al., 2019; Siam
et al., 2019). Ubiquitination, besides its regulatory activity during
spliceosome assembly, affects SFs upon DNA damage (Lu and
Legerski, 2007). Genotoxic agents cause deubiquitylation and
sumoylation of hnRNPs (Vassileva and Matunis, 2004).

As localization and shuttling of SFs is highly dependent on their
phosphorylation state, it is not surprising that DNA damage-
induced nuclear translocation of SR protein kinases results in the
hyperphosphorylation and subsequent nuclear accumulation of
certain SR proteins (Edmond et al., 2011). UV irradiation also
affects the redistribution of SFs into the cytoplasm, therefore
impacting AS (van der Houven van Oordt et al., 2000; Llorian
et al., 2005; Guil et al., 2006). The DNA damage-induced re-
localization of SFs appears to be dependent on cell type and
genotoxic treatment (Tissier et al., 2010; Wong et al., 2013).

In plants, members of different Arabidopsis SR protein sub-
families localize into distinct populations of nuclear speckles
(Lorkovic et al., 2008), with their localization dependent on their
phosphorylation status (Ali et al., 2003; Tillemans et al., 2005).
Different classes of kinases (such as SR protein kinases, PRP4
kinases, Cdc2-like or LAMMER-type kinases, and mitogen-
activated protein kinases) phosphorylate plant SFs, including
SR proteins and hnRNPs (Golovkin and Reddy, 1999; Savaldi-
Goldstein et al., 2000; Feilner et al., 2005; de la Fuente van
Bentem et al., 2006; de la Fuente van Bentem et al., 2008; Kanno
et al., 2018), suggesting that DNA damage in plants could lead to
altered SF activities and changes in AS. However, to which extent
this occurs, which SFs are affected and the roles of different
PTMs remain the subject of further studies.

In addition to the post-translational regulation of SFs during
DDR, their activity can be altered by changes in their AS. Studies in
animal cells have illustrated the impact DNA damage has on the AS
of SF genes (Solier et al., 2010; Ip et al., 2011; Leva et al., 2012).
Munoz and colleagues describe a mechanism by which AS is
regulated during DDR (Munoz et al., 2009; Munoz et al., 2017).
The hyperphosphorylation of the C-terminal domain of RNA
polymerase II (RNAPII) is associated with a decrease in RNAPII
elongation speed. This slowing down of RNAPII favors the selection
of weaker splice sites as the time window for their recognition by the
splicing machinery is extended before stronger downstream sites are
synthesized. The hyperphosphorylation and slowdown of RNAPII
in response to UV exposure leads to differential exon skipping
events in multiple genes associated with apoptosis, cell cycle, and
cancer (Munoz et al., 2009; Munoz et al., 2017). These findings raise
questions regarding the mechanisms and PTMs affecting RNAPII
February 2020 | Volume 11 | Article 91
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FIGURE 1 | The interplay between the DNA damage response and alternative splicing. A variety of exogenous environmental stress factors and endogenous cellular
processes may result in DNA damage. Numerous studies on animals have demonstrated that splicing factors change their expression levels, alternative splicing
patterns, post-translational modification states, and subcellular localization in response to DNA damage. Altered expression and activities of splicing factors may
regulate DNA repair by modulating alternative splicing of DDR genes. Current data indicates that many plant DDR genes undergo alternative splicing. Which plant
splicing factors are involved in the DDR, how they are regulated, what are their target genes, and how the splicing changes are translated into the plant phenotype
remains to be addressed in the future.
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TABLE 1 | Overview of alternative splicing in genes involved in DNA damage response.

Gene name Gene ID Alternative splicing Gene name Gene ID Alternative splicing

AtRTD21 Reference AtRTD21 Reference

A Base excision repair (BER) C Homologous recombination (HR)
OGG1 At1g21710 + MRE11 At5g54260 +
FPG At1g52500 + 2,3 RAD50 At2g31970 +
NTH1 At2g31450 + NBS1 At3g02680 +
NTH2 At1g05900 + COM1 At3g52115 +
DME At5g04560 + RECQ4A At1g10930 +
ROS1 At2g36490 + RAD51 At5g20850 +
UNG At3g18630 – RAD51B At2g28560 +
DML3 At4g34060 + RAD51C At2g45280 + 7
MBD4L At3g07930 + 4 RAD51D At1g07745 +
ARP At2g41460 + XRCC2 At5g64520 +
APE1L At3g48425 + XRCC3 At5g54750 + 7
APE2 At4g36050 + BRCA2A At4g00020 +
ZDP At3g14890 + BRCA2B At5g01630 –

TDP1 At5g15170 + RAD54 At3g19210 +
XRCC1 At1g80420 + SRS2 At4g25120 +
SAV6 At5g26680 + FANCM At1g35530 +
PARP1 At2g31320 + EME1A At2g21800 +
PARP2 At4g02390 + EME1B At2g22140 +
Pol d See section E MUS81 At4g30870 +
Pol ϵ See section E GEN1 At1g01880 +
LIG1 See section E SEND1 At3g48900 +

B Nucleotide excision repair (NER) TOP3a At5g63920 +
RAD4 At5g16630 + RMI1 At5g63540 +
RAD23A At1g16190 + Pol d See section E
RAD23B At1g79650 + 5 PCNA See section E
RAD24C At3g02540 + 5 RFC See section E
RAD23D At5g38470 + 5 D DNA mismatch repair (MMR)
CEN2 At4g37010 + MSH2 At3g18524 –

DDB1A At4g05420 + MSH3 At4g25540 –

DDB1B At4g21100 – MSH6 At4g02070 +
DDB2 At5g58760 + MSH7 At3g24495 +
CSA At1g27840 + MLH1 At4g09140 +

At1g19750 + RFC See section E
CHR8 At2g18760 + PCNA See section E
CHR24 At5g63950 + EXO1 See section E
XPB1 At5g41370 + RPA See section F
XPB2 At5g41360 + POL d See section E
UVH6 At1g03190 + E Components involved in metabolic pathways
TFIIH1 At1g55750 + EXO1 At1g29630 +

At1g61420 + PCNA At1g07370 –

GTF2H2 At1g05055 – At2g29570 –

TFIIH3 At1g18340 + Pol d At1g09815 –

TFIIH4 At4g17020 + At2g42120 +
TTDA At1g12400 + At5g63960 +

At1g62886 – Pol ϵ At1g08260 –

CDKD;1 At1g73690 – At2g27120 +
CDKD;2 At1g66750 + At5g22110 +
CDKD;3 At1g18040 + RFC At1g21690 +
CYCH;1 At5g27620 + At1g63160 –

MAT1 At4g30820 + At1g77470 +
UVH3 At3g28030 + At5g22010 +
UVH1 At5g41150 + 6 At5g27740 –

ERCC1 At3g05210 + LIG1 At1g08130 –

RPA See section F At1g49250 –

PCNA See section E F Replication protein A (RPAs)
RFC See section E RPA1 At2g06510 +
Pol d See section E At5g08020 +
Pol ϵ See section E At5g45400 –

LIG1 See section E At5g61000 –

At4g19130 –

(Continued)
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elongation speed and the subsequent changes in splicing outcomes
during DDR in plants. Which plant SFs are alternatively spliced
during DDR, how their transcript isoforms differ in their function,
and how their AS influences DDR itself also remains to be
addressed in the future.
ALTERNATIVE SPLICING, A NEW PLAYER
IN THE PLANT DNA DAMAGE
RESPONSE?

Despite extensive studies of DDR and AS in animals,
comparatively little is known about this relationship in plants.
The PubMed search with the terms “Splicing” and “DNA
damage” or “DNA repair” returns a handful of papers in the
plant field, which is in stark contrast to about 700 non-plant
papers. The first papers describing AS of the Arabidopsis DNA
damage/repair gene At-FPG/At-MMH DNA glycosylase were
published about 20 years ago (Ohtsubo et al., 1998; Murphy and
Gao, 2001). Since then, several key DNA repair genes have been
reported to undergo AS, supporting the importance of AS in
DDR in plants (Table 1). For example, genes encoding At-
RAD1/UHV1 (homologous to yeast RAD1 and human XPF
DNA repair endonuclease) and AtPOLK polymerase generate
AS isoforms in a tissue-specific pattern (Vonarx et al., 2002;
Garcia-Ortiz et al., 2004; Garcia-Ortiz et al., 2007). Two
Arabidopsis translesion synthesis DNA polymerases, AtREV
and AtPOLH, are regulated by AS, and complementation analysis
of AtPOLH AS isoforms in Rad30-deficient yeast showed that the
AtPOLH C-terminus is required for functional activity (Santiago
et al., 2009). Several studies also reveal differential AS in DNA repair
genes in crop plants, such as rice class II DNA photolyase (Hirouchi
et al., 2003), endonuclease OsMUS81 (Mimida et al., 2007), and
checkpoint protein OsRad9 (Li et al., 2017).

To estimate the extent of AS in DNA repair genes at the
genome-wide level, we queried the Arabidopsis reference
transcript dataset (AtRTD2), which contains 82,190 transcripts
from 34,212 genes (Zhang et al., 2017b), with a list of 102
Arabidopsis DNA repair genes (Spampinato, 2017). Only nine
genes from this list have previously been reported to be
alternatively spliced. Remarkably, this survey revealed that
more than 80% of these genes show evidence of AS in the
AtRTD2 (Table 1). Further, key regulators of DDR in plants,
SOG1, ATM, and ATR (not in the Spampinato, 2017 list), also
undergo AS. Although this brief survey deals with a subset of
Frontiers in Plant Science | www.frontiersin.org 6
DDR genes, it clearly illustrates a hidden potential for AS and
regulation of DDR in plants. Plant mechanisms and SFs involved
in DDR regulation remain to be investigated.
CONCLUSIONS

The cellular response to DNA damage must be tightly regulated.
Numerous studies on animals reveal interactions between DDR
and AS at multiple levels and demonstrate that AS has an
important role in DDR. In plants, initial studies show that AS
has a function in plant DDR, but many questions remain to be
addressed. How is the expression and activity of plant SFs
regulated in DDR, what are their target genes, and do RNAPII
processivity or changes in chromatin structure convey DDR into
differential splicing outcomes in plants? Comprehensive
transcriptome analyses will identify genes that show differences
in AS patterns in response to genotoxic stress. Moreover, SFs,
RNA processing factors, and DNA repair genes that undergo
changes in AS may be detected and help determine the complex
interplay between DDR and AS in plants. Finally, the major stress
factors restrict plant growth and decrease yield in crop plants.
Recent studies report extensive AS in crop species, emphasizing the
need for further investigations to establish AS involvement in the
response mechanisms to stress exposure and DNA damage.
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