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Cultivated barley (Hordeum vulgare L.) is one of the most produced cereal crops
worldwide after maize, bread wheat, and rice. Barley is an important crop species not
only as a food source, but also in plant genetics because it harbors numerous stress
response alleles in its genome that can be exploited for crop engineering. However, the
functional annotation of its genome is relatively poor compared with other major crops.
Moreover, bioinformatics tools for system-wide analyses of omics data from barley are not
yet available. We have thus developed BarleyNet, a co-functional network of 26,145
barley genes, along with a web server for network-based predictions (http://
www.inetbio.org/barleynet). We demonstrated that BarleyNet's prediction of biological
processes is more accurate than that of an existing barley gene network. We implemented
three complementary network-based algorithms for prioritizing genes or functional
concepts to study genetic components of complex traits such as environmental stress
responses: (i) a pathway-centric search for candidate genes of pathways or complex
traits; (ii) a gene-centric search to infer novel functional concepts for genes; and (iii) a
context-centric search for novel genes associated with stress response. We
demonstrated the usefulness of these network analysis tools in the study of stress
response using proteomics and transcriptomics data from barley leaves and roots upon
drought or heat stresses. These results suggest that BarleyNet will facilitate our
understanding of the underlying genetic components of complex traits in barley.

Keywords: barley, Hordeum vulgare L., gene network, network biology, crop systems genetics
INTRODUCTION

Cultivated barley (Hordeum vulgare L.) is one of the first cultivated grains, domesticated about
10,000 years ago in the Near East (Badr et al., 2000). It was ranked the fourth cereal crop in quantity
produced after maize, bread wheat, and rice in 2017 (FAOSTAT 2017, http://fao.org/faostat/).
Barley mainly serves as a source of fodder for livestock, fermentable material for alcoholic beverages,
and is present in various healthy organic foods. In developing countries, it is also still a major source
of carbohydrates. Furthermore, barley is a great plant model organism for studying genetic
resistance to biotic or abiotic stress, since it can endure a great range of environmental stresses
like drought, flood, and cold or fungal infections, either single or combined (Gürel et al., 2016).
Therefore, the barley genome is a reservoir of numerous stress response alleles, which are precious
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subjects for genetic engineering in other crop species. The size of
the haploid Barley genome is approximately 5.3 Gbp. It is one of
the largest diploid genomes sequenced to date and contains
83,105 putative genetic loci including 39,734 high-
confidence ones.

Numerous studies have exploited these agronomically
important traits, assisted by various new technologies such as
high-throughput sequencing and mass spectrometry-based
proteomics. Although they provide important clues about
molecular components associated with complex plant traits,
individual omics profiles are insufficient to reconstruct a
holistic view of functional modules involved in these traits.
Moreover, the functional interpretation of omics profile data
generally requires the incorporation of other information.
Therefore, a systems biology platform that integrates
information derived from different data sources could
effectively encapsulate the molecular network underlying
complex traits. Co-functional gene networks have been applied
to integrate the functional information of genes derived from
heterogeneous data through a Bayesian statistics framework
(Shim et al., 2017). Co-functional networks previously
constructed for other major crop species have been successfully
used in the genetic dissection of complex plant traits (Lee et al.,
2015a; Lee et al., 2017; Lee et al., 2019). Yet, such an effective
network-assisted systems genetics platform has not been
developed for barley. Therefore, we developed BarleyNet, a co-
functional network of barley genes and a companion web server
(www.inetbio.org/barleynet/), enabling network-assisted systems
genetics analysis for cultivated barley. All information on
functional association between barley genes is also readily
downloadable through the companion web server. Finally, the
three complementary network-based algorithms implemented in
the web server facilitate effective use of omics profiles for
generating new functional hypotheses.
MATERIALS AND METHODS

Reference Genome
We constructed BarleyNet based on the IBSC_v2 barley genome
assembly (https://plants.ensembl.org/Hordeum_vulgare/Info/
Annotation/#assembly) presented by the International Barley
Sequencing Consortium (Mascher et al., 2017). Among 83,105
putative genetic loci, 39,734 high-confidence loci were selected as
a reference gene set for network construction. Supervised
learning of co-functional gene pairs requires gold standard
(GS) positive and negative gene pairs, which are generally
derived from high-quality pathway annotation databases.
However, both the quantity and the quality of pathway
annotations for barley were not sufficient by the time we
launched this project. Thus, we transferred GS-positive barley
gene pairs based on sequence homology with those used for
modeling Arabidopsis (Lee et al., 2015b) and rice (Lee et al.,
2015a) gene networks. Consequently, 215,170 and 27,254 GS-
positive gene pairs were transferred from rice and Arabidopsis,
respectively. The final set of GS-positive gene pairs for training
Frontiers in Plant Science | www.frontiersin.org 2
BarleyNet was a union of all transferred gene pairs, comprising
234,070 gene pairs among 7,350 barley genes (18.5% of the
genome). All other possible pairwise relationships between the
7,350 barley genes were then considered GS-negatives,
comprising 26,773,505 gene pairs.
Benchmarking Co-Functional Barley Gene
Pairs
The likelihood of a functional association between two genes is
based on the ratio between our belief after seeing the supporting
data and our prior belief. Thus, we scored functional association
between genes using previously developed log likelihood score
(LLS) (Lee et al., 2004), shown as the following equation:

LLS =   ln
P Lð jSÞ=P(⌐ LjS)
P Lð Þ=P ⌐ Lð Þ

� �

where P(L|S) and P(⌐L|S) represent the probability of GS-
positive and GS-negative gene pairs, respectively, supported by
the given data, and P(L) and P(⌐L) represent the expected
probability of GS-positive and GS-negative links, respectively.

Gene pairs are sorted by data-intrinsic scores such as the
expression correlation coefficient, and then assigned into bins of
1,000 gene pairs. We computed LLS for each of the bins and then
did a sigmoid regression between means of data-intrinsic scores
and LLSs. Using the regression function, we calculated LLS for
every gene pair derived from each data source.
Integrating Co-Functional Barley Gene
Pairs
Functional association between barley genes can be supported by
multiple data sources. We may integrate the LLS of their
functional association by naïve Bayes integration, if there is no
correlation between data sources, which is generally not true. In
order to handle information correlation between supporting data
sources, we previously developed the weighted sum (WS)
method (Lee et al., 2007), shown as the following equation:

WS = Lo +o
n

i=1

Li
D� i

,   for   all   L ≥ T

where LO represents the highest LLS of all available supporting
data sources, and Li represents the remaining LLSs with rank
index i.D and T are free parameters for the weight factor and LLS
cutoff to be considered, respectively. These free parameters were
selected where the integrated network achieved the best
performance based on a precision-recall curve. A total of 25
distinct data sources were finally integrated into BarleyNet
(Supplementary Table 1).
Inferring Co-Functional Links From mRNA
Co-Expression Patterns (CX)
Functionally associated genes tend to show a similar expression
pattern across various biological contexts. Co-functional links
between these genes were inferred from diverse sets of expression
February 2020 | Volume 11 | Article 98
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profiles gathered from the Gene Expression Omnibus (GEO)
database (Clough and Barrett, 2016), ArrayExpress (Kolesnikov
et al., 2015), and Expression Atlas (Papatheodorou et al., 2018).
We assessed a total of 2,385 expression profiles (1,780 by
microarray and 650 by RNA-seq) and incorporated 28 datasets
comprising 2,047 expression profiles into the final co-expression
network. Affymetrix microarray data (Barley genome array,
GPL1340) were normalized by MAS5 software. RNA-seq data
were downloaded as raw data, quantified using Kallisto (Bray
et al., 2016), and normalized as transcripts per million (TPM).
The co-expression between two genes across expression profiles
was assessed by the Pearson's correlation coefficient (PCC) and
then benchmarked for functional associations by LLS. All the co-
expression networks from the 28 expression datasets
(Supplementary Table 2) were then integrated into a single
co-expression network using the weighted sum method
described above.
Inferring Co-Functional Links From Protein
Domain Profile Association (DP)
The domain composition of a protein reflects its function.
Therefore, the co-functional relationship between proteins
can be inferred from the association between their domain
composition profiles. We downloaded a list of barley proteins
and identified domains in the InterPro database (Mitchell
et al., 2018) for each protein from the Ensembl Plants
database (Vullo et al., 2017). Then, mutual information
scores were computed between domain profiles. We used a
weighted mutual information (WMI) scheme, which assigns
more weight on rarer domains during mutual information
computation (Shim and Lee, 2016; Shim and Lee, 2020). We
calculated LLSs for gene pairs using a regression function
between WMI and LLS.
Inferring Co-Functional Links From
Phylogenetic Profile Associations (PG)
During speciation, genes that operate the same biological
processes tend to be inherited together. Therefore, we can infer
co-functional gene pairs based on their co-inheritance pattern
across a large number of species. Considering that gene
inheritance across species can be represented as phylogenetic
profiles, these can be used in the identification of co-inherited
genes. We first aligned all the 39,734 barley protein sequences
against total protein sequences from 1,626 bacterial genomes,
396 eukaryotic genomes, and 122 archaea genomes using
BLASTP (Altschul et al., 1990), and then constructed
phylogenetic profiles based on –log(E-value) of BLAST hit
scores. Previously, we found that domain-specific phylogenetic
profile analysis improved inference of co-functional links (Shin
and Lee, 2015). Therefore, we calculated mutual information
between two phylogenetic profiles for each of the three domains
of life, resulting in three networks for profiles with bacterial,
eukaryotic, and archaeal genomes. The resulting networks were
scored by LLS and integrated into one single network for the
phylogenetic profile method.
Frontiers in Plant Science | www.frontiersin.org 3
Inferring Co-Functional Links From Gene
Neighborhood (GN)
Prokaryotic genes that operate in the same biological process
tend to be located closely in chromosomes, often forming
operons. We thus can infer functional associations between
barley genes based on the proximity of their orthologs in
prokaryotic genomes with two complementary measures:
distance-based approach and probability-based approach (Shin
et al., 2014; Szklarczyk et al., 2017). Considering 122 archaeal
genomes and 1,626 bacterial genomes, the resulting two
networks obtained by the different gene neighborhood
measures were then scored by LLS and integrated into a single
co-functional network for the gene neighborhood method.

In addition, we inferred co-functional links between barley genes
from ortholog neighborhoods in metagenomes (Kim and Lee,
2017), which provide tremendous amounts of bacterial contigs.
We used two distinct metagenomics resources, the Human
Microbiome Project (HMP) database (Huttenhower et al., 2012)
and the global ocean microbiome database from the TARA Oceans
study (Sunagawa et al., 2015). We used DIAMOND, a fast sequence
aligner (Buchfink et al., 2014), due to the enormous number of
metagenomic contigs. Inferred co-functional links were scored by
LLS and integrated with those based on neighborhood in fully
sequenced prokaryotic genomes into a single network.

Inferring Co-Functional Links by
Transferring Orthologous Gene Pairs From
Other Species
Not only individual genes but also pathways are functionally
conserved during speciation. Therefore, we may transfer
functional information of orthologous gene pairs between
species. This conserved co-functional relationship is called
associalog (Kim et al., 2013). For protein homology mapping
between barley and other species, we used InParanoid (Remm
et al., 2001), which provides sensitive orthology mapping by
taking account of co-orthologs. Associalogs were then
transferred from a total of 21 co-functional networks for nine
other species: AraNet v2 (Lee et al., 2015b), MaizeNet (Lee et al.,
2019), RiceNet v2 (Lee et al., 2015a), HumanNet v2 (Hwang
et al., 2018), MouseNet v2 (Kim et al., 2015), DanioNet (Shim
et al., 2016), WormNet v3 (Cho et al., 2014), FlyNet (Shin et al.,
2015), and YeastNet v3 (Kim et al., 2014).

Codes and Data Availability
Source codes for network search functions and edge information
of BarleyNet are freely available from github (https://github.com/
netbiolab/BarleyNet/).
RESULTS AND DISCUSSION

Construction of Barleynet via the
Integration of Omics Data From Barley
and Many Other Species
We inferred co-functional links between barley genes by
analyzing various types of omics data obtained from cultivated
February 2020 | Volume 11 | Article 98
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barley, three other plant species (Arabidopsis thaliana, Zea mays,
and Oryza sativa), five animal species (human, Mus musculus,
Danio rerio , Caenorhabditis elegans , and Drosophila
melanogaster), and baker's yeast, Saccharomyces cerevisiae.
Using our network evaluation scheme based on Bayesian
statistics (see Materials and Methods), we selected networks
with at least 2,000 inferred links more likely than those by
random chance (i.e., LLS > 0). A total of 25 co-functional
networks of barley genes inferred from distinct data sources
(Supplementary Table 1) were integrated into a single final
network mapping 1,272,200 co-functional associations between
26,145 barley genes (covering ~65.8% of 39,734 high-confidence
genes) (Figure 1A). All edge information regarding the
integrated BarleyNet and each of the component co-functional
networks are freely available at the “Download” tab of the
BarleyNet web server (www.inetbio.org/barleynet/download.
php) and github (https://github.com/netbiolab/BarleyNet/),
Frontiers in Plant Science | www.frontiersin.org 4
under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by-sa/4.0/).

Since a considerable amount of co-functional links were
derived from other species rather than barley itself, we first
summarized information sources supporting BarleyNet links
(Figure 1B) using the UpSet visualization tool (Lex et al.,
2014). We roughly classified network links into three groups
based on the species of origin of the inferred co-functional
association: “barley,” “other plants (A. thaliana, Z. mays, or O.
sativa),” and “animals or yeast (human,M. musculus, D. rerio, C.
elegans, D. melanogaster, or S. cerevisiae).” We first found that
the largest portion of BarleyNet information derived from co-
functional association between orthologous genes in animals or
yeast (579,005 links, 45.5% of all BarleyNet links). Given that
many proteins are highly conserved between unicellular
eukaryote yeast and multicellular eukaryote plant species, and
much information is available from yeast interactomes, the large
FIGURE 1 | Overview of BarleyNet. (A) BarleyNet was constructed by integrating functional associations between barley genes inferred from the co-expression of
genes (CX), gene neighborhood (GN), association of protein domain composition profiles (DP), phylogenetic profile association (PG), and those transferred from 21
networks previously constructed for other species based on functional association between orthologous proteins (associalog). (B) Summary of BarleyNet edge
information with UpSet visualization. Network edges were classified into three groups based on the species of origin of the inferred co-functional association:
“barley,” “other plants” and “animals or yeast.” The bar height represents the number of BarleyNet links for each species group or their combination. The red bar
represents the number of links that are 20 fold more likely than gene pairs by random (i.e., high confidence links).
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observed contribution of yeast-derived information to BarleyNet
was expected. In addition, we previously observed a large
contribution of animal-derived information during the
construction of co-functional gene networks for other plant
species (Lee et al., 2010; Lee et al., 2019). Thus, we confirmed
the usefulness of information derived from non-plant species in
the reconstruction of a co-functional network of plant genes.
Next, we observed a similar amount of co-functional links
between barley genes was derived from the contribution of a
group of other plant species. BarleyNet links derived from barley
have a larger portion of links with high confidence (20-fold more
likely than random gene pairs) than those derived from other
plants (~26.5% compared with ~10%). This suggests that omics
data generated from barley made critical contributions in
improving the accuracy of BarleyNet. Finally, we noticed that
only a small portion of BarleyNet links were supported by
multiple species, although the majority of them are high
confidence links (30–50% of links supported by two species
groups and ~83.5% of links supported by all groups).
Altogether, the contribution of different species groups to
BarleyNet demonstrated the advantages of integrating omics
data derived from various organisms in the construction of
system-wide models with high completeness and accuracy.
Barleynet Is Highly Predictive for
Biological Processes in Barley
We evaluated the overall quality and predictive power of
BarleyNet. First, we assessed its accuracy against an existing
barley gene network. To avoid circularity in network evaluation,
we compiled a test dataset of gene pairs from the agriGO v2.0
database (Tian et al., 2017) which was not used for training the
co-functional network of barley genes. The agriGO database
provides gene ontology (GO) annotations for many agricultural
animal and plant species, including barley. We found that gene
pairs for the same GO biological process (GOBP) term
comprised only 1.72% of gene pairs used for training
BarleyNet, which indicates independence from the dataset used
for network evaluation. The evaluation could be biased by gene
pairs for GOBP terms that annotate a very large number of genes,
so we ignored GOBP terms that annotated more than 1,000
genes during network evaluation. Subsequently, we compared
BarleyNet and a barley network available at the STRING v11
database (Szklarczyk et al., 2019) regarding network accuracy
(precision of gene pairs for the same GOBP terms) and coverage
of all high confidence genes in barley (Figure 2A). We found that
BarleyNet is substantially more accurate than the STRING
database network of barley genes for any genome coverage. For
example, in networks that cover 30% of the barley genome, the
accuracy of BarleyNet is ~85.2% whereas that of the STRING
database barley gene network is ~24.5%. Although the latter
contains ~2.6 million links, it covers only 41% of all 39,734 high-
confidence genes in barley, whereas the former covers ~65.8% of
them. From these results, we concluded that BarleyNet is
substantially more comprehensive and accurate than the
STRING database network of barley genes.
Frontiers in Plant Science | www.frontiersin.org 5
Next, we evaluated the network-based gene prioritization for
biological processes in barley. In an accurate and
comprehensive co-functional network, the genes involved in
same biological processes or pathways are highly likely to be
connected by the network. If we prioritize genes for a particular
pathway by network connections to the known genes of the
pathway, all of the known pathway genes will be ranked
generally higher than the others. Then, we may assess the
network-based gene prioritization by receiver operating
characteristic (ROC) analysis for the pathway genes, which
can also be summarized as the area under the ROC curve
(AUROC). We computed AUROC scores not only for entire
ranks of predictions but also for early retrieved candidates,
because only the top several hundred candidate genes are
generally considered for the follow-up functional analysis in
real practice. We thus computed AUROC until reaching false
positive rates (FPRs) of 1% and 10%, in addition to AUROC for
all predictions. We compared BarleyNet and the STRING
database network of barley genes in the prediction of
pathways annotated by the Plant Reactome database, ver. 59
(Gupta et al., 2016; Naithani et al., 2017), which was not used
for training either BarleyNet or the STRING database network.
We computed the AUROCs for 122 Plant Reactome pathways
that annotate at least 10 barley genes and found that BarleyNet
is significantly more predictive than the STRING database
network for pathways with both early retrieved predictions
and entire ranks of predictions (P < 0.001 by the Wilcoxon
signed rank test for all comparisons, Figure 2B). From these
results, we concluded that BarleyNet is substantially more
predictive for various biological processes in barley than the
existing STRING database gene network.

Since BarleyNet includes a large number of co-functional
links between barley genes inferred from other species, we
evaluated the contribution of network information originating
from different species. For the analysis, we generated “dropout”
networks that excluded the co-functional links derived from
barley, plant species other than barley (Arabidopsis, rice, or
maize), or animals and yeast (Figure 2C). We observed large
decreases in the AUROCs for all range of FPRs by excluding links
derived from barley. Notably, we observed significant decreases
in the overall AUROC by excluding links inferred from other
species, but not in the AUROCs for early-retrieved candidates
(for FPR < 0.01 or 0.1). These results suggest that co-functional
links transferred from other species by orthology contribute to
the functional prediction, but not as much as those inferred from
species-specific omics data sources.

We also tested robustness of BarleyNet-based functional
prediction by evaluating networks with some degree of noise in
network information. For the analysis, we generated 100
networks in which 20% of BarleyNet links were randomized
while maintaining characteristics of network topology. Although,
we observed significant decrease in AUROC with 20% of noise in
network information, they were still higher than those by
STRING database network (Figure 2D). This result suggests
that BarleyNet-based functional prediction is relatively robust to
some degree of noise in network information.
February 2020 | Volume 11 | Article 98
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Gene Prioritization for Complex Traits
Using Barleynet
The majority of omics studies on crop species aim to identify
genetic components underlying economically important and
complex traits such as environmental stress responses.
Through the above presented benchmarking with GOBP and
Plant Reactome database, BarleyNet proved to be highly
predictive for pathways, but not yet for complex traits. Most
Frontiers in Plant Science | www.frontiersin.org 6
human diseases are complex traits and a large portion of human
disease genes were shown to be strongly associated with specific
pathways (Li and Agarwal, 2009). We thus expected that genes
for complex plant traits should be associated with specific
pathways, and given that BarleyNet is highly predictive for
pathways, it might also be predictive for complex traits. If a
network is predictive for a complex trait, the genes involved in
this trait might be more connected to one another than to other
FIGURE 2 | Assessment of BarleyNet and a network of barley genes by STRING database. (A) The quality of the networks was evaluated based on precision for
gene pairs that have the same GOBP terms by agriGO annotations and coverage of all barley genes. BarleyNet showed substantially higher precision than the
network of barley genes by the STRING v11 database considering the entire range of coverage. (B) Comparison of area under receiver operating characteristic curve
(AUROC) of 122 pathway gene sets derived from Plant Reactome database. Box-and-whisker plots represent 10%, 25%, median, 75%, and 90% of 122 AUROC
scores. The same AUROC analyses were conducted until 1%, 10%, and 100% of false positive rate (FPR) were reached. BarleyNet showed a significantly higher
prediction power than the STRING database barley gene network in all FPR ranges (P < 0.001, Wilcoxon signed rank test). (C) AUROC analyses were conducted as
for (B) with BarleyNet and the following “dropout” networks by excluding links from animals and yeast (w/o animals, yeast), by excluding links from Arabidopsis, rice,
and maize (w/o other plants), and by excluding links from barley (w/o barley). ns, not significant; *, P < 0.05; ***, P < 0.001 by Wilcoxon signed rank test. (D) AUROC
analyses were conducted as for (B) with 100 networks in which 20% of BarleyNet links were randomized. Average AUROC scores for the 122 pathways gene sets
across 100 networks are represented in the Box-and-whisker plot for randomized networks.
February 2020 | Volume 11 | Article 98

https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Lee et al. BarleyNet
genes. We thus evaluated BarleyNet in the prediction of complex
traits based on the connectivity within a group of genes involved
in the same traits. For this, we compiled genes for complex traits
from drought-induced proteomic profi les of barley
(Chmielewska et al., 2016). This study identified differentially
accumulated proteins in the leaves and roots of two barley
cultivars, Maresi and Cam/B1/CI (referred to as CAM), after
10 days of drought. We observed a significantly higher
connectivity within a group of genes than in random gene sets
of the same size in both organs of both cultivars (Figure 3A),
which indicated that BarleyNet is significantly more predictive of
drought response than random chance. The predictive power of
BarleyNet for drought response was confirmed by high AUROC
scores for the same groups of drought response genes
(Figure 3B).

Considering the obtained results, we hypothesized that we
might prioritize additional candidate genes for drought response
through their connections to experimentally identified genes.
This approach is basically a network-based search for novel
candidate genes for a complex trait using previously identified
genes as guides. Candidate genes were then ranked by sum of
edge weight scores to the guide genes, which reflects their
functional closeness. We implemented this network algorithm
as a pathway-centric search method in the BarleyNet server. This
server application also provides a network viewer, which
visualizes a network of user-input guide genes and their closely
connected neighbors. For example, Figure 3C shows a network
of drought response genes identified from differentially
accumulated proteins in CAM roots and their 50 closest
neighbors. The neighbors of guide genes could be novel
candidates involved in drought response in barley. Although
providing a proxy for future functional studies, these candidate
genes from network-based prediction should be taken with some
careful consideration. The gene set analysis function of the
pathway-centric search enables users to test whether these new
candidates are enriched for relevant GOBP annotations. Since
GOBP annotations for barley genes are still very sparse, we also
employed annotations for orthologous proteins in three
relatively well annotated plant species: Arabidopsis, rice, and
maize. We found that GOBP annotations by orthology are useful
in the interpretation of novel candidate genes. For example, we
could not find any GOBP terms closely related to drought
response among the top five enriched barley GOBP
annotations. However, we found “response to heat” and
“cellular response to heat,” which are closely related to drought
response, among the top five enriched Arabidopsis GOBP
annotations (Figure 3D). Through the BarleyNet server, users
can run gene set enrichment analyses for GOBP terms of all four
plant species simultaneously.

A pathway-centric search provides additional information such
as the list of user-input guide genes, within-group connectivity
tests and AUROC analysis results for the guide gene set, as well as
the list of top 100 candidate genes. By selecting a specific candidate
gene, users can obtain detailed information including its
connected guide genes, edge scores, data sources that support
the prediction and their relative contribution, and GOBP
Frontiers in Plant Science | www.frontiersin.org 7
annotations (Figure 3E). For example, HORVU5Hr1G072420
was a candidate drought response gene ranked 13th. The
network viewer informed that six distinct data sources
supported the prediction, of which yeast co-citation (SC-CC)
data contributed the most (25.1% of the total prediction score).
Codes for all distinct data sources are listed in Supplementary
Table 1. Notably, the candidate genes were annotated as “response
to water deprivation” in Arabidopsis GOBP annotation but not in
barley, which demonstrates the usefulness of GOBP annotations
from other plant spec ies in the interpretat ion of
BarleyNet predictions.

Prediction of Gene Functions
Using BarleyNet
In this next step, we implemented the gene-centric search which
prioritizes biological functional concepts for a gene of interest.
Many proteins differentially accumulated in barley after drought
stress are not yet functionally annotated. With the gene-centric
search application, we can prioritize GOBP terms for genes
detected in drought conditions using GOBP terms that
annotate their network neighbors through information
propagation. Information can be propagated to both direct and
indirect neighbors in the network, and we only used the
propagation to direct neighbors. We prioritized GOBP terms
based on the sum of edge weight scores (log likelihood scores) to
the neighbors annotated by the GOBP terms.

Figure 4A shows a screenshot of gene-centric search results
for HORVU3Hr1G014120, which was differentially accumulated
in CAM roots but had no GOBP annotation yet. Gene-centric
search predicted “response to water” or “response to water
deprivation” genes within the top five prioritized GOBP terms
according to annotations for barley, Arabidopsis, and maize. This
example clearly demonstrated that the BarleyNet gene-centric
search is a useful tool in the functional interpretation of omics
data in the study of complex traits of barley.

Prediction of Stress Response Genes
Using Barleynet and Gene Expression
Data
Finally, we provided context-centric search: a network-based
prediction algorithm that uses differentially expressed genes
(DEGs) along with the barley gene network to prioritize those
associated with stress responses. In general, genes that respond to
biotic or abiotic stresses are detected through genome-wide
transcriptome profiling in which DEGs are considered to be
involved in the stress response. However, some of the DEGs
might play more important roles in stress response than others.
Moreover, genes that do not change their transcript levels may
also be involved in stress response. As discussed earlier, genes for
complex plant traits such as stress response are likely to be
associated with specific pathways. Therefore, we could prioritize
genes involved in stress response by the changes in expression
profiles of pathways they belong to. For this analysis, we pre-
defined each gene and its direct neighbors in BarleyNet as
subnetworks that represent pathways. We then selected
subnetworks of “hub genes” that had at least 100 neighbors.
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The algorithm then computed the significance of overlap
between user-submitted DEGs associated with a biological
context such as stress conditions and the neighbors of each
hub gene using Fisher's exact test. If the overlap between gene
Frontiers in Plant Science | www.frontiersin.org 8
sets turned out to be significant, the hub gene was considered a
“context-associated hub” highly likely to be involved in the
biological context. The prioritized context-associated genes
could be either DEGs or not.
FIGURE 3 | Predictions for drought response genes using BarleyNet. (A) Within-group edge connectivity was computed for drought response genes identified from
leaves and roots of two cultivars, Maresi and Cam/B1/CI (referred to as CAM), and 1,000 random gene sets of the same size. Asterisks indicate the within-group edge
count of each trait-associated gene set in BarleyNet. Within-group edge counts for drought response genes by BarleyNet were significantly higher than those by random
gene sets (P < 0.001 by a binomial test). (B) AUROC analysis for the same drought response genes. (C) Screenshot of network viewer, which visualizes a network of
drought response genes identified from differentially accumulated proteins in CAM roots (guide genes; blue nodes) and their 50 closest neighbors (candidate genes;
yellow nodes) in BarleyNet. The number of neighbors in the network can be controlled by selecting a score threshold at the bottom left area. Clicking the button at the
right bottom area allows gene set enrichment analysis for the selected neighbors. (D) Enriched GOBP terms among the 50 closest neighbors to the drought response
genes, based on barley (upper plot) and Arabidopsis GOBP annotations (lower plot). (E) Screenshot of the network viewer highlighting a selected candidate gene (yellow
node), HORVU5Hr1G072420. The viewer also highlights its connected user-input guide genes (i.e., drought response genes; blue nodes) and edges with their log
likelihood scores. The right-side panel shows related information such as data sources that support the prediction of HORVU5Hr1G072420 as a candidate gene
(Evidences) with relative contributions (% of total prediction score), as well as GOBP annotations for the candidate gene. Notably, the selected candidate gene
HORVU5Hr1G072420 was annotated for “response to water deprivation” in Arabidopsis GOBP annotations (marked by a red arrow).
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In order to demonstrate the utility of the context-centric
search application, we compiled 625 upregulated DEGs upon
heat stress in barley cultivar Rolap root (Pacak et al., 2016).
We manually evaluated novel candidate genes predicted by
the context-centric search using the 625 upregulated DEGs
(adj. p-value ≤ 0.05 and fold change ≥ 4) as input data. We
found that many top ranked predictions are also DEGs that
are annotated by GOBP terms for heat responses such as
Frontiers in Plant Science | www.frontiersin.org 9
“response to heat” and “cellular response to heat” (Figure
4B). Notably, we observed candidate genes that are not DEGs
but are annotated as heat response genes (see candidate genes
ranked 17th , 18th , and 20th) . These results c lear ly
demonstrated that the network-based prediction along with
functional genomics data facilitates the discovery of novel
candidate stress response genes that could not be identified
by expression profiles alone.
FIGURE 4 | Example results from gene-centric search and context-centric search analyses using BarleyNet. (A) Screenshot of BarleyNet gene-centric search results
with gene HORVU3Hr1G014120, which was not annotated by barley GOBP terms. GOBP terms for drought response, “response to water” and “response to water
deprivation,” are marked by red circles. (B) Screenshots of BarleyNet context-centric search results with 625 upregulated differentially expressed genes upon heat stress
in the roots of barley cultivar Rolap. The predicted genes between rank 2 and 16 were omitted. GOBP terms for heat stress response are marked by red circles.
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Because context-centric search uses network algorithm different
from that of pathway-centric search, they are expected to provide
different candidate genes. To investigate to what extent candidate
genes vary by alternative network algorithms, we compared
predictions by pathway-centric and context-centric searches for the
same input genes, 30 drought response genes from differentially
accumulated proteins in CAM roots. We found that 24 genes overlap
between top 50 predictions from the two different network searches
(48% overlap). Nevertheless, a functionally relevant GOBP term,
“response to heat,” was found to be enriched for both of the top 50
predictions, which indicates that both network-based methods can
provide highly probable candidate genes. These results also suggest
that users may use the alternative network-based methods
complementarily to obtain more confident candidate genes for the
follow-up functional analysis.
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