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Advances in remote sensing combined with the emergence of sophisticated methods for
large-scale data analytics from the field of data science provide new methods to model
complex interactions in biological systems. Using a data-driven philosophy, insights from
experts are used to corroborate the results generated through analytical models instead of
leading the model design. Following such an approach, this study outlines the
development and implementation of a whole-of-forest phenotyping system that
incorporates spatial estimates of productivity across a large plantation forest. In large-
scale plantation forestry, improving the productivity and consistency of future forests is an
important but challenging goal due to the multiple interactions between biotic and abiotic
factors, the long breeding cycle, and the high variability of growing conditions. Forest
phenotypic expression is highly affected by the interaction of environmental conditions and
forest management but the understanding of this complex dynamics is incomplete. In this
study, we collected an extensive set of 2.7 million observations composed of 62 variables
describing climate, forest management, tree genetics, and fine-scale terrain information
extracted from environmental surfaces, management records, and remotely sensed data.
Using three machine learning methods, we compared models of forest productivity and
evaluate the gain and Shapley values for interpreting the influence of categorical variables
on the power of these methods to predict forest productivity at a landscape level. The
most accurate model identified that the most important drivers of productivity were, in
order of importance, genetics, environmental conditions, leaf area index, topology, and
soil properties, thus describing the complex interactions of the forest. This approach
demonstrates that new methods in remote sensing and data science enable powerful,
landscape-level understanding of forest productivity. The phenotyping method developed
here can be used to identify superior and inferior genotypes and estimate a productivity
index for individual site. This approach can improve tree breeding and deployment of the
right genetics to the right site in order to increase the overall productivity across
planted forests.
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INTRODUCTION

Plantation forestry research seeks to optimise the productivity,
profitability, health, and sustainability of commercial forests.
This vital fibre supply system also provides many ecosystem
services and is critical in meeting sustainable development goals
to support the global population's increasing wood and fibre
demands. The annual global fibre demand is expected to reach
11.4 billion m3 by 2050 and this cannot be extracted sustainably
from the Earth's natural forests where growth rates are
commonly as low as 2 m3/ha/y (Sedjo and Botkin, 1997).
Intensively managed plantation forests must assume an
increasingly prominent role in providing for the future
demand in wood and fibre products. Increasing forest
productivity whilst safeguarding forest health and sustainability
will be critical to ensuring that this can be achieved (Sedjo and
Botkin, 1997; Powers, 1999; Dash et al., 2019). Intensively
managed forest systems such as the Southern hemisphere's
Pinus radiata D.Don (radiata pine), and the South-Eastern
USA's Pinus taeda L. (Loblolly pine) forests have been the
subject of long-standing and detailed research programmes
(Fox et al., 2007; Burdon et al., 2017). This research has helped
to deliver improved productivity, profitability and helped to
ensure wood fibre security.

Notable productivity increases have been achieved through
genetic improvement (Kimberley et al., 2005), silvicultural
intervention (Moore et al., 2018; Dash et al., 2019), and
increasing site productivity through competition control
(Richardson, 1993) and nutrient management (Will, 1980).
The advent of the application of sophisticated remote sensing
technologies to forest research has provided a new means for
estimating numerous phenotypic traits through characterising
the forest resource and providing a site description with
unprecedented detail across large spatial extents (Pearse et al.,
2017; Dash et al., 2017; Watt et al., 2019). This type of
information can guide forest managers towards more
comprehensive site specific management and provide an
opportunity for precision deployment of improved genetic
material. These datasets comprise a large number of
observations and complex, highly-correlated variables meaning
that traditional methods of analysis from forest research struggle
to extract meaningful insights from them within practical time
constraints to deliver meaningful findings. Combining these
datasets with the emerging data driven approaches from the
field of data science offers a new framework for extracting
valuable insight that can help improve the productivity of
plantation forests.

The application of high-throughput phenotyping to the
agricultural sciences has accelerated realisation of gain from
genetic improvement in many aspects of agronomy helping to
secure the global food supply (Shakoor et al., 2017). In a similar
manner, a framework for the application of high-throughput
phenotyping to plantation forestry by incorporating remote
sensing, genetic information, and site characteristics has been
proposed (Dungey et al., 2018). These approaches require
detailed quantitative phenotypic description of plant traits to
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be linked to information on the genetic composition of the
system under study. Conventional phenotyping has been
carried out manually and results in a bottleneck in data
availability as it is costly, labour intensive, and technically
challenging (Furbank and Tester, 2011; Araus and Cairns,
2014). Remote sensing offers a means by which phenotyping
can be carried out across large areas and can provide detailed
measurements of plant traits (Dungey et al., 2018). This
approach could revolutionise the realisation of genetic gains
and improve the understanding of the dynamics of key drivers
of forest productivity. However, extending the phenotyping
concept to the landscape scale is extremely challenging due to
the large size of these datasets and the difficulty in disentangling
the myriad of factors that influence growth across the forest
landscape. As the specifics of the underlying model controlling
the interaction between genetics and site factors is not
completely understood, a data driven approach is appropriate.

When designing a model in domain-specific science, one
strategy is to build a model from theoretical understanding
and adjust its parameters based on the observed data until it
fits with our interpretation of the process under study.
Unfortunately, in many instances, such models are not well
defined and the potential relationships between input variables
are still under investigation and thus, unknown to the experts
and researchers. The continual improvements of computational
processing and algorithmic development have seen the advent of
a new paradigm of data-driven modelling and the application of
non-parametric machine learning techniques to build strong
predictive models directly from the available data. One can
consider building a large set of these models and combining
them to obtain a stronger ensemble prediction. Neural network
ensembles (NNs) (Hansen and Salamon, 1990) are one example
of a machine learning method which can be combined in this
manner. NNs are built from sophisticated algorithms that make
them versatile, robust, scalable, and able to handle datasets with
high dimensionality; however, these methods are generally slow
and can be difficult to interpret. Support vector machines (SVM)
(Drucker et al., 1997) are another class of machine learning
algorithms that can be combined to handle complex nonlinear
decision boundaries and guarantee a unique global solution for
classification tasks; in recent years research interest in SVMs has
waned among data scientists since the emergence of NNs.
Random Forests (Breiman, 2001; Criminisi et al., 2012) rely on
averaging of decision trees in the ensemble while gradient
boosting methods (Natekin and Knoll, 2013) add new, weak
models sequentially. Both are computationally efficient, provide
clear insights into the impact of features (e.g. Gain and Shapley
values) and the decision tree construction. They are able to deal
with unbalanced and missing data yet they may over-fit on noisy
data sets and cannot predict beyond the range of the
training data.

Gradient Boosting Machine [GBM, (Friedman, 2001)] is a
powerful tool in the field of supervised learning that achieves
state-of-the-art performance on classification, regression, and
ranking tasks. In a similar manner to Random Forests, the most
popular implementations of gradient boosting combine the
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outputs from decision trees to build stronger predictors.
Although decision trees are robust when handling numerical
features, many data sets also include categorical features. These
are discrete sets of values that are not necessarily comparable
with each other (e.g. labels or nomenclatures) but may be equally
as important for prediction as numerical features. Categorical
features are commonly converted to numbers (ordinal encoding)
before training the gradient boosting but some novel
implementations have developed more efficient strategies
including one-hot (Elman, 1990), binary, baseN, and mean
encoding, or Bayesian encoders. While the rapid growth and
ease of implementing GBM have given both academics and
practitioners new ways of engaging and solving problems
(Lawrence et al., 2004; Foucard et al., 2011; Torlay et al., 2017),
this speed of adoption has not been followed by the development
of clear guidelines to select algorithms and implementations to
use according to data set properties (prediction, classification,
sparsity, dimensionality).

Building on a previously developed conceptual framework
(Dungey et al., 2018) for a forest phenotyping platform, in this
paper we seek to develop an advanced analysis pipeline for
integrating phenotypic traits with genetic and site information
across a major plantation forest. We compared three state-of-the-
art implementations of gradient boosted decision trees (GBDTs)
XGBoost (Chen and Guestrin, 2016), LightGBM (Ke et al., 2017),
and CatBoost (Dorogush et al., 2018) to model forest productivity
as a function of both numerical and categorical features.
Specifically, we measured the model training and prediction
times, as well as the root-mean-square error score (RMSE) and
the coefficient of determination (R2) for the testing and the
Frontiers in Plant Science | www.frontiersin.org 3
training data sets. Thus, we were able to identify the fastest
model with the best accuracy that was most robust to noise.
METHODOLOGY

Study Site and Features of Interest
The data were collected from Kaingaroa forest which is located in
the central North Island region of New Zealand (Figure 1). The
study was restricted to stands of P. radiata, which cover 90% of
the ∼180 000 ha of the forest where all the features were
interpolated to a 25 m resolution. This resolution is equivalent
to the size of the measured field plots used in the models of
productivity (see eq. 1), and could be improved by developing
models at tree-level but this would require a totally
different approach.

The methods used to derive the analytical data set were
detailed in (Dungey et al., 2018) and are briefly summarised
here for the convenience of the reader. The forest managers
provided a geo-spatial database describing the silvicultural
operations (Table A3) and soil records. This database included
the tree species, initial and current stand density, pruning and
thinning status, soil classification (Hewitt et al., 2010) and carbon
to nitrogen ratio (C/N). The Radiata Pine Breeding Company
(RPBC, Rotorua, New Zealand) provided information on seedlot
identities and associated growth and form (GF) ratings, and an
estimate of the genetic performance of each seedlot within the
forest (Table A1).

A large variety of climatic variables (e.g., annual and seasonal
averages for temperatures, rainfall, wind speed, sunshine hours, and
FIGURE 1 | The study forest location within New Zealand and the extent of the ALS data outlined in red.
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total global radiation see Table A2) were extracted from national
surfaces generated by the New Zealand crown research institute
National Institute of Water and Atmospheric Research (NIWA)
and clipped to the extent of the Kaingaroa forest. Finally, an
airborne laser scanning (ALS) survey and field measurement
dataset were processed to extract topographical features (detailed
in Table A3) (Bahner and Antoni, 2009) and derived features such
as visible sky, valley depth (Rodriguez et al., 2002), wind exposure
(Gerlitz et al., 2015) and wetness index, and tree phenotypic traits
such as tree height, Site Index (Watt et al., 2015), and leaf area index
(LAI) (Pearse et al., 2017).

Field and Remote Sensing Data
Systematic sampling without replacement was employed to
locate field plots throughout the study forest. In total 500 plots
were located at the intersections of a grid that had a randomised
start point and orientation and were measured between the 1st
March and 8th August 2014. The sampling unit was a slope
adjusted 0.06 ha bounded, circular field plot. A survey grade
global navigation satellite system (GNSS) was used to fix the
centre of each plot. Within each field plot diameter at breast
height (dbh) was measured for all trees. Tree height was
measured for a subset of plot trees, selected from across the
dbh range, that were free from excessive lean or malformation.
These field measurements were used to calculate Site Index.

An ALS survey was undertaken between the 23rd January and
6th March 2014 using an Optech ALTM 3100EA Pegasus
scanner to collect a discrete, small-footprint dataset. Data
collection was characterised by a pulse rate frequency of 100
kHz, a maximum scan angle of 12° off-nadir, and a swath overlap
of 25%. These settings yielded a data set with a footprint size of
0.25 m and a mean pulse density of 11.5 points m2. Returns were
classified into ground and non-ground returns automatically
using the TerraScan module of the TerraSolid software product
(Terrasoid, Espoo, Finland). Classification accuracy was
improved by subsequent manual inspection and reclassification
where required. Metrics extracted from the ALS data included
height percentiles (P5ht, P10ht, P20ht,…, P99ht, m), the mean
(Hmean, m) and maximum height (Hmax, m), several metrics
describing return height distribution through the canopy
[skewness, coefficient of variation, standard deviation (SD) and
kurtosis] and measures of canopy density, and pulse penetration,
Frontiers in Plant Science | www.frontiersin.org 4
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ground (Pzero, %) and the percentage returns above 0.5 m
(Pcover, %). These descriptive variables providing information
on the canopy structure were extracted from the ALS data and
were used in combination with the field plot data to model the
phenotypic trait Site Index across the study forest.

Derivation of Site Index
The response variable used in this study was Site Index. Site Index
for P. radiata in New Zealand is defined as the mean top height at
age 20 years (Goulding, 2005). Field data was used to fit a regression
between dbh and measured tree height and this was then used to
predict the heights of unmeasured trees within each plot. This
information was used to calculate mean top height (MTH), defined
as the average height of the primary leaders of the 100 largest
diameter trees per hectare. This measure of MTH was used to
estimate Site Index (SI) by rearranging the following equation:

MTH = 0:25 + (SI − 0:25)
exp( − aT)
1 − exp(20a)

� �
1

b0 + b1SI
(1)

where T = age (years) taken from stand records and a = a0 + a1L +
a2E, where L = Latitude (°S) and E = Elevation (m). Model
coefficients were taken from a national height age model for P.
radiata in New Zealand (van der Colff and Kimberley, 2013).

Mapping Phenotypic Variation
An estimate of phenotypic variation across the landscape was
mapped through developing a spatial surface of forest
productivity. The parametric modelling methods described in
(Watt et al., 2015; Watt et al., 2016) were used to describe the
distribution of Site Index across the forest based on the ALS data
set and Site Index extracted from the field plots described above.
The purpose of this process was to provide a response variable
that can potentially be linked to genetic and environmental
factors across the study forest.

Gradient Boosting Methods
Gradient Boosting Machine (GBM) is a supervised learning
algorithm. Using a set of labelled training data as an input, it
builds a model that aims to correctly predict the value of each
training instance based on other information referred to as the
features of the instance. GBM creates a strong model by
sequentially combining weak models generated from a gradient
descent algorithm over an objective function. This objective
function optimisation is held out in the function space where
the function increments are the “boosts” and the weak learners
are the “base-learners”. The base-learners can include Markov
random fields (Dietterich et al., 2004), wavelets (Viola et al.,
2001), linear models, and decision trees. Decision Tree (DT)
learning is a method that develops a model by repeatedly
splitting subsets of the training instances. These methods
produce interpretable models that are useful for a wide range
of problems. Maximum performance is achieved when many
trees are combined into an ensemble model. The ensemble then
returns for each estimate, the value that appears the most often
TABLE 1 | Time and score comparisons for the training of the three GB
methods on the training set.

XGBoost CatBoost LightGBM

max_depth: 4 depth: 5 max_depth: 4
learning_rate: 0.05 learning_rate: 0.1 learning_rate: 0.1

Hyperparameters min_child_weight:
3

l2_leaf_reg: 5 num_leaves: 10

n_estimators:
6,877

iterations: 10,369 n_estimators:
6,571

one_hot_max_size:
10

Training Time 119 sec 518 sec 406 sec
RMSE 1.6968 1.6385 1.6736
R2 0.86 0.87 0.87
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(i.e., the mode) of all predictions, thus providing better accuracy
by reducing the variance of the estimate.

These favourable properties support the use of DT as a base
learner for the three GBDTs compared in this study where we
examined the eXtreme Gradient Boosting (XGBoost), the
CatBoost method (for categorical boosting), and the
LightGBM. XGBoost (Chen and Guestrin, 2016) was released
in March 2014 as a successor to the Multiple Additive Regression
Trees method (Friedman and Meulman, 2003). This method
maintained the interpretability of the tree boosting approach
whilst offering faster computation times (Simple/limited/
incomplete benchmark for scalability, speed and accuracy of
machine learning libraries for classification, 2017) and more
robust regularisation based on the Newton descent (Wright and
Nocedal, 1999; Rebentrost et al., 2016). Subsequently, LightGBM
(Ke et al., 2017) was developed in January 2017 and brought
novel techniques for splitting, more efficiently than the
histogram-based algorithm of XGBoost and for handling
categorical variables. The approach was later revisited and
enhanced with unbiased gradients calculated not on the
current model, like in classical GBDTs, but through random
permutations as implemented in CatBoost (Dorogush et al.,
2018) in April 2017.

The three implementations grow and prune their trees
differently and certain hyperparameters vary between the
GBDTs trialled. For example, XGBoost's min_child_weight (i.e.,
the minimum sample size at one node to decide either to stop or
keep splitting) is not defined in the CatBoost or LightGBM
algorithms, while some hyperparameters have different
limitations. CatBoost's depth parameter is restricted to between
1 and 16 but is without restrictions for the other methods. To
provide a fair comparison we carefully selected hyperparameters
that have similar functionality (regulation, iteration, depth/wide)
for all GBDTs tested (Table 1).

Categorical Features
A total of 62 features were used in this analysis of which eight
were categorical variables. These included features describing the
silvicultural management of the trees (e.g. thinning and site
preparation methods), type of seedling storage (containerised,
bareroot) and breeding methods (open/control pollination) at
the nursery, the type of genetic improvement (clonal/non-clonal
and seedlot identifier) and the NZ soil classification identifier.
Unlike CatBoost and LightGBM, XGBoost can only
accommodate numerical values and categorical features must
be encoded manually during data preparation. LightGBM uses a
special algorithm, faster than one-hot encoding (Elman, 1990) to
partition the value of categorical features specified by their
indexes. Under this approach, the histogram of a categorical
feature is sorted according to its accumulated values
(sum_gradients/sum_hessian) and then the best split on the
sorted histogram is found according to the training objective at
each split (Fisher, 1958). CatBoost uses two methods to encode
categorical features. The categorical features with a number of
different labels less than or equal to the given one_hot_max_size
Frontiers in Plant Science | www.frontiersin.org 5
parameter are encoded using one-hot encoding. The remaining
categorical features are transformed by quantisation by
computing statistics (usually average or median of the
response) on random permutations of the dataset and
clustering the labels into new classes with lower cardinality
[see Eq. 1 in (Dorogush et al., 2018)].

Model Implementation and Evaluation
We developed scripts to implement the three GBMs using
Python 3.7.3 (van Rossum, 1995) on the Ubuntu 16.04
operating system with 12 Intel® CoreTM i7-8700K CPU @
3.70GHz and 32GB Memory. We used the GPU-accelerated
versions of the three GBMs (Mitchell and Frank, 2017; Zhang
et al., 2017; Dorogush et al., 2018), supported by an NVIDIA
GeForce GTX 2080 GPU. In our workflow, the overall steps for
implementing a regression tree model are as follow:

1. Processing missing and categorical values;
2. Split into training and testing sets;
3. Use the training set to tune the hyperparameters;
4. Train a model on the training set and evaluate the error on

the testing set;
5. Train a model on all data for interpretation and estimation/

prediction.

The first step of the data pre-processing was the conversion of
the Not-a-Number (NaN) values to a large negative integer (e.g.,
-1,000) to be i) understandable by the three methodologies and ii)
separated from the lowest observations (close to zero). A copy of the
dataset is created from which the observations without the
dependent variable are removed, reducing the number of
observations from 2746851 to 2311918 (i.e., 84% still present). To
avoid any misconversion from string/float to integer, and since
XGBoost handles only numerical values while CatBoost and
LightGBM encode categorical values as part of their
implementations, the categorical features were coded as an
integer. Then, to minimise overfitting while retaining randomness
and fair representation (and because we have a large dataset), we
used a shuffled, stratified split (train_test_split function from sklearn
library (Pedregosa et al., 2011) to partition the dataset into a training
set (70%) and testing set (30%) that are used for hyperparameter
tuning and evaluating prediction error from the trained model on
the testing set, respectively.

As hyperparameter tuning using a conventional grid search is
an extremely computationally intensive process, we developed an
efficient oriented hyperparameter tuning process. Hyperparameter
tuning was achieved through the implementation of an oriented
grid search in which the optimised parameter set is selected
iteratively. During the first tuning iteration, the first
hyperparameter is evaluated over its entire range of values using
3-fold cross-validation (3-CV) based on the RMSE score. The best
hyperparameter values are then retained for the next tuning
iteration. During subsequent tuning iterations, the original
combinations are then evaluated over the current hyperparameter
range to select a new best hyperparameter set. Therefore, for p
hyperparameters of each range np, instead of having

Qp
i=1 np tuning
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iterations for grid search, this stage is reduced to n1(np-1) number of
iterations which significantly reduces the computational load of the
hyperparameter tuning process.

Due to the complexity of the data set and the noise resulting
from extrapolating and merging spatial data from various
modularities (remote sensing, climate stations, etc.), the
early_stopping argument which halts training when the score
does not improve, does not provide a robust solution against
overfitting. This is because the RMSE score continues to slowly
decrease for a great number of trees (i.e., iterations) and/or
depth. This results in a tendency to overfit the model without
significant improvement in model predictive accuracy. To
overcome this whilst maintaining some stochasticity in the
future estimations and predictions, we integrated a condition
on the best iteration being the step where

test _ rmse _mean − train _ rmse _mean > 0:1 (2)

is verified, so that a variability of 10% is authorised between the
average RMSE score of the 3-CV between the training
(train_rmse_mean) and the testing (test_rmse_mean) sets.

A model was then fitted to the training data with the best
hyperparameters set from the lowest iteration that satisfied the
condition of Eq. 2. Using this model, a prediction for the testing set
was developed to validate the model based on its accuracy and
robustness. To assess model accuracy, we calculated the coefficient
of determination (R2, see Eq. 3), i.e., the proportion of variance in
the dependent variable that is predictable from the features, and the
RMSE (Eq. 4), this being the average deviation of the fitted values (fi,
i.e., predicted values) from the observed values (yi).
Frontiers in Plant Science | www.frontiersin.org 6
R2 = 1 −oi(y1 − fi)
2

oi(yi − �y)2
(3)

Where ȳ is the mean of the observed values.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=1
(yi − fi)

2

s
(4)

Where N is the number of observations.
Finally, we use the entire data set to fit an original model with the

best hyperparameters set from the lowest iteration that met the
condition in Eq. 2. This final model was used to estimate themissing
observations removed during the preprocessing step and to evaluate
the direct impact of some features on the forest productivity.

We investigated the influence and interactions of the key features at
both a global and a local level. At a global level, we extracted the most
important features with the greatest predictive power and characterised
the importance of these features with the “Gain” metric [also called
Gini Importance orMeanDecrease in Impurity (Breiman, 2017)]. This
metric reveals the relative contribution of the corresponding feature to
themodel by summing the improvement in accuracy (or gain) per split
for each decision tree in the model. At a local level, we can identify
which features are most important for each individual prediction in the
context of the other feature values. For example, while the impact of
temperatures might be highly influential for the entire forest, trees
growing at higher altitudes might be most strongly influenced by the
elevation or aspect of the growing site. To explore these local influences,
we used the Shapley values [equation 5 and (Shapley, 1953; Lundberg
and Lee, 2017)] that calculate the importance of a feature by comparing
model prediction with and without the inclusion of the feature of
interest. Shapley values were calculated as

fi = o
S⊆ F=i

jSj ! (jFj − jSj − 1) !
jFj ! (fS∪i − fS) (5)

where fi is the Shapley value of a feature i (from the set of
features F). At a high level, interpretation of equation 5 calculates
the difference betweenmodel prediction with [(f (S ∪i)] and without
[(f (S)] the feature of interest i. Effectively, the method retrains the
TABLE 2 | Time and score comparisons for the validation of the three GB
methods on the testing set.

XGBoost CatBoost LightGBM

Prediction Time 0.76 sec 8 sec 19 sec
RMSE 1.7595 1.7137 1.7344
R2 0.85 0.86 0.88
FIGURE 2 | (A) XGBoost gain: number of observations affected by the splits based on a feature. (B) LightGBM gain: total sum of gain on prediction from the splits
based on a feature (C) CatBoost gain: average gain on prediction from the splits based on a feature.
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model on all feature subsets S ⊆ F, the change in prediction
quantifies the impact of the feature. This is done in every possible
order to keep the comparison of features fair since the order in
which a model is exposed to features can affect its importance.
Therefore, the final Shapley additive explanation (SHAP) values
arise from averaging the fi values across all the possible orderings.

The code for the proposed productivity models and GBM
comparison is available at https://github.com/maxBom
brun/forestPhenotyping.
Frontiers in Plant Science | www.frontiersin.org 7
RESULTS

Model Development and Hyperparameter
Tuning
Hyperparameters for all three GB methods investigated were
successfully tuned and the final model was fitted to the
experimental dataset. The hyperparameters selected through
the tuning process were similar for all three GB models. The
optimal max_depth ranged between 4 and 5 while the learning
FIGURE 3 | Impact of variables for XG Boost (A), Light GBM (B), and Cat Boost (C). Every observation has one dot in each row. The position of the dot on the x-
axis is the impact of that feature on the model's prediction for the observation, and the colour of the dot represents the value of that feature for the observation.
March 2020 | Volume 11 | Article 99

https://github.com/maxBombrun/forestPhenotyping
https://github.com/maxBombrun/forestPhenotyping
https://www.frontiersin.org/journals/plant-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Bombrun et al. Productivity Characterisation Through Machine Learning
rate selected varied between 0.05 for XGBoost to 0.1 for both
CatBoost and LightGBM (Table 1). Only XGBoost has a
min_child_weight parameter and this was tuned to a value of
3. All three models included a hyperparameter for the number of
estimators and although we tried to keep them in the same range,
the values verifying Eq. 2 varied between models with 6,877 for
XGBoost, 10,369 for CatBoost, and 6,571 for LightGBM
(Table 1).

Overall, the training RMSE and R2 scores were very similar
for the three models tested (Table 1). XGBoost was faster for
training and prediction, but the model was slightly less accurate,
most likely due to the fact that the categorical variables were not
encoded. The training of CatBoost took almost two minutes
longer than LightGBM and four times longer than XGBoost.
This was because of the high number of iterations needed to
converge with the optimal set of hyperparameters. However,
CatBoost exhibited the best model performance, producing the
lowest RMSE and highest R2 values for the training data.
LightGBM produced the highest R2 score for both training and
validation and had an acceptable time for training and
predicting, yet the longest for the latter.
Model Validation
Model validation showed that all three models provided highly-
accurate predictions of Site Index (Table 2). The LightGBM
model produced the highest R2 value (0.88) followed by CatBoost
(0.86) and XGBoost (0.85). CatBoost produced the lowest value
of RMSE (1.71 m) followed by LightGBM (1.73 m) and XGBoost
(1.76 m). Prediction times for all three models were very fast and
Frontiers in Plant Science | www.frontiersin.org 8
the best performance was achieved using XGBoost (0.76 sec)
followed by CatBoost (14 sec) and LightGBM (19 sec).

Model Interpretation
We trained a final model with all the available data for each
implementation and computed the gain to provide insight into
the relative importance of each feature. Although each method
implemented showed similar “split-based” measures of gain, the
gain scores were not directly comparable due to slight differences
in the way these are calculated. Gain for XGBoost is influenced
by the count of the number of samples affected by the splits based
on a feature (Figure 2A), for LightGBM the total gain of splits
which use the feature is summed (Figure 2B), while for CatBoost
gain values show for each feature, how much on average the
prediction changes if the feature value is permuted (Figure 2C).

The ten most important features varied somewhat between
the three different models. The XGBoost model (Figure 2A) does
not include any of the categorical variables in the top ten features
of importance, while information on the genetic identity
(seedlotCod) appears in the most important features for both
CatBoost and LightGBM and the soil classification (soil_final)
appears in the five most important features of CatBoost. For the
XGBoost model, the most important predictors were features
related to the climatic conditions such as seasonal temperatures
and global solar radiation. Features describing LAI and
silvicultural intervention were also included in the ten most
important predictors for XGBoost. The climatic conditions were
also highly important in the LightGBM model (Figure 2B)
although the Seedlot ID (seedlotCod) was the most important
feature for predicting Site Index. The most accurate model was
FIGURE 4 | (A) Original raster layer of the Site Index across the study forest with missing values. (B) Predicted raster layer of the Site Index based on the CatBoost model.
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CatBoost (Figure 2C) and the most important predictors for this
model were seedlot ID (seedlotCod), spring temperature and LAI
followed by a series of predictors relating to the terrain, soil
classification (soil_final), silvicultural intervention, and other
seasonal temperatures.

Using the final models, we calculated and plotted the Shapley
values (SHAP) for every observation across the study forest. In
Figure 3 the features are sorted by the mean magnitude of the
associated SHAP value. In these figures, each datum represents
one observation, its colour is related to the actual value of the
feature (blue for low values and red for high values) while the
position on the x axis shows the impact, i.e., difference between
prediction and observation, which is positive (respectively negative)
when the feature generates improvement (respectively deterioration)
in the prediction.

The three models consistently show that high LAI has a small
positive impact on Site Index, but low values predominantly have a
large negative impact on Site Index (Figure 3). Some observations
are correlated to a small positive impact demonstrating the
interaction with other features within the model. Similarly, terrain
elevation (dtm_elevation) is inversely proportional to productivity -
the lower the elevation the more positive was the impact on Site
Index. In contrast, spring air temperature had a proportional
correlation where low temperatures have a negative impact and
higher temperatures have a positive impact on Site Index.

Productivity Estimation and Prediction
As CatBoost provided the most precise predictions we used this
implementation for prediction of productivity across the entire
original data set including the ∼435k missing observations
removed during the pre-processing step (Figure 4). These
predictions included areas for which there were no initial
estimates of Site Index as these were unproductive or unplanted
areas, or areas planted in other species. Comparisons of these
estimates with the original Site Index surface, derived from ALS
data, show a high level of correspondence (Figure 4B). The
predictions accounted for both the overall increase in productivity
from south to north and also were able to detect the fine scale high
productivity hotspots throughout the forest (see red areas—
Figure 4B).

As the seedlotCod feature is robustly encoded by CatBoost, an
estimation of productivity can be obtained from the model for
any seedlotCod that is well represented across the estate. This is
demonstrated through predictions of Site Index for the highest
productivity seedlot, Seedlot 104 and two seedlots with the lowest
productivity, Seedlots 207 and 274 (Figure 5D)1.

Seedlot 104 had a markedly higher mean Site Index (40.6 m)
than either Seedlot 207 (29.3 m) or 274 (26.2 m). Interestingly,
the high Site Index of Seedlot 104 was very consistent across the
range of spring air temperatures over which it occurred and a
fitted polynomial showed very little curvature over this range
(Figure 5D). In contrast, Site Index for clone 274 demonstrated a
marked quadratic relationship with air temperature increasing
from ca. 22 m at 9.2°C to an optima of ca. 32 m at a spring air
1To protect proprietary information all codes were re-assigned a random integer.
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temperature of ca. 11.0°C (Figure 5D). Similarly, Site Index for
Seedlot 207 increased to an optima around 11.5°C but did not
markedly decline at spring air temperatures above this optima
(Figure 5D).

Spatial predictions of Site Index for Seedlot 104 (Figure 5B)
demonstrate the relative stability of Site Index for this seedlot
across the temperature gradient (Figure 5A) found throughout
the forest. In contrast model predictions for Seedlot 207
demonstrate a broader range in Site Index which more closely
reflects the south to north gradient in spring air temperature.
DISCUSSION

Our principal aim was to implement a robust model capable of
handling a large, forest-scale (2.7 million observations) dataset
with complex (undetermined interactions) and noisy (disparate
acquisitions) features with mixed data types (categorical/
continuous) to predict forest productivity. Furthermore, we
sought to develop robust procedures to tune and select the
optimal model for our data set and to understand the
interaction between the key drivers of productivity. To
successfully achieve this objective, we investigated three recent
implementations of the GBM machine learning algorithms,
XGBoost (Chen and Guestrin, 2016), LightGBM (Ke et al.,
2017), and CatBoost (Dorogush et al., 2018). Across the estate,
Site Index was derived for 2.3 million observations (84% of total
forest) using data from an ALS survey and field plot
measurements. These were split into a training set to fit the
models and a testing set to validate and compare the model
performance in terms of both computation time and model
accuracy (Tables 1 and 2). In this manner, we were able to
successfully model Site Index using the experimental data set
with a robust and interpretable modelling approach. As the
assembled data set was large and complex it was critical that
we carefully considered the computing time when suggesting a
modelling approach. The modern GBMs assessed were able to fit
predictive models in a timeframe that was practically feasible
from an operational perspective. These promising results
indicate that the forest phenotyping approach we have
presented and explored shows significant potential for
improving forest productivity, accelerating the realisation of
gains from tree breeding programmes, and furthering the
domain of forest research.

A secondary objective of our study was to examine the
performance of the various GB models tested both in terms of
accuracy and computational performance. The model fitted by
the XGBoost method was the fastest for both the training (∼4
times) and prediction (∼8 times) times; however, this method
exhibited the highest RMSE and the lowest R2 scores making it
the least accurate of the three models tested. This is likely due to
the basic ordinal encoding of the categorical features, which is
faster to complete but not representative of decision thresholds
for these features which are therefore less used for splitting
(Figure 2A).

Thanks to the histogram-split method (Fisher, 1958) for
encoding the categorical features, the LightGBM offers the best
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R2 scores for training and validation of the three methods, but
just slightly better than XGBoost regarding the RMSE. It also
requires longer times to train the model and exhibited the
slowest time for prediction which is only 19 seconds.

The newest of the three implementation, the CatBoost
method (Dorogush et al., 2018), offered the best compromises.
Although its training time is slightly longer than the other
algorithms, it has the lowest error score for both training and
prediction. The flexibility to choose multiple encoding based on
the one_hot_max_size parameter (set up to ten in our model, see
Table 1) allowed us to use one-hot encoding for the categorical
features with low cardinality (here below ten), and use
quantisation to encode the categorical features with higher
Frontiers in Plant Science | www.frontiersin.org 10
cardinality (here 22 for soil_final and 1106 for seedlotCod).
This benefit is evident in Figure 2C where both seedlotCod
and soil_final are amongst the top ten features of importance for
predicting Site Index.

The data set used in this study is composed of 62 variables (61
features, plus Site Index) derived from high precision technology
(e.g., ALS survey), human inputs (silvicultural and inventory
field measurements) and permanent monitoring (climate
stations). Our processing pipeline purposely does not integrate
a feature reduction step although previous studies have shown
that this step can improve model performance and improve
computation times (Criminisi et al., 2012). We followed this
approach firstly because, unlike DT methods, boosting
FIGURE 5 | Interaction of GxE. (A) Spring temperature across the forest showing an increase from south to north (orange: low to red: high), (B) spatial variation in
Site Index for Seedlot 104 and (C) Seedlot 207. Also shown is (D) the relationship between spring air temperature and Site Index for Seedlots 104 (blue), 207
(orange) and 274 (green).
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approaches do not randomly select correlated features in each
tree (which, in DT, creates a 50%/50% importance for two
highly-correlated features), thus ensuring GBMs handle
multicollinearity correctly (Tianqi et al., 2019). Secondly, by
keeping all the features, our data-driven study can robustly
inform us about the importance of all features explored,
according to three different models. We inferred feature
discrimination at a global level (38 features have a gain lower
than 1 and amongst these 16 have a gain lower than 0.5 such as
nursery stock type and thinning type) and feature dependencies
at a per-observation level (Figure 5D) representative of the
GxExS interactions. Our approach could be reproduced on
new forests with less data by excluding some of the less
important features. The features which provided the lowest
gains might be time consuming, or dangerous to collect or
estimate and might introduce bias through their inclusion.
Nonetheless, it is important to note that some of the less
important features had the highest number of missing values,
making it important to confirm the significance of the features
with domain experts.

The investigation of the features of importance (Figure 2)
demonstrates the high value of the encoding for categorical
features. seedlotCod is important in the three models but a
prediction based on partial order decision could adversely
affect the output. As a result we confidently recommend the
encoding approach discussed and followed in this study. The
influence of genetics was strong in both the LightGBM and
CatBoost models and, along with key environmental variables,
was a significant factor impacting productivity. We observed
significant variation between seedlots across the environmental
range within the forest. This was used to map variation in
productivity between seedlots at a fine spatial scale under
varying environments for the study forests using the final
model. This novel approach provides new insight into the
impact of the interaction between genotype and site factors on
productivity within the plantation forests.

We found that Site Index was also highly sensitive to seasonal
air temperature in the study forest. This finding is consistent with
previous research using both process-based and empirical forest
productivity models that showed air temperature to be the most
important regulator of New Zealand grown P. radiata height
(Kirschbaum and Watt, 2011), Site Index (Hunter and Gibson,
1984; Watt et al., 2010) and volume (Watt et al., 2010). Previous
studies show an optimal temperature for growth which is reached
at a mean annual temperatures of between 12–15°C (Watt et al.,
2010). This optimum range is broadly comparable to the results
in our study which showed optimal Site Index to be reached at
spring air temperatures of ca. 11°C. The broad agreement of the
findings presented here with previous research, and our
understanding of the factors affecting forest productivity,
indicates that the approach developed is producing outputs that
accurately represent the biological system under investigation.

Our modelling approachmay provide valuable information for
optimising the deployment of seedlots for current conditions and
as climatic conditions change. Using this method the continual
optimisation of deployed genetically improved tree stock across
Frontiers in Plant Science | www.frontiersin.org 11
the forest can be used to respond to emerging risks (e.g. novel
pathogens or increased drought) and opportunities provided by
changing growing conditions. For example, the increased air
temperature expected under climate change could favour the
further deployment of clone 104 as this clone appears to have
high productivity at warmer air temperatures (Figure 5). Removal
of the poor performing seedlots from future deployment will help
to lift overall forest productivity ensuring that the wood and fibre
supply from the forest can be secured and improved. In a similar
manner, genotypes or seedlots that consistently perform well can
also be identified, and increased deployment of these to targeted
sites will help to improve forest productivity.
CONCLUSION

In this study, we have developed and optimised a processing
pipeline for a data-driven forest phenotyping platform using a
state-of-the-art machine learning approach. Remote sensing
methods such as ALS can now provide numerous candidate
phenotypic variables, at high-resolution, across forest sites. Such
data sets comprise large numbers of observations, and variables,
many of which are often highly correlated. It is rapidly becoming
intractable to apply traditional modelling methods to such data.
Data science methods, such as the model described here, can
provide a viable approach to analyse this data and derive useful
system insights.

Following investigation of three gradient boosting machines,
we found that CatBoost offered the greatest model precision and
acceptable computation performance for our requirements.
Through harnessing most of the available information within
the forest this model allowed us to quantify the impact of
genetics on forest productivity and how genetics interacts with
environment. The outputs from this model provide great insight
into how environment regulates productivity and give the forest
manager the means of increasing productivity through more
closely matching seedlots with their preferred sites. Further
research should acquire a broader range of qualitative data
(e.g., branching, straightness, wood density) for different
genotypes in order to characterise more comprehensively the
genetic traits dynamically affected by the interactions between
genetic, environmental, and silvicultural factors.
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APPENDIX A FEATURES OF THE
DATASET
TABLE A1 | Genetic variables of the dataset.

GxExS
trend

Feature
name

Description

Genetic SeedlotCod Categorical variable representative of the seed family.
Genetic Clone Categorical variable of two classes encoding the

condition “the tree is a clone”.
Genetic GF Growth and form score.
Frontiers in
 Plant Science
TABLE A2 | Environment variables of the dataset.

GxExS
trend

Feature name Description

Environment SiteIndex In New Zealand, mean top height at age 20
years derived from Eq. 1.

Environment Temp2 Mean temperature in degree Celsius per
day.

Environment glob.rad Amount of accumulated global solar
radiation in MJ/m2.

Environment sun.hrs2 Number of hours of sun per day.
Environment tot.rain2 Total amount of rain in mm per day.
Environment windspeed2 Mean wind speed in m/s at 10m above

ground level over 24 hours.
Environment Aspect3 Local morphometric terrain parameters

derived from multi-scale fitting based on
(Bahner and Antoni, 2009).

Environment dtm_elev3 Elevation of the terrain in metres calculated
from the digital terrain model.

Environment mid.slope.position3 Mid-slope position is assigned with 0
whereas maximum vertical distances to the
mid-slope in both valley or crest directions
are assigned with 1.

Environment normalised.height3 Normalised height allots value 1 to the
highest and value 0 to the lowest position
within a respective reference area (Bahner
and Antoni, 2009).

Environment sky.view.factor3 Calculation of visible sky based on (Bahner
and Antoni, 2009).

Environment slope.height3 Difference in altitude between the pixel and
the local channel.

Environment slope3 Local morphometric terrain parameters
derived from multi-scale fitting based on
(Bahner and Antoni, 2009).

Environment standardised.height3 Product of normalised height multiplied with
absolute height.

Environment Terrain Automated classification of topography
calculated from the DTM. Based on the
algorithm presented in (Iwahashi and Pike,
2007).

Environment valley.depth Valley depth calculated using the Top Hat
algorithm presented in (Rodriguez et al.,
2002).

Environment vector.ruggedness Vector ruggedness calculated following the
algorithm presented in (Sappington et al.,
2007).

Environment visible.sky Estimate of visible sky calculated using the
Top Hat algorithm presented in (Rodriguez
et al., 2002).

(Continued)
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TABLE A2 | Continued

GxExS
trend

Feature name Description

Environment wetness.index Topographic wetness index calculated using
(Moore et al., 1991).

Environment wind.exp Topographic assessment of wind exposure
calculated based on the algorithm
presented in (Gerlitz et al., 2015).

Environment cn_rk5 Carbon to nitrogen ratio representative of
the fertility.

Environment LAI Leaf area index, a dimensionless quantity
that is defined as the one-sided leaf area
per unit ground area. Derived using the
methods defined in (Pearse et al., 2017).

Environment soil_final Categorical variable representative of the
soil composure following the New Zealand
Soil Classification (Hewitt et al., 2018).
2These features are split into 5 variables representing annual, summer, autumn, winter,
and spring averages over 30 years.
3Feature extracted from SAGA GIS (http://www.saga-gis.org/en/index.html) based on the
DTM.

TABLE A3 | Silviculture variables of the dataset.

GxExS
trend

Feature name Description

Silviculture StandArea Area of the stand.
Silviculture Crop.Init.SPH Stand density at which seedlings were

established.
Silviculture Rotation The number of successive replantings

that occurred on this stand.
Silviculture ThinClass Categorical variable representative of

the thinning management regime such
as number of thinning or crown
release.

Silviculture ThinType Categorical variable representative of
the management method for thinning
such as production thinning, waste
thinning and waste thinning with low
pruning.

Silviculture ResidSPH Residual from the inventory of the
stand per hectare after harvesting.

Silviculture PruneClass Categorical variable representative of
the pruning (removal of lower
branches) management regime.

Silviculture PruneSPH The stand density of pruned stems.
Silviculture PruneHt Height (in m) to which the tree has

been pruned.
Silviculture MaxDOS Refers to the maximum diameter of

the stem at the point of pruning,
including branch stubs.

Silviculture LastSPH The stand density taken during the
last inventory of the stand prior to
harvesting.

Silviculture ThinDate Date of the last thinning.
Silviculture PruneDate Date of the last pruning.
Silviculture Seedlot.Planting.Stock Categorical variable representative of

the type of management in the nursery
such as control and open pollination,
clonal cuttings and plantlets or
seedling top cutting.

Silviculture Seedlot.Planting.Stock.Type Categorical variable representative of
the type of stock, this being container,
bareroot or plug seedlings.
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