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Strigolactones (SLs) are a class of plant hormones that are synthesized from b-carotene
through sequential reactions catalyzed by DWARF (D) 27, D17, D10, and OsMORE
AXILLARY GROWTH (MAX) 1 in rice (Oryza sativa L.). In rice, endogenous SL levels
increase in response to deficiency of nitrogen, phosphate, or sulfate (−N, −P, or −S). Rice
SL mutants show increased lamina joint (LJ) angle as well as dwarfism, delayed leaf
senescence, and enhanced shoot branching. The LJ angle is an important trait that
determines plant architecture. To evaluate the effect of endogenous SLs on LJ angle in
rice, we measured LJ angle and analyzed the expression of SL-biosynthesis genes under
macronutrient deficiencies. In the “Shiokari” background, LJ angle was significantly larger
in SL mutants than in the wild-type (WT). In WT and SL-biosynthesis mutants, direct
treatment with the SL synthetic analog GR24 decreased the LJ angle. In WT, deficiency of
N, P, or S, but not of K, Ca, Mg, or Fe decreased LJ angle. In SL mutants, deficiency of N,
P, or S had no such effect. We analyzed the time course of SL-related gene expression in
the LJ of WT deficient in N, P, or S, and found that expression of SL-biosynthesis genes
increased 2 or 3 days after the onset of deficiency. Expression levels of both the SL-
biosynthesis and signaling genes was particularly strongly increased under −P. Rice
cultivars “Nipponbare”, “Norin 8”, and “Kasalath” had larger LJ angle than “Shiokari”,
interestingly with no significant differences between WT and SL mutants. In “Nipponbare”,
endogenous SL levels increased and the LJ angle was decreased under −N and −P.
These results indicate that SL levels increased in response to nutrient deficiencies, and
that elevated endogenous SLs might negatively regulate leaf angle in rice.

Keywords: lamina joint, nitrogen deficiency, Oryza sativa, phosphate deficiency, strigolactone, sulfur deficiency
INTRODUCTION

Leaf angle is generally defined as the inclination between the leaf blade midrib and the stem, and is
one of the most important plant architecture parameters that influence light interception,
photosynthetic efficiency, and planting density (Mantilla-Perez and Salas Fernandez, 2017). Leaf
erectness enhance light capture, improve photosynthetic assimilation, and help high density
planting (Sinclair and Sheehy, 1999; Sakamoto et al., 2006). Thus, leaf angle is an important
agricultural trait that contributes to grain yield in cereal crops. In rice (Oryza sativa L.), leaf angle is
.org February 2020 | Volume 11 | Article 1351
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determined by the shape of the lamina joint (LJ), which connects
the leaf blade and sheath (Hoshikawa, 1989).The lack of cell
longitudinal elongation results in a small LJ angle, and cell
elongation on the adaxial side of the LJ induces leaf blade
bending away from vertical axis to a more horizontal position
(Cao and Chen, 1995; Zhang et al., 2009; Zhao et al., 2010).

Rice LJ angle is regulated by plant hormones. Brassinosteroids
(BR) stimulate elongation of adaxial parenchyma cells at the LJ
and increase LJ angle (Wada et al., 1981; Cao and Chen, 1995;
Zhang et al., 2009). BR also inhibit proliferation of abaxial
sclerenchyma cells by controlling U-type cyclin CYC U4;1
(Sun et al., 2015). Gibberellin stimulates cell elongation, and
interacts with BR signaling by several regulators (Shimada et al.,
2006; Wang et al., 2009). Gibberellin reduced the leaf angle by
inhibiting BR response, demonstrating that gibberellin is a
negative regulator of lamina inclination (Tong et al., 2014).
Auxin also increases LJ angle via a BRI1-dependent and
-independent pathway (Nakamura et al., 2009; Zhao et al.,
2013; Zhang et al., 2015). In contrast, methyl jasmonate
represses BR biosynthesis and signaling, and reduces LJ angle
(Gan et al., 2015). Recently, it was reported that leaf inclination is
higher in strigolactone (SL) mutants than in wild type (WT), and
that exogenously applied GR24, a synthetic SL analog, decreases
the large inclination in SL-biosynthesis mutants (Li et al., 2014).
However , how LJ angle is regulated by SL signal
remains unknown.

SL was originally isolated from plant root exudates as a seed
germination stimulant of witchweed (Cook et al., 1966; Cook
et al., 1972). Later, SL was identified as a stimulator of hyphal
branching in arbuscular mycorrhizal fungi, which supply soil
nutrients to host plants (Akiyama et al., 2005). The previous
studies proposed that SL functions as a communication signal for
parasitism and symbiosis in the rhizosphere (Bouwmeester et al.,
2007). More later, SLs were found as a class of phytohormones
that inhibit shoot branching (Gomez-Roldan et al., 2008;
Umehara et al., 2008). In this time, SLs are also known to
control root architecture and promote leaf senescence,
endosperm development, and secondary growth (Agusti et al.,
2011; Kapulnik et al., 2011; Ruyter-Spira et al., 2011; Yamada
et al., 2014; Ueda and Kusaba, 2015; Yamada et al., 2018).

In rice, SL-biosynthesis mutants d27, d17/high tillering dwarf
(htd)1, and d10 are well characterized. D27, D17/HTD1, and D10
encode b-carotene isomerase, carotenoid cleavage dioxygenase
(CCD) 7, and CCD8, respectively (Zou et al., 2006; Arite et al.,
2007; Lin et al., 2009). In rice SL biosynthesis, all-trans-b-
carotene is converted to carlactone by sequential reactions via
D27, D17, and D10 (Alder et al., 2012; Seto et al., 2014);
carlactone is converted to SL by MAX1, which is a cytochrome
P450 CYP711 family protein (Zhang et al., 2014). There are five
MAX1 homologs in rice (Nelson et al., 2004); among them,
Os900 converts carlactone to 4-deoxyprobanchol via
carlactonoic acid, and Os1400 converts carlactone to 4-
deoxyprobanchol (4DO), and 4DO to orobanchol (Yoneyama
et al., 2018a). The SL signaling mutant d14 has a mutation in an
a/b-hydrolase protein (Arite et al., 2009). D14 protein has a dual
function as a receptor and deactivator of bioactive SLs (Seto et al.,
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2019). Another SL signaling mutant, d3, has a mutation in
leucine-rich-repeat F-box protein (Ishikawa et al., 2005), which
acts as a recognition subunit in the SKP-CUL1-F-box (SCF)
protein complex, binds target proteins and directs them for
proteasomal degradation. The SL-insensitive mutant d53 has a
mutation in a repressor of SL signaling (Jiang et al., 2013; Zhou
et al., 2013). D53 is the target protein of the SCFD3 ubiquitination
complex in SL signaling.

SLs are produced mainly in roots in response to nitrogen and/
or phosphate deficiencies in several plant species (Yoneyama
et al., 2007a; Yoneyama et al., 2007b; Lopez-Raez et al., 2008;
Yoneyama et al., 2012). In a rice cultivar “Shiokari”, SLs are
produced in response to nitrogen, phosphate, and sulfur
deficiencies (Umehara et al., 2010; Sun et al., 2014; Shindo
et al., 2018). In this study, we investigated the effect of nutrient
deficiencies on endogenous SL production and on LJ angle in
rice. Furthermore, we compared the LJ angles of WT and d
mutants grown under nutrient-deficient or sufficient conditions,
analyzed SL-related gene expression, and measured canonical SL
levels in roots.
MATERIALS AND METHODS

Plant Growth Conditions and
Measurement of LJ Angle
In this study, we used wild-type (WT) plants and dwarf mutants
d27-1, d17-1, d10-1, d14-1, and d3-1 in the “Shiokari”
background, d10-2, d17-2 in the “Nipponbare” background,
and d53 in the “Norin 8” background (Ishikawa et al., 2005;
Arite et al., 2007; Umehara et al., 2008; Arite et al., 2009; Lin
et al., 2009; Zhou et al., 2013; Kobae et al., 2018). The seeds were
kindly provided by Prof. Junko Kyozuka (Tohoku University)
and by Dr. Hiroaki Iwai and were propagated in a glass room at
the Research Center for Life and Environmental Sciences, Toyo
University, Japan. Rice seedlings were grown hydroponically as
described previously (Umehara et al., 2008). Surface-sterilized
seeds were incubated in sterile water at 25°C in the dark for 1
day, and germinated seeds were transferred to hydroponic
culture medium (Kamachi et al., 1991) solidified with 0.6%
agar and cultured under 16 h fluorescent white light (130–180
µmol m−2 s−1) at 25°C and 8 h dark at 23°C for 6 days (pre-
culture). Seedlings of similar size were then transferred to
hydroponic medium containing 1 mM 2-(N-morpholino)
ethanesulfonic acid (MES) buffer (pH 5.7) for a further 3, 6, or
24 days. Seedlings were placed in soil and cultivated in a glass
room for 34 days. LJ angle (between leaf blade and sheath) of the
2nd, 3rd, and 4th leaves was measured on leaf images in ImageJ
software v. 1.50 (Schneider et al., 2012).

Chemicals
rac-GR24, a synthetic SL analog, was purchased from Chiralix
(Nijmegen, The Netherlands) and dissolved in acetone. Mock
solution or 20 mM rac-GR24 containing 0.1% Tween-20 were
spotted (2 ml) onto the LJ of WT and d mutants on days 0 and 3
of cultivation in hydroponic medium. The following standards
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were used for SL quantification: 4DO, d1-labeled 4DO, d3-labeled
4DO, orobanchol, d1-labeled orobanchol, and d3-labeled
orobanchol; all were kindly provided by Prof. Kohki Akiyama
(Osaka Prefecture University).

RNA Extraction and qRT-PCR
Total RNA was extracted from approximately 25 mg LJ segments
using an RNeasy Plant mini kit (Qiagen, Hilden, Germany)
following the instructions in the user manual. We used 0.1 mg
of the total RNA for cDNA synthesis with a ReverTra Ace qPCR
RT kit for quantitative real-time PCR (qRT-PCR) (Toyobo,
Osaka, Japan). qRT-PCR was performed in a StepOnePlus
thermocycler (Thermo Fisher Scientific, Waltham, MA, USA)
with a Thunderbird Probe qPCR mix (Toyobo). Expression of
ubiquitin was used as an internal standard. Expression levels of
SL-related genes were quantified using the specific primers and
probes used in a previous study (Shindo et al., 2018).

SL Purification and Quantification
We measured the levels of 4DO and orobanchol in roots as
described previously (Hasegawa et al., 2018; Shindo et al., 2018)
with some modifications. Germinated seeds were pre-cultured in
agar culture media for 7 days and the seedlings were grown in
hydroponic culture media for a further 7 days. Roots (ca. 1 g) of
14-day-old seedlings were homogenized in 10 ml acetone
containing 100 pg each of d1-labeled 4DO and orobanchol as
internal standards; the homogenates were filtered with Bond
Elute reservoirs (Agilent, Santa Clara, CA, USA) and evaporated
to dryness under nitrogen gas. The extracts were dissolved in 4
ml water adjusted to pH 2–3 with 1 N HCl and extracted twice
with 4 ml ethyl acetate. The ethyl acetate phase was evaporated to
dryness under nitrogen gas. The extracts were dissolved in 10%
acetone, loaded onto Oasis HLB 3-ml cartridges (Waters),
washed with 10% acetone, and eluted with 60% acetone. The
eluates were dissolved in ethyl acetate: n-hexane (15:85) and
loaded onto Sep-Pak Silica 1-ml cartridges (Waters). After the
cartridges were washed with ethyl acetate: n-hexane (15:85),
4DO was eluted with ethyl acetate: n-hexane (35:65) and
orobanchol with ethyl acetate: n-hexane (50:50). LJ sample (ca.
0.15 g) were homogenized in 10 ml acetone containing 100 pg
each of d3-labeled 4DO and orobanchol; the homogenates were
filtered with Bond Elute reservoirs (Agilent, City CA, USA) and
evaporated to dryness under nitrogen gas. The extracts were
dissolved in 4 ml 50% acetonitrile adjusted to pH 2–3 with 1 N
HCl, and 4 ml hexane, mixed gently, centrifuged at 3,400 rpm for
5 min, and the hexane-phase was removed. After the aqueous-
phase was extracted with 4 ml ethyl acetate twice, 4DO, and
orobanchol in the ethyl acetate-phase were purified according to
the method in roots.

Purified SL-containing fractions were dissolved in 50%
acetonitrile and subjected to liquid chromatography–tandem
mass spectrometry (LC-MS/MS) analysis using a system
consisting of a quadrupole tandem mass spectrometer (3200
QTRAP; Sciex, Framingham, MA, USA) and a high-performance
liquid chromatograph (Prominence, Shimadzu, Kyoto, Japan)
equipped with a reverse-phase column (Acquity UPLC BEH-
Frontiers in Plant Science | www.frontiersin.org 3
C18, 2.1 × 50 mm, 1.7 µm, Waters). Previous papers describe LC
and MS parameters for 4DO (Shindo et al., 2018) and
orobanchol (Hasegawa et al., 2018) analysis. Data were
analyzed in Analyst 1.5.1 and Multi Quant 2.0.2 (Sciex) software.

Statistical Analysis
Statistical analysis was performed in SPSS 24 software (IBM SPSS
Inc., Armonk, NY USA). Student's t-test (P < 0.05) was used for
pairwise comparisons and Tukey's honestly significant difference
(HSD) (P < 0.05) for multiple comparisons.
RESULTS

LJ angle in Rice SL Mutants in “Shiokari”
Background
Many SL-biosynthesis and signaling mutants are available in the
background of the rice cultivar ‘Shiokari'. The 2nd, 3rd, and 4th
leaves of the seedlings that had been grown hydroponically for a
month are shown in Figure 1A. The LJ angle of SL mutants was
almost twice as large as that of WT ‘Shiokari' (Figure 1B). In
seedlings grown in soil for 40 days, it was slightly smaller, but
that of SL mutants was also almost twice as large as that of WT
(Supplementary Figure S1), indicating that the LJ angle of SL
mutants was increased regardless of the growth conditions. To
simplify the comparison between WT and SL mutants, we
focused on the 2nd LJ angle. After pre-culture for 6 days
(Figure 2A), the 2nd LJ angle was 0°, with no significant
difference between WT and SL mutants (Figure 2B). However,
it became larger in SL mutants than in WT on day 7, continued
to increase from day 8 to day 11, and reached maximum in both
WT and SL mutants on day 12 (Figure 2B). In a previous study
(Li et al., 2014), the LJ angle was greater in d3-1 than in other d
mutants, but in our experimental conditions, it was smaller in
d3-1 (Figure 2B). We confirmed that exogenously applied 20 µM
GR24 (SL synthetic analog) strongly decreased LJ angle in WT
and the SL-biosynthesis mutants d10-1, d17-1, and d27-1, but
had no effect on the SL-signaling mutants d3-1 and d14-1
(Supplementary Figure S2).

Effects of Macronutrient Deficiencies on LJ
Angle, SL-Related Gene Expression, and SL
Levels in the “Shiokari” Background
In “Shiokari”, SL production in roots is stimulated in response to
deficiency of nitrogen, phosphate, or sulfate (Shindo et al., 2018).
To evaluate the effects of macronutrient deficiencies on LJ angle,
we grew WT and SL mutant seedlings under deficiencies of
nitrogen, phosphate, sulfate, potassium, calcium, or magnesium
(−N, −P, −S, −K, −Ca, −Mg, and −Fe). The LJ angle of WT
decreased by almost half under −N, −P, and −S in comparison
with the control, whereas that of SL mutants was not affected by a
deficiency of any of these macronutrients (Figures 3A, B). Using
LC-MS/MS, we analyzed the levels of canonical SLs, 4DO and
orobanchol, in roots. The 4DO levels in roots increased under
−N, −P, and −S, but the levels of orobanchol were below the
detection limit in “Shiokari” (Figure 3C).
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To explore whether SL levels increase in LJ under −N, −P, and
−S, we analyzed the expression levels of SL-biosynthesis and
signaling genes on days 7, 8, and 9, i.e. before a large increase in
LJ angle (Figure 4A). On day 7, the expression of OsMAX1
decreased under −S (Figure 4B). On day 8, the expression of all
SL-biosynthesis genes under −P increased, whereas that of
OsMAX1 under −S returned to the control levels (Figure 4B).
On day 9, the expression of some SL-biosynthesis genes
increased under −N, −S, and −P (Figure 4B). All SL-
biosynthetic genes we analyzed were up-regulated in 8-day-old
seedlings grown under −P. Thus, we tried to analyze the levels of
canonical SLs, 4DO and orobanchol, in LJ of the seedlings.
However, we were unable to detect 4DO or orobanchol in LJ
(Supplementary Figure S3). Among SL-signaling genes, the
expression of D3 and D14 also increased under −P on days 8
and 9 (Figure 5). Expression of these genes slightly but
significantly decreased under −N on day 8.

LJ Angle and Response of Nutrient
Deficiencies in Different Rice Cultivars
The LJ angle was smaller in “Shiokari” than in “Nipponbare”,
“Norin 8”, and “Kasalath” (Supplementary Figures S4A, B). It
did not differ significantly between WT “Nipponbare” and the
d10-2 and d17-2 mutants in the “Nipponbare” background
(Supplementary Figure S4C), or between WT “Norin 8” and
d53 in the “Norin 8” background (Supplementary Figure S4D).
In WT “Nipponbare”, it decreased by half under −N and −P, but
FIGURE 2 | Time-course analysis of LJ angle in the 2nd leaf of rice seedlings.
(A) Timeline of the experiment. After pre-culture, seedlings were transferred to
nutrient-sufficient hydroponic medium. (B) LJ angle of wild-type “Shiokari” and
SL mutants. Asterisks and plus signs indicate significant differences in ANOVA
(all P < 0.05) vs. ‘Shiokari’. Data are means ± S.E. (n = 5).
FIGURE 1 | Lamina joint (LJ) angle in “Shiokari”-background wild-type and strigolactone (SL) mutant rice seedlings. (A) Images of 30-d-old seedlings. Arrowheads:
white, 2nd LJ; yellow, 3rd LJ; orange, 4th LJ. Bar: 10 cm. (B) LJ angle measured with ImageJ software. White circles indicate average (n = 60).
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FIGURE 3 | Effect of macronutrient deficiency on LJ angle and SL levels in “Shiokari”-background seedlings. (A) Images of the 2nd leaves of 12-d-old seedlings.
Bar, 1 cm. (B) Second-LJ angle under macronutrient deficiencies. C, control. *P < 0.05 (Student's t-test). Data are means ± S.E. (n = 5; eight seedlings per
experiment). (C) SL levels in roots under nitrogen, phosphate, or sulfate deficiency in roots of 14-d-old seedlings. C, control. *P < 0.05 (Student's t-test vs. control).
Data are means ± S.E. (n = 4).
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FIGURE 4 | Expression of SL-biosynthesis genes in LJ under nitrogen, phosphate, or sulfate deficient condition. (A) Timeline of the experiment. After pre-culture,
seedlings were transferred to control or nutrient-deficient hydroponic medium. Gene expression was analyzed on days 7, 8, and 9. (B) Transcript levels in the 2nd
LJ. C, control. *P < 0.05 (Student's t-test vs. control). Data are means ± S.E. (n = 3, six seedlings per experiment).
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did not change under −S (Figures 6A, B). That of d17-2 did not
change under −N, −P, or −S (Figures 6A, B). In “Nipponbare”
roots, 4DO levels increased under −N and especially −P and
orobanchol was only detected under −P (Figure 6C). Unlike in
“Shiokari” (Figure 3C), we detected no significant SL increase
under −S in “Nipponbare”. Exogenously applied 20 µM GR24
decreased LJ angle in WT and the SL-biosynthesis mutants d17-2
(Supplementary Figure S5).
DISCUSSION

We investigated the effects of SLs on LJ angle under
macronutrient deficiencies in rice. In response to −N, −P, and
−S, SL-biosynthesis genes were upregulated and endogenous SL
levels increased, decreasing LJ angle in “Shiokari” (Figures 3, 4,
and 7). Phosphate deficiency had the strongest effect on
expression of SL-biosynthesis genes in LJ and SL production in
roots (Figures 3 and 4). The results are consistent with our
previous report that SL levels increase in response to −N, −P, and
Frontiers in Plant Science | www.frontiersin.org 7
−S in “Shiokari” (Shindo et al., 2018). Expression of SL-
biosynthesis genes in −P were higher than that in −N and −S,
but the LJ angle of rice seedlings under -N and -S is narrow at the
same level as that of -P plants (Figures 3 and 4). Expression of
SL-signaling genes, D3 and D14, were higher than that of SL-
biosynthesis genes (Figures 4 and 5). These results suggest that
LJ angle might be sensitive to endogenous SL (Figure 7). In
addition, D3 and D14, were up-regulated under −P, indicating
that sensitivity to endogenous SLs also increased under −P
(Figure 5). Phosphate deficiency induces Syg1/Pho81/XPR1
(SPX1) and SPX2 expression, which inhibit REGULATOR OF
LEAF INCLINATION (RLI1), a positive regulator of leaf
inclination, reducing leaf angle via suppression of downstream
BR signaling (Ruan et al., 2018). Under low N, leaf angle is
reduced in rice and eucalyptus to avoid damage by
photoinhibition (Close and Beadle, 2006; Kumagai et al., 2014).
Under nutrient deficiencies, rice grows slowly and has fewer
tillers, lower chlorophyll content, and lower yield (Dobermann
and Fairhurst, 2001). The decrease in leaf chlorophyll content
leads to production of reactive oxygen species, which attack cell
FIGURE 5 | Expression of SL-signaling genes in LJ under nitrogen, phosphate, or sulfate deficient condition. (A) Timeline of the experiment. After pre-culture,
seedlings were transferred to control or nutrient-deficient hydroponic medium. Gene expression was analyzed on days 7, 8, and 9. (B) Transcript levels in the 2nd
LJ. C, control. *P < 0.05 (Student's t-test vs. control). Data are means ± S.E. (n = 3, six seedlings per experiment).
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components (Jia et al., 2003). High-intensity light causes
photoinhibition of photosynthesis (Powles, 1984), although it
also increases SL production in tomato roots (Koltai et al., 2011).
Therefore, plants might decrease LJ angle to avoid
photoinhibition via SL signals produced under −N, −P, or −S.
Previously we suggested that plants use SL signaling to utilize
limited nutrients efficiently and to adapt to poor nutrition
because SLs are produced under −N and/or −P (Umehara,
2011). Here, we propose that SLs are important for
photosynthetic efficiency and nutrient allocation.
Frontiers in Plant Science | www.frontiersin.org 8
We could not find rice canonical SLs, 4DO, or orobanchol, in
the LJ even under −P when multiple SL genes were highly
expressed (Figure 4, Supplementary Figure S3). In rice, SLs
regulating the LJ angle might be non-canonical SLs such as
carlactonoic acid and methyl carlactonoate (Yoneyama et al.,
2018b). Canonical SLs might be transported from roots to the LJ
and converted to active signaling molecules during the
transportation, or induce other active signaling molecule.

Rice SL-related mutants of “Shiokari” background have
increased LJ angle (Li et al., 2014). We found such phenotypes
FIGURE 6 | Effect of macronutrient deficiency on LJ angle and SL levels in “Nipponbare”-background rice seedlings. (A) Images of the 2nd leaves. Bar, 1 cm.
(B) Second-LJ angle under macronutrient deficiencies. C, control. *P < 0.05 (Student's t-test). Data are means ± S.E. (n = 5). (C) SL levels in roots under nitrogen,
phosphate, or sulfate deficiency in roots of 14-d-old seedlings. C, control. *P < 0.05 (Student's t-test vs. control). Data are means ± S.E. (n = 4).
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in SL mutants in the “Shiokari” background (Figures 1 and 2).
The phenotype of the SL-related mutants depends on the
cultivar: the LJ angles in “Nipponbare”, “Norin 8”, and
“Kasalath” were twice that of “Shiokari”, with no significant
differences betweenWT and SL mutants (Supplementary Figure
S4). In response to −N and −P, SL production was stimulated
and the LJ angle decreased in “Nipponbare”, but not in d17-2
(Figure 6). This point was common between “Shiokari” and
“Nipponbare”. Thus, endogenous SL levels would increase in
response to nutrient deficiencies and decrease leaf angle in rice.
In the future, which types of SLs directly regulate the leaf angle
would be clarified.

Auxin, GA, and BR also regulate LJ angle. The LJ angle was
larger in SL mutants in the “Shiokari” background than in WT
“Shiokari” (Figure 1), indicating that BR might accumulate in
the LJ of the SL mutants or SL might positively regulate BR
signaling. Interaction between SL and these phytohormones is
well characterized in shoot branching regulation. In the BR
signaling pathway, BRI-EMS-suppressor 1 (BES1) acts as a
downstream transcription factor to positively regulate BR-
responsive gene expression (Yin et al., 2002). In Arabidopsis,
BES1 binds to MAX2, an ortholog of rice D3, and the complex is
degraded to inhibit shoot branching (Wang et al., 2013). Auxin
stimulates SL biosynthesis, whereas SL regulates polar auxin
transport, contributing to shoot branching regulation
(Domagalska and Leyser, 2011). Gibberellin inhibits SL
biosynthesis in rice (Ito et al., 2017). The position of SL in this
phytohormone cross-talk of LJ angle regulation remains
unknown. Further analysis would be required to determine the
interactions between SL and other phytohormones.
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