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The observation that plant roots skew in microgravity recently refuted the long-held
conviction that skewing was a gravity-dependent phenomenon. Further, spaceflight root
skewing suggests that specific root morphologies and cell wall remodeling systems may
be important aspects of spaceflight physiological adaptation. However, connections
between skewing, cell wall modification and spaceflight physiology are currently based
on inferences rather than direct tests. Therefore, the Advanced Plant Experiments-03-
2 (APEX-03-2) spaceflight study was designed to elucidate the contribution of two
skewing- and cell wall-associated genes in Arabidopsis to root behavior and gene
expression patterns in spaceflight, to assess whether interruptions of different skewing
pathways affect the overall spaceflight-associated process. SPIRAL1 is a skewing-
related protein implicated in directional cell expansion, and functions by regulating
cortical microtubule dynamics. SKU5 is skewing-related glycosylphosphatidylinositol-
anchored protein of the plasma membrane and cell wall implicated in stress response
signaling. These two genes function in different cellular pathways that affect skewing
on the Earth, and enable a test of the relevance of skewing pathways to spaceflight
physiological adaptation. In this study, both sku5 and spr1 mutants showed different
skewing behavior and markedly different patterns of gene expression in the spaceflight
environment. The spr1 mutant showed fewer differentially expressed genes than its
Col-0 wild-type, whereas skub5 showed considerably more than its WS wild-type.
Developmental age played a substantial role in spaceflight acclimation in all genotypes,
but particularly in skub5 plants, where spaceflight 4d seedlings had almost 10-times
as many highly differentially expressed genes as the 8d seedlings. These differences
demonstrated that the two skewing pathways represented by SKU5 and SPRT have
unique and opposite contributions to physiological adaptation to spaceflight. The spr7
response is less intense than wild type, suggesting that the loss of SPR1 positively
impacts spaceflight adaptation. Conversely, the intensity of the sku5 responses
suggests that the loss of SKU5 initiates a much more complex, deeper and more stress
related response to spaceflight. This suggests that proper SKU5 function is important
to spaceflight adaptation.
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INTRODUCTION

Spaceflight studies offer unique insights into plant biological
processes, and enable the exploration of the relationships
between root morphology, gene expression and the physiological
adaptation to spaceflight. The developmental patterns of plant
organs are continuously altered through perception of the
environment, signal integration, and response to environmental
stimuli. A diversity of tropic gradients influence the path of
growth in roots by initiating localized, asymmetrical changes
in cell elongation. These changes are primarily brought about
through hormonal interactions and subsequent remodeling of
cell physiology (Roy and Bassham, 2014; Vandenbrink et al., 2014;
Schultz et al., 2017). Root skewing and waving are phenomena in
which root growth deviates from a gravity vector throughout its
development, and which vary between the Arabidopsis thaliana
(Arabidopsis) ecotypes Columbia (Col-0) and Wassilewskija
(WS) (Rutherford and Masson, 1996; Roy and Bassham, 2014;
Schultz et al., 2017). Although once thought to be a gravity-
dependent growth behavior (Oliva and Dunand, 2007), skewing
occurs in the microgravity of spaceflight (Paul et al., 2012a). This
suggests that skewing is independent of both the tropic force
of gravity and the gravity-induced contact forces between roots
and growth media (Millar et al., 2011; Paul et al., 2012a, 2013;
Nakashima et al.,, 2014). Therefore, the spaceflight environment
provides a unique and relevant context in which to study genes
associated with skewing phenotypes.

Plants grown in the spaceflight environment exhibit complex
and unique gene expression patterns (e.g., Paul et al., 2005;
Paul et al., 2012b, 2013, 2017; Correll et al., 2013; Kwon et al.,
2015; Johnson et al., 2017; Choi et al., 2019). The predominant
feature of the spaceflight environment is microgravity. The
lack of gravity has a direct effect on plant cells and signal
transduction; this direct effect represents a novel environment
for plants, and any terrestrial organism, and appears to be
generally perceived as stressful. In addition, microgravity imposes
secondary environmental stresses due to the disruption of fluid
movement, and any processes influenced by convection, such
as gas exchange and temperature redistribution. Combinatorial
stresses induce changes in gene expression and tolerance that
are not fully recapitulated by exposure to the individual stressors
(e.g., Ramegowda and Senthil-Kumar, 2015; Suzuki et al., 2016).
Thus it is important to think of the spaceflight environment as
more complex than microgravity alone. Several classes of stress
response genes have been identified as consistently involved in
the response to spaceflight across ecotypes of Arabidopsis via
analyses of gene expression. Heat shock genes are often induced
by spaceflight (Paul et al., 2005, 2012b; Salmi and Roux, 2008;
Shagimardanova et al., 2010; Zupanska et al., 2013, 2017, 2019;
Johnson et al., 2017; Choi et al., 2019). Reactive oxygen species
(ROS) signaling and scavenging processes are also common
in the spaceflight response, though ROS-associated genes have
been observed as both up- and downregulated in spaceflight

Abbreviations: d, day; DEG, differentially expressed gene; FLT, spaceflight;
GC, ground control; GO, gene ontology; GPI-AP, glycosylphosphatidylinositol-
anchored protein.

(Shagimardanova et al., 2010; Correll et al., 2013; Paul et al,
2013, 2017; Kwon et al., 2015; Choi et al., 2019; Zhou et al,
2019). Some stress gene expression changes are also associated
with spaceflight-induced changes in the Arabidopsis methylome
(Zhou et al., 2019). Cell wall remodeling processes are enriched
in spaceflight gene expression datasets (Paul et al., 2012b, 2013,
2017; Correll et al., 2013; Kwon et al., 2015; Johnson et al., 2017).
Cell wall remodeling genes, typically associated with biotic stress
and pathogen defense pathways, also contribute to spaceflight
acclimation (Paul et al., 2012b, 2013, 2017; Correll et al., 2013;
Choi et al., 2019). Spaceflight also affects abundances of proteins
of defense pathways and cell wall remodeling (Mazars et al.,
2014; Ferl et al., 2015). However, the particular genetic pathways
activated and repressed in spaceflight vary among ecotypes of
Arabidopsis, demonstrating that there are significant genotypic
contributions to spaceflight physiological adaptation (Paul et al.,
2017; Beisel et al., 2019; Choi et al., 2019).

Mutations in genes associated with stress response and
signaling pathways can significantly alter the differential gene
expression profiles of spaceflight physiological adaptation. Single
gene mutations in heat shock transcription factors, gravity
perception genes, and light signaling genes in Arabidopsis
seedlings and cultures exhibit altered spaceflight responses (Paul
etal., 2017; Zupanska et al., 2017, 2019). Therefore, we sought to
understand better the relationships among spaceflight responses,
root morphology, and spaceflight adaptation by exploring the
spaceflight responses of two single gene skewing-related mutant
lines: spirall and sku5.

Spirall (Sprl) is a skewing-related gene that contributes to
the process of anisotropic cell expansion by regulating cortical
microtubule dynamics. The spr]1 mutation results in axial rotation
of cell files throughout the plant, which manifests in the roots
as skewing to the left when viewed, according to convention,
from beneath their growth medium (Rutherford and Masson,
1996; Furutani et al., 2000; Nakajima et al., 2004; Sedbrook et al.,
2004; Galva et al., 2014). The SPRI protein is a microtubule plus-
end tracking protein that localizes to the plus ends of actively
polymerizing cortical microtubules, dissociating upon a shift to
microtubule depolymerization (Sedbrook et al., 2004; Galva et al.,
2014). This association is mediated by two similar motifs on the
N- and C-termini of the protein, which allow SPR1 to act as
an intermolecular linker (Nakajima et al., 2004; Sedbrook et al.,
2004; Galva et al., 2014). The protein END-BINDING 1B (EB1b)
co-localizes with SPR1 at the microtubule plus-end, where each
protein interacts with the other as well as tubulin subunits (Galva
et al., 2014). This creates the dual effects of SPR1 and EBIb
increasing microtubule stability and polymerization rate, while
also enhancing the rescue rate of depolymerizing microtubules
(Galva et al., 2014). However, the sprl mutation also leads to a
decreased rate of shrinkage among depolymerizing microtubules
(Galva et al,, 2014). The regulation of microtubule dynamics
is critical to many environmental responses, such as in salt
stress where 26S proteasome-mediated degradation of SPR1 is
known to occur in conjunction with microtubule reorganization
to enable stress acclimation (Shoji et al., 2006; Wang et al., 2011;
Chen et al.,, 2016). In addition to these micro-scale changes,
the skewing phenotype of sprl is significantly enhanced by
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cold treatment, and suppressed by both salt and heat stresses
(Furutani et al., 2000; Sedbrook et al., 2004). This connects
SPRI to processes regulating morphology in both optimal and
stressful environments.

Sku5 is a skewing-associated gene that encodes a protein in
the SKU5-SIMILAR (SKS) family, which is related to known
Arabidopsis copper oxidases, but which contains only one Type-
II copper-coordinating domain of unknown specificity (Sedbrook
et al, 2002). The sku5 mutant was originally noted for the
rightward skewing it exhibits on vertically oriented growth
media, which manifests in both WS and Col-0 backgrounds
(Sedbrook et al., 2002; Swarbreck et al., 2019). Sku5 seedlings
exhibit reductions of root length but not of cell size, and
SKUS5 is hypothesized to act in the process of cell division as
a result (Sedbrook et al., 2002). SKU5 localizes to the plasma
membrane, but is also present in soluble and cell wall-binding
forms in the extracellular milieu (Sedbrook et al., 2002; Borderies
et al., 2003; Baral et al.,, 2015; Chen et al.,, 2018). SKUS5 is a
glycosylphosphatidylinositol-anchored protein (GPI-AP), and as
such is a component of discrete plasma membrane nanodomains
known as “lipid rafts” (Borner et al, 2005; Elortza et al.,
2006; Chen et al., 2018; Mamode Cassim et al., 2019). These
nanodomains of the plasma membrane and their associated GPI-
APs play roles in stress response signaling at the interface between
the cell wall and membrane, where they are envisioned to help
shape the “signatures” that activate downstream plant adaptive
responses to the stresses they experience (Minami et al., 2008;
Takahashi et al., 2013, 2016, 2019; Shabala et al., 2015; Yeats et al.,
2018; Miki et al., 2019). The endocytosis of SKU5 and other GPI-
APs is modulated across the root tip by salt and auxin treatments,
linking the movement of these proteins to stress responses (Baral
et al,, 2015). The expression of SKUS5 is itself regulated by boron
deprivation, cold, salt, and immune responses, as well as abscisic
acid (ABA) treatment (Keinath et al., 2010; Elmore et al., 2012;
Li et al, 2012; Tanaka et al., 2016; Shi et al., 2018; Miki et al,,
2019). While SKU5 interactors are unknown in Arabidopsis, a
maize homolog of SKU5 interacts with a C-terminal peptide of
AUXIN-BINDING PROTEIN 1 (ABP1) in vitro (Shimomura,
2006). ABP1 is associated with auxin signaling pathways that
activate the plant TARGET OF RAPAMYCIN (TOR) regulatory
complex, remodel the cortical microtubule network, and induce
expansive growth by triggering cation influx (Xu et al., 2014;
Chen et al., 2016; Dahlke et al., 2017; Schepetilnikov et al., 2017).
This further connects SKU5 to characterized pathways which
affect stress responses and regulate the balance between growth
and autophagic processes under stressful conditions, such as that
of spaceflight.

SKU5 and SPRI are therefore very different proteins in
seemingly unrelated physiological processes, but both proteins
have roles in root skewing. Both of these proteins are also
associated with cell wall remodeling, a process that is regularly
involved in spaceflight acclimation. As such, these genes offer
an appropriate initial genetic dissection of root skewing and the
effect of skewing pathways in the microgravity of spaceflight
environments. Extensive discussion of the relevance of skewing
and waving in microgravity has been presented elsewhere (e.g.,
Paul et al,, 2012a), but to paraphrase from that paper, prior to

spaceflight research, the consensus was that gravitropism was the
directional driver in skewing (e.g., Simmons et al., 1995; Oliva
and Dunand, 2007). Yet we now know that gravity is not required,
and root skewing in spaceflight appears to be an inherent feature
of many Arabidopsis ecotypes, even in conditions lacking both
light and gravity (Millar et al., 2011; Paul et al., 2012a, 2017;
Nakashima et al., 2014). These observations suggest a testable
relationship among root morphologies governed by skewing
regulation pathways. The hypothesis is that skewing pathways
play a large role in spaceflight adaptation via the inherent cell
wall remodeling that accompanies those morphologies and the
physiological adaptation to spaceflight. This relationship was
examined by growing spr1, sku5 and their wild type controls for 4
and 8 days on the International Space Station and at the Kennedy
Space Center, then observing both their growth morphologies
and gene expression profiles in response to spaceflight as
measures of response quality and complexity. A change in gene
expression or morphology during spaceflight would suggest a
significant role for these skewing genes in the physiological
adaptation process.

Differential gene expression profiles are often deployed as
measures of the underlying gene expression changes needed
for physiological adaptation and developmental changes within
an organism. Differential gene expression responses, in terms
of the number of genes involved and their fold-change levels,
may be considered a measure of the metabolic cost of adapting
to that environment (e.g.: Chan et al., 2016). Therefore gene
expression profiles morphologies were used to examine the
relationships between skewing genes and the resulting complexity
of spaceflight acclimation. SKU5 and SPR1 function in different
cellular pathways that affect skewing on the Earth, which enabled
a test of the relevance of contrasting skewing pathways to
spaceflight physiological adaptation. Growth morphologies were
used to examine the productivity and developmental success of
these genotypes in spaceflight.

MATERIALS AND METHODS

Plant Material and Plate Setup

Arabidopsis thaliana wild ecotype Columbia (Col-0, CS70000)
seed stock, and T-DNA insertion lines for the sprl (CS6547 -
Col-0 background) and sku5 (CS16268 - WS background),
were acquired from the Arabidopsis Biological Resource Center
(ABRC) (arabidopsis.org; Lamesch et al., 2011). The wild type
Wassilewskija (WS) line used in this study was propagated
in our laboratory for more than 25 years. This WS line has
been used in multiple spaceflight studies (Paul et al., 2012a,
2013, 2017; Zhou et al.,, 2019), and seed samples are available
upon request. The ABRC denotes WS as stock CS915. Petri
dishes (100 mm x 15 mm; Fisher Scientific, Pittsburgh, PA,
United States), containing 50 mL of a 0.5% Phytagel-based
growth medium supplemented with: 0.5x Murashige-Skoog
salts, 0.5% (w/v) sucrose, and 1x Gamborg’s Vitamin Mixture,
were prepared aseptically for planting. Seeds were sterilized and
planted according to methods allowing for the maintenance of
seed dormancy (Sng et al., 2014). Briefly, seeds were stored
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with Desiccant-Anhydrous Indicating Drierite (W.A. Hammond
Drierite Company, stock #24001) for 1 week before sterilization.
The seeds were sterilized with 70% ethanol for 10 min and
dried in a laminar flow hood. Seeds were stored at 4°C in
sterile screw-cap microcentrifuge tubes until planting. Seeds
were suspended in sterile water and dispensed onto the media
surface. Approximately 12-15 seeds were planted in a row on
each plate, with one row on the 8-day (8d) plates and two rows
on the 4-day (4d) plates. At time of harvest, each genotype
and age was represented by 9-25 viable, replicate seedlings. All
replicates contributed to morphological observations, whereas
the transcriptome analyses were conducted with four biological
replicates, comprising 5-8 4d plant roots, or 2-3 8d plant roots.
The plates were sealed with Micropore® (3M, Maplewood, MN,
United States) tape, and wrapped in Duvetyne Black-Out Fabric
(Seattle Fabrics). The time from suspending dry seeds in water to
the completed wrapping of the plate in Duvetyne was less than
10 min; this timing was essential to maintain seed dormancy.
Wrapped plates were then transported to the Kennedy Space
Center (KSC, FL, United States) under cold stowage, maintaining
temperatures of 4-10°C until launch.

Spaceflight Experimental Workflow

The Advanced Plant Experiments 03-2 (APEX-03-2) study,
also known under NASA Operational Nomenclature as the
Transgenic Arabidopsis Gene Expression System - Intracellular
Signaling Architecture (TAGES-ISA) study, has been previously
described (Ferl and Paul, 2016; Beisel et al., 2019; Zhou et al.,
2019). The SpaceX CRS-5 mission, carrying the dormant,
seeded growth plates as part of its cargo, was launched to the
International Space Center (ISS) from KSC on January 10, 2015.
Capsule docking and transfer of materials to the ISS occurred
on January 12 and 13, respectively. The growth plates were
removed from cold stowage onboard the ISS on January 26,
unwrapped, and inserted into the Vegetable Production System
(VPS, colloquially “Veggie”) perpendicular to the light bank
(Figure 1A). During the growth period, constant lighting at a
level of 100-135 mol m~2 s~ ! was used. Each age and genotype
was represented by a 10 cm Petri plate. There were 12-15
seedlings on the 8-day-old plates (8d) and 35-40 seedlings on the
4-day-old plates (4d). The plates were removed from the Veggie
plant growth hardware after 4 and 8 days of growth, at which
time they were photographed by the crew. The seedlings of each
plate were then harvested into individual KSC Fixation Tubes
(KFTs) pre-loaded with RNAlater™ (Ambion, Grand Island, NY,
United States) preservative (one plate per KFT) (Figure 1A).
Actuation of the KFT submerged the seedlings in RNAlater
and sealed the tube. The harvest tubes remained at ambient
temperature for 12 h to allow full perfusion of the tissues, and
were then transferred to the MELFI —80°C freezer. The samples
were transferred from the MELFI to cold stowage onboard the
Dragon capsule on February 9" and remained frozen in transit to
KSC for de-integration on February 15, at which time the samples
were transferred to 50 mL Falcon tubes with minimal thawing.
The samples were transferred to the Principal Investigators and
were transported to the University of Florida, where they were
kept under —80°C storage.

©°
2
5
c
o
O B
°
c
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o |

Spaceflight

FIGURE 1 | Advanced Plant Experiments-03-2 overview. (A) Images detailing
the standard procedures used onboard the ISS during the experiment. In
Panel 1, the Vegetable Production System (VPS, “Veggie”) and its local
environment can be seen, while panel 2 provides a close-up of the plate setup
inside Veggie after insertion. Panel 3 shows astronaut Butch Wilmore
harvesting seedlings into a KFT (Kennedy Space Center Fixation Tube), and
the workstation used for the orbital harvests. The images of the Veggie
hardware and Butch Wilmore were taken on the ISS by NASA; all NASA
photos are in the public domain. (B) Full images of plates taken at the time of
harvest and from which tissue was used in the APEX-03-2 RNA-Seq
experiment. Images from the ground control are in the top two rows, while
those from the spaceflight experiment are in the bottom two rows. The
genotype and developmental age of the seedlings are listed on each image.
The provided images were taken from above the surface of the growth
medium.

The ground control (GC) for the experiment, composed of an
identical set of plants and plates, was performed on a 48-h delay
at KSC using Veggie hardware within the ISS Environmental
Simulator (ISSES) chamber. The same growth timeline was
used, with seedlings being imaged and harvested into RNAlater-
containing KFTs at 4d and 8d time points. The GC operations
were as described above for the spaceflight experiment, with
KSC personnel following the precise timing of the astronaut
activities. Telemetry data also enabled the ISSES chamber to
replicate the CO; levels, temperature, and ambient lighting in the
vicinity of the Veggie hardware onboard the ISS across the course
of the experiment.

The consistency of operations between spaceflight and GCs
was also checked against video data captured on the ISS. Over-
the-shoulder videos of astronaut activities for the 4d and 8d
harvests were examined for timing of operations and showed
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that spaceflight seedling harvests were not disproportionately
treated during the process at either time point or compared
to GC harvests. The plates were harvested in comparable
windows of time, ensuring that no additional stress, such
as drought stress, was introduced into the harvest process
(Supplementary Table S1).

RNA Isolation

The spaceflight and GC seedlings, stored in RNAlater, were
transferred from —80°C storage to 4°C overnight to thaw.
Seedlings in RNAlater were examined with an Olympus SZX12
stereoscope (Olympus Corporation, Tokyo, Japan) and whole
roots were dissected away from the shoot and hypocotyl. The
remaining shoot and hypocotyl tissues were restored to —80°C in
RNAlater. RNA was prepared from 5-8 4d plant roots, and 2-3
8d plant roots. Total RNA was extracted using the Qiashredder
and RNAeasy kits from QIAGEN (QIAGEN Sciences, MD,
United States) according to the manufacturer’s instructions. An
on-column digestion with RNase-free DNase (QIAGEN GmbH,
Hilden, Germany) was used to remove residual DNA.

Library Preparation

Library preparation was performed at the University of Floridas
Interdisciplinary Center for Biotechnology Research (ICBR)
Gene Expression Core. RNA integrity was verified using the
Agilent 2100 BioAnalyzer (Agilent Technologies, Santa Clara,
CA, United States). Of the total RNA, 10 ng were used
to construct cDNA libraries with the ClonTech SMART-
Seq v4 ultra-low input RNA kit for sequencing (Clontech
Laboratories, Inc., Cat#: 634890), according to the manufacturer’s
instructions. Briefly, 1st strand ¢cDNA was primed by the
SMART-Seq v4 oligonucleotide, which then base-pairs with
these additional nucleotides, creating an extended template.
The reverse transcriptase then switches templates and continues
transcribing to the end of the oligonucleotide, resulting full-
length ¢cDNA that contains an anchor sequence that serves as a
universal priming site for second strand synthesis. Then, cDNA
was amplified with primer II A for 8 PCR cycles. Illumina
sequencing libraries were then generated with 150 pg of cDNA
using the Illumina Nextera DNA Sample Preparation Kit (Cat#:
FC-131-1024) according to the manufacturers instructions.
Briefly, 150 pg of ¢cDNA were fragmented by tagmentation
reaction and adapter sequences were added onto template cDNA
by PCR amplification. Libraries were quantitated using both
the 2100 BioAnalyzer and qPCR (Kapa Biosystems, catalog
number: KK4824).

RNA-Seq

Sequencing experiments were performed at the UF ICBR
Next-Generation DNA Sequencing Core. In preparation
for sequencing, barcoded libraries were sized on the 2100
BioAnalyzer, and quantitated by QUBIT (Thermo Fisher
Scientific, Waltham, MA, United States) and qPCR (Kapa
Biosystems, catalog number: KK4824). Individual libraries were
pooled equimolarly at 4 nM. This “working pool” was used as
input in the NextSeq500 instrument sample preparation protocol
(Nlumina, Part#: 15048776, Rev A). Typically, a 1.3 pM library

concentration resulted in an optimal clustering density in our
instrument (i.e, ~200,000 clusters per mm?). Samples were
sequenced on 5 flow cells (5 NextSeq500 runs), using a 2 x 75
cycles (paired-end) configuration. A typical sequencing run in
the NextSeq500 produced 750-800 million paired-end reads with
a Q30 > 85%. For RNA-Seq, around 40 million paired-end reads
per sample provided sufficient depth for transcriptome analysis
(Tarazona et al., 2011).

Bioinformatic Analysis

Bioinformatic processing of the sequencing data was performed
at the UF ICBR Bioinformatics Core. Fastq files were trimmed
to remove sequencing adapters and low-quality base calls using
Trimmomatic (version 0.36) with the parameters: LEADING:3,
TRAILING:3, SLIDINGWINDOW:4:15, MINLEN:50 (Bolger
et al, 2014). Quality control of the trimmed reads was
performed using FastQC (version 0.11.2) (Andrews, 2010).
Reads for each set of Arabidopsis lines were aligned to their
respective reference genomes using the STAR aligner (version
2.5.1b) (Dobin et al,, 2012). The Col-0 TAIR10 genome release
was used for reads from Col-0 and sprl (Lamesch et al,
2011; Berardini et al, 2015), while reads from WS and
sku5 were aligned to the WS reference genome (Gan et al,
2011). Duplicate reads resulting from PCR artifacts were then
removed using the Picard MarkDuplicates tool (Broad Institute,
2019b). In total, 502 million transcriptomic reads were aligned.
Following alignment, expression quantification and differential
gene expression analysis were performed using Cufflinks and
Cuftdiff (version 2.2.1), respectively, with default parameters
(Trapnell et al, 2010, 2012). Output from Cuftdiff was then
parsed with custom scripts to generate the final annotated tables
of differentially expressed genes (DEGs). A cut-off false-discovery
rate (FDR) of 0.05 was used for calling statistical significance in
differential gene expression

RNA-Seq Data Analysis

Tables of DEGs for each comparison were combined and
analyzed through Microsoft Excel, in order to generate lists
of Arabidopsis Genome Initiative (AGI) identifiers with their
corresponding [Log,(Fold Change)] values. Machine annotation
of AGI ID lists was carried out using G:Profiler (Raudvere
et al., 2019), while the TAIR (Lamesch et al., 2011; Berardini
et al.,, 2015) and Araport ThaleMine (Krishnakumar et al., 2016)
databases were used to investigate genes of interest. DEGs of
a comparison (e.g., FLT vs. GC) with a greater than twofold
change in at least one context of the comparison were retained
for analysis (Supplementary File S1). This was done in order to
minimize the effect instituting a cut-off would have on analyzing
the expression patterns of a gene. Significant DEGs with a fold-
change of “inf” or “-inf” were retained and assigned a [Log,(Fold
Change)] value of 10 for heat-mapping, as they have a consistent
FPKM of zero in one context but are consistently detected at a
significantly higher level in the opposing context. Gene ontology
(GO) analyses of only those DEGs with a greater than twofold
change were carried out using the lists of their AGI IDs, separated
by their up- or downregulation, with the PANTHER statistical
overrepresentation tool (Mi et al., 2018). GO terms for each
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comparison were separated into those unique to one context and
those overlapping between contexts, and the output is available
in Supplementary File S2. Of those resulting, all GO terms
overlapping between contexts were retained for heatmapping.
Either one-half or five, whichever was greater, of each context’s
unique GO terms were retained after sorting by g-value from
most to least significant. GO term lists were then manually
pruned in order to reduce highly redundant information (e.g.,
“cellular response to chemical” and “response to chemical”) only
when the redundant terms demonstrated the same pattern of
over- or underrepresentation across contexts. Complete lists of
genes annotated to specific GO Terms of interest were gathered
from AmiGO2 (Carbon et al., 2008). Heatmaps were then
generated using DEG [Log,(Fold Change)] values or GO term
[-Log(g-value)] values as input for the Morpheus webtool (Broad
Institute, 2019a).

Measurements of Seedling Roots

Germination rates and the growth of roots in each environment
were derived from images taken of the growth plates at the
times of harvest (Figure 1B). Germination rates were assessed
by counting the number of seedlings and ungerminated seeds
from the 4-day images taken just prior to harvest. Statistical
significance of germination rate changes were assessed using x>
tests with the conservative Yates correction (Yates, 1934). The
comparisons made were between mutant and wild-type lines,
and between spaceflight and GC growth conditions. To measure
roots, images were analyzed using the FIJI distribution of Image]
(Schindelin et al., 2012; Rueden et al., 2017). The JFilament plugin
was used to track primary roots, creating a set of points describing
each root (Smith et al., 2010). These data were processed using
an R script that provided the length of each primary root as
output, alongside other measures (Schultz et al., 2016; R Core
Team, 2019). Lengths were corrected for scale based on the pixel
length of the Petri dish grid-squares to allow for comparisons
between images. Differences in root length were assessed through
two-tailed Students t-tests, with the Bonferroni correction for
multiple testing applied (Snedecor and Cochran, 1989). The
comparisons made were between spaceflight and GC seedlings
for each genotype, and between each skewing mutant and its
respective wild-type. As conventional measurements of angles of
root growth are dependent upon a reference gravity vector, the
roots of 4-day-old seedlings were measured manually using FIJI
(Schindelin et al., 2012; Rueden et al., 2017). The angle between
the root tip and the growth direction of the beginning of the root
was used. Positive and negative angles were used to represent
rightward and leftward changes in directionality, respectively,
relative to the initial direction of growth when viewed from below
the growth media. Angles were plotted using the ggplot2 package
in R (Wickham, 2016). In these polar plots, the magnitude of a bar
corresponds to the number of roots within a particular bin, with
the placement of the bar corresponding to the measured angle.
Differing upper limits were used for spaceflight (0-20) and GC
(0-10) plots in order to allow the many lower-magnitude bins in
the spaceflight plots to be visualized by effectively zooming-in on
the data. However, the scaling between inner rings is consistent
between plots. As such, a bar meeting the second ring at the —25°

line indicates that ten roots had an angle shift between 15° and
30° to the left during their growth.

RESULTS

APEX-03 seedling growth in occurred in the Veggie hardware on
the ISS (Figure 1A). Veggie is housed in the Columbus module
(Figure 1A, left), and for the APEX-03 experiment, configured to
accommodate racks of 10 cm Petri plates (Figure 1A, middle).
Images of plant growth and morphology were recorded by
astronaut Butch Wilmore just prior to harvest (Figures 1A, right,
B). Col-0 and WS can display distinct patterns of root growth in
response to environmental stimuli. In terrestrial environments,
changing the angle of the growth surface can create ecotype-
specific patterns of skewing (Rutherford and Masson, 1996;
Schultz et al,, 2017). In a microgravity environment with a
gradient light source to impart a tropic cue, skewing patterns of
WS and Col-0 recapitulate the patterns seen on terrestrial angled
growth surfaces (Paul et al., 2012a). However, in a microgravity
environment with uniform, non-directional lighting such as
provided by the Veggie hardware in the current experiment, root
growth patterns are more disorganized (Figure 1B). Nonetheless,
skewing trends can still be discerned by following the angles
of growth as the roots develop, and these are quantified in
Figure 2A for Col-0 and spr1, and in Figure 2B for WS and sku5.
In all representations and discussions of skewing, the direction
indicated is from the perspective of being viewed from behind
the growth medium.

Col-0 and Spr1
Germination and Morphology of spr1 in Spaceflight
Phenotypic differences among the Col-0 background plants in
GC and spaceflight (FLT) environments were primarily limited
to skewing angles in the roots (Figures 2, 3). There were no
statistically significant differences in the primary root length
between GC and FLT in either Col-0 or sprl 4d or 8d plants.
Although Col-0 root length appeared to be reduced in spaceflight
in 8d plants, the p-value did not quite meet the requirements for
significance (two-tailed t-test, p = 0.0152, whereas cut-off was
p < 0.0150) (Figure 2A). There were differences in root length
between Col-0 and sprl genotypes in the GC (p = 1.48 E-9) but
FLT Col-0 and FLT sprl roots were not statistically different.
Both 4d and 8d GC Col-0 seedlings grew with very little left or
right deviation down the vertical face of the plate medium, while
the GC spr1 mutant plants of both ages showed distinct skewing
to the left (Figures 2C, 3A-D). The 4d FLT Col-0 plants generally
skewed slightly to the left with some variation (Figures 2C, 3E).
In contrast, the roots of the 4d FLT sprI plants demonstrated an
increased severity of skewing, which was manifested as a strong
left-hand curved growth pattern (Figures 2C, 3E,F) that was
significantly different between GC and FLT (two-tailed ¢-test,
p = 0.00385). For both genotypes the variance in the growth
angle (as noted in the SD values in Figure 2) was greater in the
spaceflight samples. After 8d of growth, the increased skewing
in FLT sprl led to associations with other roots, in contrast
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FIGURE 2 | Quantification of APEX-03-2 Root Growth. Images acquired at the time of harvest of spaceflight (FLT) and ground control (GC) plants were used for
measurements. Primary root length measurements for (A) Col-0 and spr7 and (B) WS and sku5 were taken using Jfilament and analyzed in R. Significant differences
between genotypes (spr? vs. Col-0, skub vs. WS) and growth conditions (FLT vs. GC) were assessed via two-tailed t-tests and are indicated by asterisks above bars
connecting the relevant sets of measurements (Bonferroni correction: *p < 0.0125;
(p = 0.0151). Error bars show the SEM of each set of measurements. (C) The angle measured between the root tip and the initial direction of root growth in the
4-day-old seedlings. Plots are separated into rows by growth condition, and into columns by genotype. Positive and negative angles represent rightward and
leftward growth of roots, respectively, when viewed from behind the media. Angles are binned in 10° intervals, with each bar’s length representing the number of
roots within that bin. As such, a bar reaching the second ring of each plot represents ten roots within that bin. However, note that the upper limit of bin size is
lowered in the spaceflight plots to accommodate the higher variation in these data.
corner, and the mean angle of each plot is noted in its bottom-left corner. FLT, spaceflight; GC, ground control.
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*p < 0.001). The 8d Col-0 FLT vs. GC comparison did not meet this cutoff

The total number of roots represented in each plot is indicated in its bottom-right

to FLT Col-0 which tended to spread more evenly across the
plate (Figures 3G,H).

There were no differences between GC and FLT the
germination rates of either Col-0 or sprl. The 4d harvest images
(Figures 3A,B,E,F) were used to compare seedlings with any
ungerminated seeds; germination in both genotypes was 100%
under both GC and FLT conditions (Supplementary Table S2).

The spr1 Spaceflight Response Involved Fewer
Transcriptomic Changes Than Col-0
Spaceflight-conditioned differential gene expression patterns
were highly dependent upon the genotype, ecotype, and

developmental age of seedlings. Quantitative gene expression
data revealed patterns from three perspectives: spaceflight versus
GCs for each genotype at each developmental age (Figure 4A:
FLT vs. GC), wild type plants versus the mutant genotype in
each environment and age (Figure 4B: sprl vs. Col-0) and
between the two developmental ages (Figure 4C: 4d vs. 8d).
The numbers of differentially expressed genes (DEGs) were
categorized according to the magnitude of their fold-change
values in the Col-0 and sprI roots. In the FLT vs. GC comparison
(Figure 4A), both lines differentially expressed fewer genes at
the 8d timepoint than at 4d in all fold-change categories. The
spaceflight acclimation of sprl also required fewer genes than

Frontiers in Plant Science | www.frontiersin.org

March 2020 | Volume 11 | Article 239


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Califar et al.

Spaceflight Skewing Mutant Gene Expression

Ground Control Spaceflight

FIGURE 3 | High resolution images of the Col-0 and spr1 growth patterns.
Images are arranged such that the ground control seedlings (A-D) are in the
left column while spaceflight seedlings are on the right (E=H). Vertically,
images alternate between Col-0 (A,C,E,G) and spr1 (B,D,FH). The images
taken at the 4 day time point (A,B,E,F) are grouped above those taken at the
8 day time point (C,D,G,H). Images taken from above the growth medium at
the time of harvest. Grid squares are 13 mm wide.

Col-0 to be differentially expressed. In the direct comparison of
sprl with Col-0 (Figure 4B), more DEGs were observed within
each growth condition at 4d than at 8d. The difference in total
DEG count between conditions was also reduced at 8d. This
occurred in almost all fold-change categories, and differences
in total DEGs between the lines diminished between timepoints
irrespective of the growth condition. In the developmental
comparison of expression between the 4d and 8d timepoints
(Figure 4C), the roots from the FLT context showed lower counts
of total DEGs than their respective GC roots. However, while spr1
required slightly fewer genes to be differentially expressed during
development in the GC context, the opposite was true in FLT,
where sprl required more DEGs for spaceflight development than
Col-0. Twofold-change categories that did not follow these trends
were those of the DEGs upregulated and downregulated more
than twofold across sprl and Col-0 development, respectively,
which were larger in FLT than in GC.

The relative contributions of DEGs with high degrees of
differential expression (greater than twofold change) in response
to spaceflight were variable among genotypes and developmental
age. In the FLT vs. GC comparison (Figure 4A), the proportion
of these DEGs was elevated in sprl (4d: 41.8%, 8d: 22.0%)

relative to Col-0 (4d: 17.8%, 8d: 12.5%), and the difference in
this proportion between the lines declined over time. However,
when the genotypic comparison of sprl vs. Col-0 (Figure 4B) was
made, the proportion of these DEGs showed the opposite trend.
In this case, the level of differential expression was slightly higher
in FLT at 4d (GC: 16.5%, FLT: 23.9%) and at 8d the proportion
of these DEGs was elevated in GC (GC: 30.2%, FLT: 11.9%). In
the developmental comparison (Figure 4C), the primary point of
interest was the low number of genes whose expression increased
to a high degree over time in Col-0 GC roots (33 DEGs) when
compared to the other contexts. In the same time frame, sprl
increased expression of 424 genes over twofold to accomplish the
same development.

spr1 Differentially Expressed Defense Pathways in Its
Spaceflight Response

Most of the genes that are highly differentially expressed
between the Col-0 and sprl are unique within the context
of developmental age or growth environment (Figure 5A).
However, a small number were differentially expressed between
genotype irrespective of environment or age (Figure 5A). The
coordinately expressed upregulated genes were related to the
regulation of defense responses (NIMIN-1, ALD1, DLO1). The
only genes that registered as coordinately downregulated in
this comparison were SPIRAL1 and an antisense transcript
(AT3G29644) of a transposable element which did not show
differential expression itself.

The theme of stress response and defense was also evident
in the GO enrichment analyses of the genes differentially
expressed between Col-0 and spr1 in the spaceflight environment.
The significantly over- and underrepresented GO terms among
biological processes are indicated in Figure 5B. Genes associated
with general stress responses and environmental stimuli were
prominent, as well as those annotated to terms related to
defense responses. DEGs associated with these defense and stress
pathways have been noted in the FLT vs. GC comparisons of
previous studies (e.g., Correll et al., 2013; Paul et al., 2013, 2017;
Choi et al., 2019). Genes involved in responses to salicylic acid,
a phytohormone linked to both plant defense signaling and
regulation of plant development (Klessig et al., 2018), were also
enriched. Carbon fixation pathways, and specifically multiple
ribulose bisphosphate carboxylase (RuBisCo) genes, were also
upregulated in 4d FLT sprl (Figures 5B,C). Genes encoding
proteins localized to the apoplast were also enriched among those
upregulated in FLT sprl, indicating that significant remodeling
of processes within the cell was also needed by sprl within the
spaceflight environment (Figure 5C).

Many of the DEGs associated with the acclimation to
spaceflight were unique to genotype and to the developmental
age of the plants (Figure 6A). There were 554 genes differentially
expressed by at least twofold between spaceflight and ground
among the two age groups (4d and 8d) of the two genotypes
(Col-0 and sprl), with 63 genes coordinately expressed across
all plants. Developmental age had a substantial impact on the
spaceflight response of both genotypes; in both Col-0 and sprl,
the 4d plants had a higher number of DEGs than the 8d plants.
There was a large amount of overlap between the GO processes
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FIGURE 4 | Col-0 and spr1 overall differential gene expression levels. A graphic representation of the genes differentially expressed in the (A) FLT vs. GC, (B) 4d vs.
8d, and (C) spr1 vs. Col-0 comparisons. Upregulation of a gene denotes a higher expression level in the first context of the comparison. Genes are separated into
categories based on direction of differential expression and a Logs (Fold-Change) magnitude cut-off of one. d, day; DEG, differentially expressed gene; Downreg,
downregulated; FLT, spaceflight; GC, ground control; Mag, magnitude; Upreg, upregulated. Data are based on four biological replicates.
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FIGURE 5 | Spr1 vs. Col-0; the effects of SPRT loss on gene expression. (A) Differentially expressed genes (DEGs) between the spr1 mutant and its Col-0 wild-type
background with greater than twofold magnitude in at least one context. DEG heatmaps are scaled such that yellow and blue represent more extreme levels of up-
and downregulation, respectively, while red and green represent lower fold-changes in the same manner. In this case, upregulation of a gene indicates a higher
expression level in spr1 than in Col-0. (B,C) Gene ontology (GO) terms for (B) biological processes and (C) cellular compartments whose annotated genes were
over- and underrepresented in the lists of DEGs for each context which met the twofold cutoff. The significance of the GO terms’ enrichment is represented by

the —Log+g transform of its g-value. The scaling scheme used for the GO term heatmaps was similar to that described for DEGs, where yellow and red denote
overrepresented terms, and blue and green denote underrepresented terms. Data are based on four biological replicates.

identified from the DEGs used to acclimate to the FLT condition  transcriptional processes. These were more highly enriched in
for sprl and Col-0 (Figure 6B). Among the more widely sprl roots than in Col-0, however, it can also be seen that there is
shared GO categories in the 4d plants of both genotypes were a sprl-specific enrichment of the same terms among those genes
those corresponding to the regulation of gene expression and  which are downregulated in the response to FLT. The term for a
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response to karrikin compounds (phytohormone-like molecules ~ downregulated in FLT, and these were involved with the response
derived from burning plant material) was also indicated. Many  to various wavelengths of light as well as the response to elevated
light signaling terms also appeared as enriched among DEGs light intensity. However, specific photosynthetic terms appeared
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with greater than twofold magnitude in at least one context. DEG heatmaps are scaled such that yellow and blue represent more extreme levels of up- and
downregulation, respectively, while red and green represent lower fold-changes in the same manner. In this case, upregulation of a gene indicates a higher
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amongst those which were downregulated only at 8d in Col-0.
Similar localization terms appeared specifically in 8d Col-0 as well
(Figure 6C), indicating that these were changes in the expression
of genes directly involved in the photosynthetic machinery.
While both spr1 and Col-0 4d were enriched with DEGs localized
to the apoplast, these were among the upregulated genes in sprl
and the downregulated genes in Col-0, alongside other terms
related to extracellular structures. Furthermore, terms related
to organellar localization were significantly underrepresented in
those genes upregulated in Col-0 at 4d.

The expression of genes associated with the developmental
age was impacted by the spaceflight environment (Figure 7A).
Approximately 26% of the total DEGs meeting the criteria
for inclusion were required to be differentially expressed at
some level regardless of the growth condition or genotypic
background to facilitate development. However, among only
those DEGs which met the twofold change cutoff, there
were not GO terms shared so ubiquitously between contexts
(Figure 7B). While broad GO terms for gene expression and
metabolic processes were underrepresented in many of the
contexts, more specific terms related to developmental and
metabolic regulation were enriched during development in
Col-0. Genes related to oxidative stress were also enriched
among those genes more highly expressed at 4d in FLT in
both genotypes. Localization GO term enrichments were highly
divided between intracellular and extracellular compartments,
which were consistently underrepresented and overrepresented,
respectively (Figure 7C). These underrepresented GO terms
occur mostly within the sets of DEGs which were upregulated
between 4d and 8d, with many more significantly enriched
in sprl. The primary exception to this was a set of terms
related to the chloroplast and the RuBisCo complex, which were
mostly enriched in those DEGs more highly expressed in early
development of sprl.

WS and Sku5

Germination and Morphology of sku5 in Spaceflight
Phenotypic differences among the WS background plants in
GC and FLT environments included root length and skewing
angles (Figures 2, 8). The primary root lengths of FLT WS were
decreased significantly compared to GC at 8d (two-tailed t-test,
p = 0.000209), but not at 4d. There were no differences in root
lengths between GC and FLT sku5 plants of either 4d or 8d
plants (Figures 2B, 8C,D,G,H). There were differences in root
length between WS and sku5 genotypes in the GC (p = 0.0013)
but FLT WS and FLT sku5 roots were not statistically different
(Figures 2B, 8C,D,G,H).

There were no statistically significant differences in the overall
change from vertical between WS and sku5 in either GC or FLT
environments (Figures 2C, 8A-D). The differences in root angles
between GC and FLT for each genotype, and between the WS
and sku5 genotypes in both FLT and GC environments, also
failed to meet statistical criteria. However, visual inspection of the
images, and also the plots of Figure 2C, illustrate the difference
in the directional trends for root growth in each genotype and
environment. For both genotypes the variance in the growth

Spaceflight

Ground Control

FIGURE 8 | High resolution images of the WS and sku5 growth patterns.
Images are arranged such that the ground control seedlings (A-D) are in the
left column while spaceflight seedlings are on the right (E-H). Vertically,
images alternate between WS (A,C,E,G) and sku5 (B,D,F,H). The images
taken at the 4d time point (A,B,E,F) are above those taken at the 8d time
point (C,D,G,H). Images taken from above the growth medium at the time of
harvest. Grid squares are 13 mm wide.

angle (as noted in the SD values in Figure 2) was greater in the
spaceflight samples.

The FLT sku5 seeds germinated at a significantly reduced rate
(48%) compared to WS FLT (85%), and to sku5 GC (77%) and WS
GC (93%) [x? (3, N = 185) = 15.01, p = 0.00181] (Supplementary
Table S2 and Figures 8A,B,E,F). However, the FLT sku5 seeds
that germinated produced plants that were comparable to their
GC counterparts, as evidenced both by plate images and by the
lack of difference in root length between FLT and GC sku5 at 4
and 8d (Figures 2B, 8B,D,EH).

The Expression of More Genes Is Altered in sku5
Than in WS During Spaceflight

The trends of differential expression in WS and the sku5 line
contrasted with those seen in Col-0 and sprl in that WS and
sku5 show an elevated transcriptomic response to spaceflight over
time, with sku5 further differentially expressing more genes than
WS (Figure 9). The clearest example of this was the FLT vs. GC
comparison of gene expression for these lines, where the number
of DEGs required for spaceflight acclimation of sku5 were fivefold
and twofold more than WS at 4d and 8d, respectively (Figure 9A:
FLT vs. GC). However, both genotypes increase in their DEG
counts between 4d and 8d. The proportion of DEGs with a greater
than twofold change also decreased to a very similar degree for
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both WS (4d: 63.2%, 8d: 14.5%) and sku5 (4d: 62.8%, 8d: 14.2%)
despite the large difference in counts. When the genotypes were
compared directly, the transcriptomic differences between them
were exacerbated as they acclimated to the flight condition over
time (Figure 9B: sku5 vs. WS). The proportion of DEGs meeting
the twofold change criteria followed a similar trend to that seen in
flight acclimation, where it decreased in both GC (4d: 40.9%, 8d:
13.0%) and FLT (4d: 52.8%, 8d: 9.3%). Despite these trends, most
genes among the FLT 4d DEGs that had greater than twofold
change were those that were expressed more highly in sku5. This
trend persisted into the 4d vs. 8d comparison (Figure 9C: 4d vs.
8d), where sku5 in the FLT condition required more genes to
be differentially expressed in order to develop. Sku5 in the GC
condition behaved much like WS in both FLT and GC conditions
in terms of DEG counts in each fold-change category. Together,
these patterns of gene expression indicated that the conditions
of spaceflight had a disproportionate effect on the sku5 roots’
transcriptomic responses, but that each genotype’s response to
spaceflight over time involved a greater number of DEGs of
lower fold-changes.

Sku5 Highly Induced ABA- and Stress-Associated
Genes in Spaceflight
The genes differentially expressed between sku5 and WS were
similar between GC and FLT growth conditions (Figure 10A),
in that the same genes that were highly upregulated in WS
GC were highly upregulated in FLT for sku5. Among these
were many late embryogenesis abundant (LEA) family proteins,
whose expression has been connected to enhanced resistance
to abiotic stresses and alterations in ABA sensitivity (Zhao
et al, 2011; Candat et al., 2014). Additional LEA family
genes and seed storage proteins, such as CRUCIFERINA
(CRA1) and CRUCIFERIN 3 (CRA3) were seen as upregulated
uniquely in sku5 FLT. Alongside these were further genes
associated with ABA- or ABA-independent dormancy signaling,
notably REDUCED DORMANCY 5 (RDO5), DELAY OF
GERMINATION 1 (DOG1), and HIGHLY ABA-INDUCED
PROTEIN 2 and 3 (HAI2, HAI3). In 4d sku5 spaceflight plants,
genes encoding LEAs and other seed-associated proteins are
among the most highly induced (Log,[5 to 10], or 30 to 1000-
fold). Many of these patterns are further supported by GO
biological process term enrichments (Figure 10B), where almost
all of the overrepresented terms are enriched within the group of
genes more highly expressed by sku5 roots at 4d in FLT. Outside
of the mentioned ABA signaling and seed development genes,
terms for regulation of seed dormancy and negative regulation
of post-embryonic development are overrepresented, alongside
more general terms such as responses to temperature and stress.
All of the significant GO localization enrichments were for genes
more highly expressed in WS in the 4d FLT context, involving
either DEGs related to the RuBisCo complex or extracellular
structures (Figure 10C). DEGs encoding proteins anchored to
the PM are enriched for this group, indicating an important
role for them in WS.

Many of the LEAs and ABA-responsive DEGs in the sku5 vs.
WS comparison were also highly upregulated by sku5 in the FLT
vs. GC comparison, and some were unique to the spaceflight

acclimation of sku5 (Figures 10A, 11A). The majority of FLT vs.
GC DEGs (70.3%) were only detected in one of the sku5 FLT
vs. GC comparison contexts. As such, the majority of the GO
biological process terms found to be enriched were unique to the
DEGs upregulated in FLT sku5 at the 4d time point (Figure 11B).
Hormone response and signal transduction terms were enriched,
with ethylene signaling, ROS response, and light signaling among
the more specific pathways to be represented. In tandem, these
4d sku5 roots had decreased enrichment of DEGs associated with
the synthesis of suberin. Uniquely to this comparison, 8d FLT WS
roots upregulated genes related to chromatin remodeling. As seen
in other comparisons (Figures 6C, 7C, 10C), WS upregulated
genes annotated to the RuBisCo complex in FLT (Figure 11C).
Additionally, the 8d downregulated DEGs for WS were
overrepresented for extracellular localization, and DEGs whose
products localized to intracellular and organellar compartments
were underrepresented (Figure 11C). However, sku5 showed
overrepresentation of downregulated DEGs annotated to the
extracellular region at the earlier time point of 4d.

Late embryogenesis abundant family genes were also
prominently represented in the 4d vs. 8d comparison within
GC and FLT environments (Figure 12A). Examination of the
GO biological process terms yielded by the individual lists of
DEGs showed many similar stress response terms, but these
were primarily in the context of genes more highly expressed
at the 4d time point (Figure 12B). However, based on the level
of significance of the terms, the enrichment of DEGs related
to many of these stress responses was enhanced in FLT. In the
cases of oxidative stress and cold response sku5 showed this
enhancement. However, in some cases, such as the response to
desiccation, both genotypes showed a lack of significant term
enrichment in FLT. The sku5 roots also showed slightly higher
significance of enrichment of DEGs associated with responses to
water deprivation and light stimuli in early FLT development,
compared to WS. GO terms related to cell wall remodeling and
immune responses, commonly seen in FLT acclimation, were also
enhanced in their enrichment during FLT development of sku5
compared to GC development. The remainder of the significant
GO terms were unique to one context, and among these is the
response to karrikin, which was previously seen in the context
of sprl and Col-0 FLT vs. GC comparisons (Figure 6B). Of the
terms enriched specifically in sku5 FLT development, processes
involved with salt and ROS stress, as well as light responses,
were significantly higher at 4d. At 8d, the terms associated with
sku5 in FLT were primarily focused on cell wall remodeling and
biosynthetic processes.

DISCUSSION

The discovery that root skewing was not gravity-dependent,
and prevalent in both light-grown and dark-grown plants
in spaceflight habitats (Millar et al., 2011; Paul et al,
2012a; Nakashima et al., 2014), invited questions about the
underlying mechanisms of this behavior in the microgravity
environment and the relationship between those mechanisms
and physiological adaptation to spaceflight. The experiments
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described here examined the contribution of two well-
characterized skewing genes that are in two different
ecotypic backgrounds and which affect different skewing
control pathways. SPIRAL1 plays a role in directional cell
expansion by regulating cortical microtubule dynamics
(Furutani et al., 2000; Nakajima et al, 2004; Sedbrook
et al., 2004; Galva et al, 2014). SKU5 is a skewing-related
glycosylphosphatidylinositol-anchored cell wall and plasma
membrane protein, which has also been implicated in stress
response signaling (Sedbrook et al., 2002). The sku5 and sprl
mutants are well characterized in terrestrial environments,
skewing rightward and leftward, respectively, when grown
vertically (Furutani et al., 2000; Sedbrook et al., 2002, 2004;
Nakajima et al., 2004). The experimental readouts used to assess
the physiological adjustment of seedlings to spaceflight were
root and germination measurements, and the differences in
transcriptomic responses among the genotypes. The opposing
directions of the skewing phenotypes of the mutant lines
are believed to stem from alterations of distinct cellular
processes, and this is most clearly evidenced by the differential
effects of microtubule-destabilizing agents on these mutants
(Furutani et al., 2000; Sedbrook et al., 2002, 2004; Nakajima
et al,, 2004; Galva et al, 2014). The distinct roles of these
two genes in determining root directionality is supported
by their different individual responses to spaceflight in the
present experiments. The data from sku5 and spirall are
analyzed in context with their parent genotype, WS and Col-0
respectively, as WS shows a much smaller number of spaceflight

differentially expressed genes than Col-0 (Paul et al., 2017, and
Figures 4, 12).

Spr1 Skews Leftward on Earth and

Moreso in Space

Terrestrial studies concluded that SPR1 reinforces rightward
root growth by affecting the balance of thigmotropism and
gravitropism (Galva et al, 2014). Morphological data from
APEX-03-2 support this notion. At the 4d time point, sprl
seedlings showed a consistent leftward skewing phenotype on
Earth, and the leftward skewing was substantially enhanced by
spaceflight (Figures 2C, 3B,F). However, sprl and Col-0 roots
were the same length in spaceflight, indicating that the role of
SPR1 lies in directionality rather than overall root length in
spaceflight (Figure 2A). These data suggest that in the absence of
gravitropism during spaceflight, thigmotropism plays a dominant
role in growth directionality and that SPR1 acts to positively
enhance skewing while not affecting root length in spaceflight.
The spaceflight effect of sprl lies in morphology management
rather than growth management.

SPR1 binds with another microtubule plus-end tracking
protein, EB1b (Galva et al., 2014). It has been postulated that
EB1b and SPR1 work in concert to regulate mechanical force-
based directional growth with a balance of gravitropism and
thigmotropism, where SPR1 participates in the reinforcement
of rightward growth through thigmotropic processes, while
EB1Db negatively regulates thigmotropism and positively regulates
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gravitropism (Galva et al., 2014). In an environment lacking a
gravity cue such as spaceflight, this gravitropic reinforcement has
no effect, resulting in the enhanced skewing of sprl. Similarly
elevated leftward skewing of sprl occurs under cold conditions
alongside alterations of the microtubule network, and skewing
is conversely suppressed by heat or salt treatments (Furutani
et al., 2000; Sedbrook et al., 2004). The elevated skewing seen
in spr1 may therefore be the result of spaceflight-induced signals
in the root which are similar to those involved in cold response
signaling. The microtubule-associated protein MAP65-1 is more
abundant in spaceflight, and is also hypothesized to be linked
to cold-responsive microtubule stabilization (Chen et al., 2016;
Soga et al, 2018). Actin cytoskeleton mutants also exhibit a
greater degree of skewing in microgravity when compared to
wild-type and GC plants, though this skewing occurs to the right
when regarded from behind the media (Nakashima et al., 2014).
These structural systems both appear to have roles in suppressing
endogenous root skewing patterns in spaceflight. The spaceflight-
enhanced skewing of sprl may therefore be attributed to its
altered microtubule dynamics in the spaceflight response, similar
to altered dynamics induced by terrestrial cold stress.

Sku5 Skews Inappropriately in
Spaceflight

The sku5 mutant did not show an enhancement of skewing
in spaceflight as compared to the GC, nor did sku5 respond

to the spaceflight environment in the same manner as it does
to terrestrial disruption of the gravity vector (Figure 2C)
(Sedbrook et al., 2002). However, sku5 and WS roots were
the same length in spaceflight, indicating that the role of
SKU5 also lies in directionality rather than overall root
length in spaceflight (Figure 2B). These data suggest that
SKUS5, like SPRI, regulates morphology and directionality
rather than growth. However, SKU5 regulation is very
different from SPRI regulation of skewing morphology in
that lack of SKU5 function prevents appropriate skewing in
spaceflight. This prevention of skewing, the sku5 interruption
of the pathways involved in skewing, leads to dramatic
changes in differential expression of genes for physiological
adaptation to spaceflight.

Differential Gene Expression as a
Measure of the Quantity and Character
of the Physiological Adaptation to
Spaceflight

Differential gene expression profiles reveal the underlying gene
expression changes needed for physiological adaptation to
environmental changes. There are numerous, well-documented
environmentally-induced gene expression profiles in plants, all
of which detail specific physiological changes related to the
specific stresses. The intensity of the differential gene expression
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et al,

response, in terms of the number of genes involved and their
fold-change levels, may be considered a measure of the metabolic
cost of adapting to that environment. A terrestrial example
of this metabolic cost is in the transcriptomic response to
cold stress in Arabidopsis lines that are either sensitive or
resistant to cold (Chan et al.,, 2016). Plants that overexpressed
RNA-DIRECTED DNA METHYLATION 4 (RDM4) had a
cold-tolerant phenotype, and exhibited a greatly reduced
transcriptomic response to cold stress compared to the more
cold-sensitive wild-type and rdm4 knock-out plants (Chan

2016). The plants that were least able to tolerate cold
environments displayed a far higher number (up to 100x)
of differentially expressed genes in response to cold than
the cold-tolerant plants exposed to the same environment
(Chan et al., 2016).

Sprl adapts to spaceflight with far fewer DEGs than Col-
0. This suggests that mutation of the SPR1 skewing pathway
enhances spaceflight physiological adaptation. In contrast, the
sku5 mutation results in a doubling of DEGs in response
to spaceflight, and many of those DEGs are members of
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strong environmental stress responses. This strong response
suggests that the SKU5 pathway plays a key role in spaceflight
physiological adaptation.

Sku5 Mutation Produces a Dramatic Increase in
Differential Gene Expression in Spaceflight

Sku5 showed a dramatic program of differential gene expression
compared to the GCs, a program that was more pronounced
and diverse than that of sprl. Many of the genes that are
significantly differentially expressed between spaceflight and GCs
are associated with skewing and cell wall remodeling, irrespective
of intensity of skewing phenotype in the spaceflight-grown
plants (Figure 13).

One of the unique aspects of the sku5 spaceflight differential
gene expression program involved genes usually associated
with dehydration and ABA signaling. The FLT sku5 expression
patterns of LEAs and other ABA-associated genes suggest a
spaceflight adaptation phenomenon involving, but not limited to,
an altered ABA sensitivity in these plants. Many of the highest
magnitude DEGs in the spaceflight acclimation of sku5 were in
the LEA family, primarily dehydrins and group-4 LEAs; many
of these genes were induced by greater than 30-fold [Logx(5)]
(Figure 13). LEAs are responsive to ABA signaling resulting
from osmotic, cold, and drought stresses and act to enhance
stress resistance through membrane stabilization, sequestration
of ROS, and prevention of protein aggregation (Hundertmark
and Hincha, 2008; Zhao et al., 2011; Candat et al., 2014; Fang and
Xiong, 2015; Suzuki et al., 2016).

Many of the DEGs and LEAs upregulated in the spaceflight
acclimation of sku5 are associated with embryonic programs
that are adjusted at the chromatin level during germination in
response to environmental factors (Tai et al., 2005; Tang et al.,
2012; Molitor et al,, 2014). DOGI, for example, increases in
expression in cold temperatures, acting to repress germination
during those unfavorable conditions (Footitt et al., 2013, 2014).
The sku5 DEGs HAI2 and HAI3 are involved in regulating
ABA signaling and responding to soil water potential (Bhaskara
et al, 2012; Kim et al, 2013). REDUCED DORMANCY 5
also acts to inhibit germination, but functions independently
of DOGI and ABA signaling pathways (Xiang et al., 2014).
The GO term enrichments for sku5 also support this, as DEGs
associated with dormancy regulation are overrepresented in
the dataset (Figures 10B, 12B). It is important to note that
SKUS5 is expressed in floral tissue (Sedbrook et al., 2002). This
altered ABA signaling in sku5 could therefore be attributed
to downstream effects of altered seed development. In support
of these interpretations, germination rates were repressed in
FLT sku5 (Figures 8FH) relative to GC sku5 (Figures 8B,D),
and to FLT WS (Figures 8E,G), as evidenced by counts of
ungerminated seeds in the harvest images (Supplementary Table
S2). While sprl is also expressed in reproductive tissues, the
differential expression of dormancy signaling genes was not
prevalent in the Col-0 and sprl comparisons (Nakajima et al.,
2004; Sedbrook et al., 2004). In fact, those few DEGs related to
ABA signaling observed in Col-0 and sprI displayed a trend in
expression that was opposite of what was seen in FLT sku5. As
a prime example, the LEA ABA-RESPONSE PROTEIN (ABR)

was only slightly downregulated in the spaceflight acclimation of
8d sprl. ABA-related dormancy signaling may be affected by the
spaceflight environment.

Differential expression patterns also indicate that sku5
mutants experience changes in the plasma membrane during
spaceflight. Alterations in plasma membrane dynamics and
composition occur in plant responses to terrestrial stressors
(e.g., cold stress) and in the response of Chlorella vulgaris to
spaceflight (Popova et al, 1989; Solanke and Sharma, 2008;
Kazemi-Shahandashti and Maali-Amiri, 2018). Roots of Pisum
sativum grown under clinorotation also show shifts in membrane
composition in sterol-enriched membrane domains known as
“lipid rafts” (Kordyum et al., 2018). Membrane-bound GPI-
APs, such as SKU5, localize to these lipid raft nanodomains
and are important to stress acclimation, including spaceflight-
associated stress (Minami et al., 2008; Mazars et al., 2014;
Ferl et al, 2015; Takahashi et al, 2016, 2019; Yeats et al,
2018). ABA signaling proteins also localize to these membrane
domains in a sterol-dependent manner (Demir et al., 2013).
Given that sku5 shows alterations of ABA signaling pathways
in spaceflight (Figure 13), it can be hypothesized that the lack
of SKU5 may affect the function of these nanodomain-localized
ABA signaling processes under stress conditions. The expression
of a chloroplastic aldehyde reductase, ChIADR (AT1G54870),
involved in the detoxification of reactive carbonyls formed as
a result of lipid peroxidation, and TSPO, which participates in
mobilization of lipids, are induced by stress and highly induced
in the spaceflight acclimation of sku5 (Guillaumot et al., 2009;
Yamauchi et al., 2011; Jurkiewicz et al., 2018). These patterns
match the gene expression trends of the spaceflight-induced LEA
family genes that are thought to directly participate in membrane
stabilization under stress (Battaglia et al., 2008; Hundertmark and
Hincha, 2008; Candat et al., 2014). The gene expression patterns
of these ABA-responsive genes in sku5 suggest that SKU5 affects
ABA signaling in response to stresses. Furthermore, this shows
that pathways affecting membrane stabilization and remodeling
are required for the spaceflight acclimation of sku5 that are not
essential for its growth in terrestrial environments.

SKU5 may also directly participate in stress response signaling
or cellular remodeling due to its localization to the outer
aspects of the plasma membrane. A SKU5 homolog is highly
upregulated [Log»(14)] in tobacco overexpressing a FATTY
ACID DESATURASE 3 (CbFAD3-OE) homolog derived from
the cryophyte Chorispora bungeana when compared to a wild-
type line in the response to salt stress (Shi et al, 2018).
CbFAD3-OE lines exhibited enhanced membrane fluidity and
survival under cold, salt, and drought stresses, and demonstrated
reduced lipid peroxidation and membrane leakage via activation
of calcium signaling and suppression of ROS (Shi et al,
2018). As such, the sku5 line may require alternative pathways
to be activated to maintain membrane fluidity and integrity
during spaceflight acclimation due to the removal of SKU5
from this response pathway. The transcriptomic response
of sku5 to the spaceflight condition was elevated compared
to WS, which would support the activation of additional
pathways (Figures 10A, 11A). ROS-related genes are abundant
in spaceflight transcriptomes, and reflect a response to spaceflight
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Il SCT HPSGC [l SGR9 Gravitropism Il MYBD ABA
CAB1 Skewing PIP5K2 Gravitropism AT2G32020 ABA
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Il VSP1 Skewing [l ORS1 ABA B AT4G39130 LEA ABA
[l AT5G44400 Skewing LTP4 ABA
[l AT5G53880 Skewing W TSPO ABA 50 -2.5 0 2.5 5.0 Log,
FIGURE 13 | Differentially expressed genes between FLT and GC of particular interest. Statistically significant DEGs with greater than twofold magnitude in at least
one context. Each gene in this list corresponded to the following categories: potential and highly probable skew gene candidates (Skewing, HPSGC; Schultz et al.,
2017), late embryogenesis abundant (LEA; Hundertmark and Hincha, 2008), associated with gravitropism (GO Terms; Carbon et al., 2008), and abscisic acid (ABA,
GO Terms; Carbon et al., 2008). The heat map scale Logy(Fold-Change) is indicated in the bottom right corner. Categorical information is provided beside each gene
group. Data are based on four biological replicates.

that is conserved among Arabidopsis cultivars and related species
(Paul et al., 2013, 2017; Sugimoto et al., 2014; Ferl et al,
2015; Sng et al, 2018; Choi et al,, 2019; Zhou et al.,, 2019).
Our findings were consistent with this trend across genotypes
and the skewing mutants based on GO term enrichments
associated with the spaceflight response (Figures 6B, 11B).
Notably, sku5 FLT showed elevated expression of genes required
to be expressed in response to ROS at the 4d when compared
to FLT WS (Figures 9B, 10B), supporting this hypothesized
function of SKUS5 in this membrane-associated ROS suppression.
While FAD3 was not among the sku5 FLT DEGs, FLORAL
TRANSITION AT THE MERISTEM1 (FTM1), which catalyzes
the desaturation of stearic acid to oleic acid upstream of FAD3,
was upregulated in WS and sprl spaceflight acclimation, and
downregulated in that of Col-0 and sku5. FTMI1 participates
alongside FAD3 in the mediation of stresses associated with
Arabidopsis crown gall development through their enrichment

with C18:3 fatty acids (Klinkenberg et al., 2014). The increase
of C18:3 class of fatty acids also correlated with the enhanced
membrane stability measures in the CbFAD3-OE lines (Shi et al.,
2018). These results therefore suggest a role for SKU5 in stress
metabolism with respect to the plasma membrane, a role that was
not revealed in previous ground experiments.

An additional explanation for the altered spaceflight response
of sku5 comes from its likely association with auxin metabolism
and signaling upstream of the plant TOR complex. A SKU5
homolog in maize encodes an interactor of AUXIN-BINDNG
PROTEIN 1 (ABP1) (Shimomura, 2006). The abpl mutant
demonstrates a leftward-skewing phenotype opposite to that
seen in sku5 (Sedbrook et al., 2002; Gao et al., 2015). Auxin
gradients are still present in spaceflight root tips despite the
lack of a gravity cue in the spaceflight environment (Ferl and
Paul, 2016). The presence of SKU5 acting to mediate anisotropic
cell growth in response to endogenous auxin gradients could
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facilitate the spaceflight acclimation of wild-type seedlings. GO
terms associated with the DEGs of 4d spaceflight response of
sku5 suggested this connection as well, with many alterations
occurring in signaling pathways related to ethylene, ROS, and
light signaling (Figure 11B). Furthermore, ABP1 is associated
with the activation of TOR and the promotion of growth
through the action of an auxin-activated signaling pathway
mediated by the RHO OF PLANTS 2 (ROP2) GTPase (Xu
et al., 2014; Schepetilnikov et al., 2017; Ryabova et al., 2019).
The TOR complex integrates diverse environmental signals to
regulate growth, and ABA signaling inhibits TOR, promoting
autophagy to allow for stress tolerance acquisition (Ryabova
et al, 2019; Signorelli et al,, 2019). SKU5 may impact this
mechanism indirectly through affecting the action of ABPI,
and a reduction of the auxin signaling into TOR would shift
the balance in favor of stronger ABA responses, such as that
seen in the spaceflight acclimation of sku5. A ROP6 pathway
also mediated by ABP1 affects the activity of KATANIN, which
severs cortical microtubules to facilitate reorganization of the
microtubule network in response to environmental stimuli (Chen
et al, 2016). As a result, the spr] mutant may be faster to form
a spaceflight-tolerant microtubule network due to its altered
microtubule kinetics, while the sku5 mutant may not be able to
perform this function as rapidly due to altered ABP1 signaling.

Spr1 Mutation Produces a Decrease in Differential
Gene Expression in Spaceflight

The spaceflight DEGs of sprl and Col-0 were primarily in
the defense and salicylic acid-mediated signaling related to cell
wall remodeling (Figures 5B, 6B). Genes related to these cell
wall pathways are common in spaceflight transcriptomes (Paul
et al, 2012b, 2013, 2017; Correll et al, 2013; Kwon et al,
2015; Johnson et al., 2017). While plants grown in microgravity
may be more susceptible to pathogenic infection (Leach et al.,
2001; Ryba-White et al., 2001), the fact that all examples to
date of upregulated pathogen response genes are from plants
grown in sterile conditions suggests that these genes are serving
other purposes of cell wall remodeling in spaceflight (Paul
et al., 2012b, 2013, 2017; Correll et al., 2013; Choi et al., 2019).
ALD1 is a positive regulator of salicylic acid accumulation
pathways through the generation of metabolites (Nie et al.,
2011; Cecchini et al., 2015). NIMIN1 and DLOI1 contribute to
opposing processes, acting to repress immune responses at the
level of expression regulation (Kohler et al., 2002; Zhang et al.,
2013; Zeilmaker et al., 2015). Salicylic acid induces the lipid
raft-localized pathways induced by ABA, in order to promote
cellular uptake of water (Demir et al, 2013; Prodhan et al,
2018). The upregulation of salicylic acid signaling in sprl may
act through these pathways, promoting abiotic stress response
through pathways normally associated with defense responses
(Figures 5B, 6B). This hypothesis might also explain why the
induction of “defense” and wound response pathways occurs
in spaceflight in the absence of pathogenic infections (Nejat
and Mantri, 2017). The recently characterized ORBITALLY
MANIFESTED GENE 1, a regulator of ROS signaling that is
both flg22- and wound-inducible, provides a spaceflight-relevant
example (Sng et al., 2018). Considering that wounding and

pathogen invasion also mechanically disrupt membranes and
cell walls (Chen et al,, 2016), these pathways may be signaling
remodeling of cellular structures and the microtubule network
in spaceflight. Flg22 application to Arabidopsis cell cultures
and induction of MAMP-triggered immunity also has the
effect of redistributing flavonoid compounds from biosynthetic
processes important to oxidative stress response processes to the
production of compounds important to defense (Schenke et al.,
2019). Genes associated with the production of phenylpropanoids
are less-represented among the sprl DEGs downregulated in
spaceflight compared to Col-0, although they are also more
highly represented among sprI DEGs downregulated across
development in spaceflight (Figures 6B, 7B). As such, these
DEGs negatively regulating defense signaling in sprl may
contribute to an enhanced ability to mediate ROS generated in
spaceflight through the redistribution of limited resources early
in its development. This conclusion is also supported by the gene
categories enriched in the spaceflight acclimations of Col-0 and
sprl, where DEGs associated with responses to oxidative stress
are more enriched among genes upregulated in FLT in sprI than
in Col-0 (Figure 6B).

Many abiotic stresses trigger remodeling of cortical
microtubules, with salt stress tolerance requiring the 26S
proteasome-mediated degradation of SPR1 (Shoji et al., 2006;
Wang et al., 2011; Chen et al., 2016). Microtubule reorientation
also contributes to cell elongation in the spaceflight response
of hypocotyls (Soga et al., 2018). The sprl mutant, which has
altered microtubule dynamics in favor of decreased stability,
may have enhanced capabilities for remodeling of microtubule
networks in the response to many forms of environmental stress
(Galva et al., 2014).

Spr1 and Sku5 Mutants Both Differentially Regulate
Skewing-Associated Genes in Response to
Spaceflight

Despite the many differing spaceflight responses of sprl and
sku5, DEGs identified as likely to be associated with the
integrative signaling of skewing (Schultz et al, 2017) were
among those differentially expressed in both mutants in
spaceflight (Figure 13). Two of the highly likely skewing genes,
SENESCENCE 1 (SEN1) and ASPARAGINE SYNTHETASE 1
(ASN1) are induced in spaceflight (Figure 13). The SKU5 protein
is endocytosed through different pathways within the root tip
dependent on local auxin signals and perceived stress conditions
(Baral et al., 2015). SKU5 could act to modulate growth regulation
through its aforementioned association with the ABP1 apoplastic
signaling pathway upstream of TOR, and both SKU5 and SPR1
can affect microtubule reorganizing pathways. This would enable
SKUS5 to impact the spaceflight response via the regulation of
meristematic competence and cell cycle progression, processes
that are affected in spaceflight (Matia et al., 2010), clinorotation,
RPM exposure, and magnetic levitation (Herranz and Medina,
2014; Herranz et al., 2014; Boucheron-Dubuisson et al., 2016).
This is supported by the M-phase peak of SKUS5 expression
and its previously hypothesized role in regulating the cell cycle
(Menges et al., 2002; Sedbrook et al, 2002). However, the
importance of senescence in the context of root skewing has
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not been well-studied. The recent association of strigolactone-
independent karrikin-sensing pathways with skewing provides
a potential direction for study (Swarbreck et al, 2019).
The loss of the protein MORE AXILLARY BRANCHES 2
(MAX?2), which also participates in strigolactone-associated
senescence signaling, exacerbates the skewing phenotype of
sku5 in a sku5 max2 line (Ueda and Kusaba, 2015; Swarbreck
et al., 2019). Therefore, these results reinforce connections
between environmental and senescence signaling and root
skewing. The association of skewing-associated genes with
these regulatory networks provide a means by which the
mutation of these genes can alter the response to the
spaceflight condition.

CONCLUSION

The physiological adaptation of sku5 to spaceflight is
characterized by powerful stress responses, as well as the
strong induction of LEAs and other genes associated with seed
development. In contrast to sku5, sprl differentially expressed
fewer genes than Col-0 to physiologically adapt to spaceflight.
This observation suggests that the sprl mutation imbued
an enhanced ability for rapid spaceflight acclimation while
sku5 required an extended spaceflight response to accomplish
acclimation, even to the point of initiating classic deep stress
responses. These observations further suggest that the functional
distinctions between sku5 and sprl inform distinct aspects of
the spaceflight response in plants, in particular the responses
of young seedlings. The dramatic responses of sku5 suggest
that lipid raft nanodomains of the plasma membrane and
their associated GPI-APs play important roles in spaceflight
physiological adaptation.

The fact that sku5 and sprl show markedly different gene
expression patterns in spaceflight suggests that the two skewing
pathways highlighted by SKUS5 and SPR1 differentially affect
the mechanisms used by plants to physiologically acclimate to
spaceflight. Since sprl and sku5 root lengths are not altered
by spaceflight, the effects of these mutations lie not in the
process of growth, but in the processes that direct morphology
and structure, likely tying together the large number of cell
wall remodeling genes observed as differentially expressed in
spaceflight. The data from APEX-03-2 therefore provide an
initial functional dissection of the spaceflight response in roots,
one that allows an integration of pathways associated with
root directionality, morphology and physiological responses to
spaceflight.
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