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Externally applied dsRNA-based biocontrol products may lead to off-target degradation
of messenger RNA in target and non-target organisms. For the purposes of regulatory
risk assessment of such products, producing a comprehensive catalog of any off-
target effects using profiling methods is unnecessary and would be ineffective in
supporting decision-making. Instead, problem formulation should derive criteria that
indicate acceptable risk and devise a plan to test the hypothesis that the product
meets those criteria. The key to effective risk assessment of dsRNA-based biocontrols
is determining whether their properties indicate acceptable or unacceptable risk, not
whether they arise from on- or off-target effects of dsRNA.
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INTRODUCTION

Double-stranded (ds) RNA has roles in virus defense and immune responses in animals (Reich
and Bass, 2019) and plants (Niehl et al., 2016). Among other effects, it triggers sequence-specific
degradation of messenger RNA (mRNA) via RNA interference (RNAi). GM crops producing
dsRNA that triggers RNAi in pests or pathogens are effective in reducing insect damage or disease
(Head et al., 2017; Lindbo and Falk, 2017). dsRNA may also be effective against crop pests and
pathogens when suitably formulated and applied externally to the crop. Commercial products based
on this “non-transformative” technology are in development (Zotti et al., 2017). Biocontrols based
on dsRNA are attractive because they are likely to pose low risk to non-target species (Bachman
et al., 2016; Joga et al., 2016) and dsRNA has low persistence in the environment (Dubelman et al.,
2014; Fischer et al., 2017); however, unintended silencing of transcripts (“off-target effects”) raises
concerns (Kulkarni et al., 2006).

Data requirements for regulatory decision-making for biocontrol products based on externally
applied dsRNA are not clear (Darsan Singh et al., 2019). Nevertheless, externally applied dsRNA
products will almost certainly require assessment of the acceptability of the risks that their use
poses to human and animal health and the environment. These risks may arise from exposure to
the dsRNA or any formulant that helps the effectiveness of the product (Christiaens et al., 2018).
Problem formulation may help in the design and conduct of these assessments.
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PROBLEM FORMULATION

Problem formulation organizes existing knowledge and
identifies relevant new knowledge to support decision-making.
Its origins are in ecological risk assessment, but it may
be used in any situation where science informs decisions
(Sauve-Ciencewicki et al., 2019).

Problem formulation translates policy objectives into
operational decision-making criteria and devises tests of the
hypothesis that the proposed activity meets those criteria. In
regulatory risk assessment, policy objectives are those of the
laws that the regulations are intended to implement, and hence
are ultimately those of the government of the country making
the decision. Policy may be thought of more broadly as the
objectives of any decision-maker; thus, our remarks also refer to
non-regulatory decision-making, where objectives may be those
of non-governmental organizations, such as private companies
or public-sector research bodies making product-development
decisions. To avoid appearing to advocate particular policies,
we do not define specific harmful effects. Instead, we encourage
risk assessors to consult policy- and decision-makers to agree
definitions of harm before beginning the risk assessment.

Problem formulation also organizes existing data to test
hypotheses so that new data are acquired only if the existing
data are insufficient for decision-making (Raybould, 2006).
Problem formulation is conceptually straightforward, although
its implementation is often difficult because the objectives of
the decision are unclear or there is uncertainty about how to
determine whether taking a course of action is likely to achieve
stated objectives.

RISK ASSESSMENT AS HYPOTHESIS
TESTING

Regulatory risk assessments for externally applied dsRNA-based
biocontrol products (the dsRNA active substance and any
formulants) are likely to draw on experience gained in evaluating
uses of biological pesticides (Mensink and Scheepmaker, 2008;
Arora et al., 2016), conventional pesticides developed through
synthetic chemistry (Finizio and Villa, 2002; Boobis et al., 2008),
and GM crops that produce insecticidal dsRNAs (Bachman et al.,
2016; Petrick et al., 2016) or proteins (Mendelsohn et al., 2003).

Such regulatory risk assessments work well when they test a
hypothesis that directly informs a decision. Risk assessment is
part of risk analysis, which can be summarized as follows:

• Use aims of regulatory policy to define what risks are
acceptable and unacceptable

• Derive criteria that indicate the proposed product use poses
acceptable risk

• Test the hypothesis that the product use meets those criteria
• Use the results of the tests in decision-making about

product-use approvals

Problem formulation comprises the setting of acceptability
criteria and a plan to test that the criteria are met. Risk
characterization evaluates the results of the tests. Problem

formulation and risk characterization are the main elements of
risk assessment.

A crucial element of problem formulation is the setting
of decision-making or acceptability criteria. Toxicity: exposure
ratios (TERs) used in making decisions about uses of pesticides
are good examples. A TER comprises a measure of the toxicity of
a pesticide to a group of organisms and an estimate of the worst-
case exposure of that group of organisms when the pesticide is
used properly (Damalas and Eleftherohorinos, 2011). If the TER
is above a pre-set “trigger” value, risk is acceptable; if the TER is
below the trigger, acceptable risk has not be shown. Being above
or below the trigger leads directly to different decisions about, for
example, whether to require more data to assess risk. In effect,
decision-making is based on corroboration or refutation of the
hypothesis that the TER is greater than the trigger.

Risk assessment is much less successful when it is data-led.
Instead of testing hypotheses about whether certain acceptability
criteria are met, data-led risk assessment tests the null hypothesis
that the proposed activity will not result in effects that are
different from a similar current activity. An example is comparing
the effects of exposing organisms to a dsRNA-based biocontrol
and to a suitable control substance. Any statistically significant
differences are evaluated for their “biological relevance” (EFSA
Scientific Committee, 2011). As discussed below, testing a null
hypothesis of no difference is a method for accumulating and
presenting data, not testing hypotheses that help decision-
making, and is an inefficient and ineffective way to assess risk
(Raybould and Macdonald, 2018; Raybould et al., 2019).

INTENDED AND UNINTENDED EFFECTS

In regulatory decision-making about GM crops, risk assessment
has been hypothesis-led when considering the potential side
effects of the intended modification. Examples include assessing
the acceptability of risks posed to biological-control organisms
from the cultivation of GM crops with insect-control traits
by testing hypotheses about TERs (Romeis et al., 2008),
and the acceptability of risks posed to crop production
from the cultivation of herbicide-tolerant crops by testing
hypotheses about the abundance of herbicide-tolerant weeds
(Devos et al., 2018).

Difficulties in GM crop risk assessment have arisen when
considering unintended effects of genetic modification (Filipecki
and Malepszy, 2006). Instead of using problem formulation
to define what unintended properties of a crop would be
unacceptable, or at least undesirable, regulatory risk assessments
have used a data-led (or “profiling”) approach that tests for
statistically significant differences between a GM crop and a
suitable near-isogenic non-GM comparator. Many characteristics
are compared and the degree of difference in any given character
that would indicate unacceptable risk is not predetermined.
Comparisons include phenotypic characterization (Horak et al.,
2015) and compositional analysis studies (Herman et al., 2017),
and some authors have suggested that comparisons are expanded
to include transcriptomic, proteomic and metabolomics profiles
(Christ et al., 2018). In the remainder of the paper, we use
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the term profiling mainly to refer to molecular (“omics”)
methods, but we intend the term to cover all studies
that compare numerous characters without predetermining
acceptability criteria; hence, we consider phenotypic and
compositional analyses that test null hypotheses of no difference
to be profiling.

A similar situation to GM crops applies to products based
on external application of dsRNA. A hypothesis-led approach
for assessing risks from intended effects could use current
frameworks; for example, methods for assessing non-target
organism toxicity and exposure to chemical pesticides can be
adapted for use with dsRNA-based biocontrol. Adaptation of
these methods to dsRNA-based products is considered elsewhere
(Sherman et al., 2015; Bachman et al., 2016; Haller et al., 2019)
and is not considered further here.

There are suggestions that hypothesis-led approaches to risk
assessment should be augmented by molecular profiling of the
effects of dsRNA in tissue cultures or standard laboratory test
organisms (Heinemann et al., 2011, 2013; Sherman et al., 2015).
Proponents of profiling suggest that it will improve human and
ecological risk assessment because we do not have a “complete
understanding of the biochemistry” of dsRNA-induced RNAi
(Heinemann et al., 2011). Others suggest that profiling is
unnecessary in many circumstances because negligible risk can be
demonstrated based on lack of “functional exposure” to dsRNA
because of dietary barriers (Sherman et al., 2015).

The existence of dietary barriers may be a useful hypothesis
to test in a risk assessment; however, if the hypothesis that
barriers exist is refuted, resorting to profiling of unintended (off-
target) effects is still unnecessary. Instead, problem formulation
should be used exactly as for the assessment of side-effects of
the intended (“on-target”) effects of the dsRNA: devise criteria
for accepting that the product use poses acceptable risk and test
that those criteria are met. Effects should be judged by their
potential to cause harm, not by whether they result from on- or
off-target effects.

COMPARING TARGETED AND
UNTARGETED ASSESSMENTS

Problem formulation produces a plan to test hypotheses that a
product use meets predetermined acceptability criteria. Existing
data, and new data if necessary, are sought, or “targeted,” to
provide rigorous tests of such hypotheses. In contrast, profiling
sets no predetermined acceptability criteria, and aims to describe
how a product or its use differs from an existing product or use.
Tests of null hypotheses of no difference are used to present
the data. As no decision-making criteria are set, all differences
are potentially important; hence, data acquisition is untargeted.
The differences in philosophy underlying these approaches, their
practical implementation and their attitudes to new scientific
developments are summarized in Table 1.

The quality of decisions supported by these approaches differs
markedly. Because targeted approaches rely on policy aims and
acceptability criteria being set first, they tend to produce clear and
predictable, though not necessarily uncontroversial, decisions.

TABLE 1 | A comparison of targeted and untargeted approaches to risk
assessment.

Aspect of risk
assessment

Untargeted Targeted

Underlying philosophy Empiricism Critical rationalism

Objective Proof of safety A tool to support
decision-making

Hypothesis tested No difference from
comparator

No unacceptable risk

Number of endpoints As many as possible As few as necessary

Decision-making
criteria

Sought in the data Predetermined by policy

Output Complete
understanding

Acceptability of risk

Incorporating scientific
advances

Precautionary neophilia If it ain’t broke, don’t fix it

Resulting decisions Obscure, arbitrary,
disputed

Clear, predictable,
accepted

In untargeted approaches, acceptability criteria and policy aims
emerge only after the data are obtained; hence, decisions may
appear arbitrary (Raybould and Macdonald, 2018). Given the
undesirable features of decision-making based on untargeted risk
assessment, we should examine why it is advocated.

Philosophy Underlying Risk Assessment
Targeted risk assessment tests hypotheses about concepts such as
harm, risk and unacceptability. In regulatory risk assessments,
these terms are defined by policy aims and a key part of problem
formulation is understanding these aims and translating them
into operational acceptability criteria. Untargeted risk assessment
avoids operational definitions of harm, risk and acceptability,
and instead tests for differences between, say, organisms exposed
to dsRNA and those exposed to a control treatment. In using
a neutral term like difference, untargeted assessment appears
to follow the philosophy of empiricism: the idea that objective
knowledge expands by generalizing from observations made
without preconceptions (Hahn, 1965).

Targeted risk assessment is more akin to critical rationalism,
which postulates that knowledge arises from trial-and-
error testing of solutions to problems (Miller, 1994). In
critical rationalism, preconceptions (hypotheses) are seen
as unavoidable. The targeted approach makes a virtue of
operationalizing explicitly value-laden terms, such as harm, risk
and unacceptability, to formulate hypotheses directly related to
decision-making. Objectivity arises from rigorously testing these
hypotheses and disinterestedly evaluating the results. Untargeted
approaches imply that risk can and should be characterized
objectively without recourse to values, leading directly to
“science-based” decisions (Davison, 2010).

A second important philosophical difference is that
empiricism sees objective knowledge as a set of truths confirmed
by sufficient observations, whereas critical rationalism regards
objective knowledge as a collection of tested hypotheses that
have not yet been falsified. Targeted risk assessment recognizes
that all decisions will contain uncertainty; any conclusion that
risk is acceptable is provisional. Untargeted risk assessment, on
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the other hand, seems to imply that sufficient data will eliminate
uncertainty – we can, indeed must, prove that something is safe
(has zero probability of causing harm) before we allow its use.
These differences lead to risk assessments that vary greatly in
their ability to support decision-making.

Conduct and Use of Risk Assessments
The combination of not defining acceptable risk – because
that would be an unwarranted preconception or improper
bias – and seeking proof of safety leads untargeted risk
assessment to pursue comprehensive descriptions (or “complete
understanding”; Heinemann et al., 2013) of products and their
potential effects when used. Null hypotheses of no difference
between the effects of the proposed product use and a control
treatment can be tested. However, such hypotheses do not express
an expectation that a new product is no different from existing
products; it is a device for presenting data (Stephens et al.,
2007). Untargeted risk assessment therefore collects as many data
(measures as many endpoints) as time, money and methods allow
to make the most complete possible description of the product
and its potential effects.

In seeking the best solution to the problem of how to
make a good decision, the targeted approach recognizes that
risk assessment should test hypotheses that pre-set acceptability
criteria are met. It first organizes existing data to test the
hypotheses, and only if these data are insufficient for decision-
making are new data required. Consequently, targeted risk
assessment collects as few data (measures as few endpoints) as
necessary for decision-making.

Collecting as many data as possible rather than as few as
necessary has bad effects on decision-making. The immediate
decision, perhaps whether to approve a proposed use of a
dsRNA-based biocontrol, will depend on whether the product
has properties that indicate its proposed use poses unacceptable
risk. We could think of these properties as needles in a haystack
of other information about the product. Problem formulation
starts by using policy objectives to define the characteristics of
the needles and, based on these characteristics, designs a targeted
strategy most likely to find needles should they exist (i.e., rigorous
tests of the hypothesis that the product meets acceptability
criteria) and keeps the haystack as small as possible. Decisions
can be made effectively, because decision-making criteria have
already been established (there is little ambiguity about what
needles look like), and efficiently, because all data have clear
relevance (they help to find needles should they exist).

Untargeted risk assessment deliberately avoids describing
needles, and instead builds the biggest possible haystack. In
searching through the haystack (testing a null hypothesis of no
difference), it will find potential needles (statistically significant
differences), but has no means of determining whether they really
are needles (indicators of unacceptable risk) or merely peculiar
pieces of straw (differences of insufficient consequence to be
unacceptable). There is no method for making this distinction
until someone defines unacceptability.

Building haystacks and leaving the characteristics of needles
undefined increases the likelihood of making a bad decision.
Properties of a product that would lead to unacceptable effects

if it were used as proposed may be missed in the mass of data
produced by the untargeted risk assessment. Hence, in refusing
to use problem formulation to define indicators of unacceptable
risk, untargeted risk assessment increases the probability of
approving a product use that has effects that turn out to be
unacceptable. Conversely, beneficial product uses may be refused
because differences in a profile are deemed unacceptable based
on potentially spurious statistical significance rather than their
potential to cause harm.

The consequences of untargeted risk assessment go further
than the immediate decision about the product. Time, money
and expertise spent reviewing data of unknown relevance about
product X cannot be spent evaluating product Y, which may mean
that a harmful product receives inadequate scrutiny or that use
of a beneficial product is delayed, depending on how decision-
makers respond to limited resources. More widely still, the
increased costs and uncertainty of decision-making associated
with untargeted regulatory risk assessments is a disincentive to
produce innovative products that require premarket approvals
(Smyth et al., 2014). Hence, untargeted assessments increase risk
directly through increasing the likelihood of poor decisions about
current products and indirectly by discouraging the development
of new, improved products.

Scientific Advances and Improving Risk
Assessment
Regular demands are made for risk assessments to be improved
by incorporating new profiling methods (Heinemann et al.,
2011; Pott et al., 2018). However, these demands rarely, if ever,
give examples of the failure of a specific risk assessment, or
what risks are being underestimated. Proponents of the value
of new methods of profiling to risk assessment fail to convince
because they cannot show how the profiles are a better test of
the hypothesis that a product has no properties that indicate
unacceptable risk. As profiling is generally associated with a
refusal to define unacceptability, this failure is unsurprising.
A bigger haystack of data makes no improvement to risk
assessment just because the data are acquired using the
latest technology.

If the aim of untargeted risk assessment is a complete
description (“understanding”) of a product, then new profiling
technology must be seen as an improvement because our
description would be incomplete without its use. Hence,
untargeted risk assessment will be driven by a “precautionary
neophilia”; decisions cannot be made without data collected using
the latest methods.

Targeted risk assessment has a more skeptical view of
new measurement methods. If they provide better tests of
the hypothesis that a product has no properties that indicate
unacceptable risk, then, all other things being equal, they improve
the risk assessment. “Better” may mean that the hypothesis that
the product use meets existing acceptability criteria can be tested
more rigorously, or that we could test that the product use meets
new acceptability criteria should policy aims change. Often, all
other things will not be equal; for example, new methods may
cost more, take longer or need more expertise to use and interpret
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than do existing methods. In these circumstances, use of the new
method only makes sense if the value of the improvement in the
decision outweighs the additional costs.

Setting policy aims must make compromises among different
opinions and objectives, and evaluating options to achieve policy
aims will be based on imperfect knowledge; hence, no method
of decision-making can be perfect. Some people will disagree
with the aims of a decision, and the decision may not achieve its
aims or may have unwanted consequences, or both. If a decision
clearly fails, we should try to correct it and the methods used
to reach it should be evaluated and changed if necessary and
feasible. However, untargeted risk assessment’s focus on data
means that improvements to decision-making would only be
sought in technical developments. Use of problem formulation in
targeted risk assessment means that improvements to decision-
making would also be sought in increased clarity of policy aims
and selection of better acceptability criteria. Often it is convenient
for politicians to portray risk assessment as completely technical
to delay decisions while new data are acquired (Mastroeni et al.,
2019). Use of problem formulation and targeted assessment
should reduce such sleight of hand.

Acceptance of Decisions
Increasing the amount of data to support decision-making often
increases controversy because supporters of different views are
more able to select data that support their argument (Sarewitz,
2004). The heart of this problem is the inability or unwillingness
to argue about fundamental values on which opinions are based.
Instead, data are used to try to prove that certain opinions are
factually incorrect.

The use of untargeted risk assessment poses similar problems.
When statistically significant differences are found, they have
to be evaluated. Initially, evaluation may comprise a scientific
study of the effects of the differences. However, at some point,
a decision must be made about whether or not the effects indicate
unacceptable risk. In untargeted risk assessment, selection of
endpoints based on their ability to indicate unacceptability of
risk is deliberately avoided. Consequently, there is no debate
about fundamental values that underlie definitions of harm, risk
and unacceptability, and so there is no clarity about why certain
statistically significant differences are acceptable or unacceptable,
and decision-making appears arbitrary. In effect, policy objectives
are set by levels of statistical significance, which may be spurious
given the numerous endpoints that profiling produces.

Targeted risk assessment should be less prone to such
problems. Problem formulation takes the aims of policy and
translates them into acceptability criteria. Good policymaking
seeks to understand and reconcile opinions based on different
values, or at least be clear why it favors one opinion over others.
Having such clarity at the beginning means that the results of the
risk assessment lead to understandable and predictable decisions.
Not everyone will agree with the aims of the decision, but at least
the aims will be based on what has been deemed best for society
and not on an arbitrary determination of whether a statistically
significant difference is “biologically relevant.” Bringing policy
disputes to the fore in targeted risk assessment, rather than
ignoring them in a futile search for complete understanding, may

help to reduce controversies about the use of new technology in
agriculture (Carolan, 2008).

EFFECTIVE USE OF PROFILING FOR
RISK ASSESSMENT OF DSRNA-BASED
PRODUCTS

Conceivably, profiling could be useful in risk assessment if an
unacceptable profile could be defined by problem formulation.
Research may show, for example, that a particular profile in a
tissue culture exposed to candidate dsRNAs indicates with high
accuracy that the dsRNA would have unacceptable effects in
a standard toxicity test using a non-target organism. Whether
to replace the toxicity test with a profile would depend on
several factors including the reliability and cost of each type
of study, and the ethics of continuing to test animals when
other options are available (Kroeger, 2006). If a profile were
chosen as the decision-making endpoint, its usefulness would
come from a prior definition of acceptability, not from an
untargeted search for differences. We emphasize that searching
for profiles that constitute useful decision-making criteria is a
task for basic and applied research and should not be part of
product risk assessment.

CONCLUSION

Externally applied dsRNA-based biocontrol products may lead
to off-target degradation of mRNA in target and non-target
organisms. For the purposes of risk assessment, a comprehensive
description of any off-target effects using profiling methods
is unnecessary. Instead, problem formulation should derive
criteria that indicate acceptable risk and devise a plan to test
the hypothesis that the product meets these criteria. The key
to effective risk assessment is determining whether product’s
properties are acceptable or unacceptable, not whether they arise
from on- or off-target effects of dsRNA.
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