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The herbicide glyphosate inhibits the plant enzyme 5-enolpyruvylshikimate-3-phosphate
synthase (EPSPS) in the aromatic amino acid (AAA) biosynthetic pathway, also known
as the shikimate pathway. Amaranthus palmeri is a fast-growing weed, and several
populations have evolved resistance to glyphosate through increased EPSPS gene copy
number. The main objective of this study was to elucidate the regulation of the shikimate
pathway and determine whether the regulatory mechanisms of glyphosate-sensitive
and glyphosate-resistant plants were different. Leaf disks of sensitive and resistant
(due to EPSPS gene amplification) A. palmeri plants were incubated for 24 h with
glyphosate, AAA, glyphosate + AAA, or several intermediates of the pathway: shikimate,
quinate, chorismate and anthranilate. In the sensitive population, glyphosate induced
shikimate accumulation and induced the gene expression of the shikimate pathway.
While AAA alone did not elicit any change, AAA applied with glyphosate abolished
the effects of the herbicide on gene expression. It was not possible to fully mimic the
effect of glyphosate by incubation with any of the intermediates, but shikimate was the
intermediate that induced the highest increase (three-fold) in the expression level of the
genes of the shikimate pathway of the sensitive population. These results suggest that,
in this population, the lack of end products (AAA) of the shikimate pathway and shikimate
accumulation would be the signals inducing gene expression in the AAA pathway after
glyphosate application. In general, the effects on gene expression detected after the
application of the intermediates were more severe in the sensitive population than in the
resistant population. These results suggest that when EPSPS is overexpressed, as in
the resistant population, the regulatory mechanisms of the AAA pathway are disrupted
or buffered. The mechanisms underlying this behavior remain to be elucidated.

Keywords: Amaranthus palmeri, aromatic amino acids, shikimate, quinate, chorismate, anthranilate, glyphosate

INTRODUCTION

Besides to their function in protein synthesis, aromatic amino acids (AAA) serve as precursors of a
wide variety of natural products that play crucial roles in plant signaling, growth and development,
including responses to biotic and abiotic stresses (Zeier, 2013; Häusler et al., 2014), such as a wide
range of secondary metabolites (Herrmann, 1995; Less et al., 2010). These amino acids are essential
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compounds in the diets of humans and monogastric livestock,
which are unable to synthesize them (Galili and Hofgen, 2002;
Tzin and Galili, 2010).

The AAA biosynthetic pathway, also known as the shikimate
pathway, is located in plastids and can be subdivided into two
steps: the prechorismate pathway and the postchorismate
pathway, which via two different routes can lead from
chorismate to the synthesis of Phe and Tyr or Trp (Maeda
and Dudareva, 2012; Tohge et al., 2013). The prechorismate
pathway consists of seven enzymatic reactions that act
sequentially: D-arabino-heptulosonate 7-phosphate synthase
(DAHPS), dehydroquinate synthase (DHQS), 3-dehydroquinate
dehydratase-shikimate dehydrogenase (DQSD), shikimate
kinase (SK), 5-enolpyruvylshikimate-3-phosphate synthase
(EPSPS) and chorismate synthase (CS) (Herrmann, 1995;
Dev et al., 2012). Chorismate can be used as a substrate at
the first step of the postchorismate pathway by two different
branches. The synthesis of Trp from chorismate is performed
via six enzymatic reactions, and its first step is mediated by the
anthranilate synthase (AS). The other branch, leading to Tyr or
Phe biosynthesis, is mediated in its first step by the chorismate
mutase (CM) for prephenate biosynthesis. After prephenate,
the synthesis of Tyr or Phe may occur via two alternative
pathways: the arogenate pathway, where the arogenate
dehydratase (ADH) is located, and the phenylpyruvate/4-
hydroxyphenylpyruvate pathway (Maeda et al., 2010). The
shikimate pathway also presents lateral branches synthesizing
secondary metabolites, such as quinate (Herrmann, 1995;
Boudet, 2012). A scheme of the shikimate pathway is shown in
Supplementary Figure 1.

As sessile organisms, plants should regulate and adjust their
metabolism to dynamic changes. These changes can be at the level
of amino acid metabolic networks (Less and Galili, 2009), or at the
level of each biosynthetic pathway. The carbon flux through the
shikimate pathway is regulated at the transcriptional (Bentley and
Haslam, 1990; Maeda and Dudareva, 2012), posttranscriptional
and posttranslational levels. In plants, the expression of genes
seems to be closely regulated, often by the same transcription
factors, such as MYB, ODO1 and EOBII (Takatsuji et al., 1992;
Bender and Fink, 1998; Verdonk, 2005; Spitzer-Rimon et al.,
2010).

The major factors limiting the production of essential
amino acids in plants are the regulatory factors that control
their synthesis by feedback inhibition loops and their efficient
catabolism (Galili et al., 2016). In plants, how the carbon flux
into the shikimate pathway is specifically regulated is ambiguous
(Maeda and Dudareva, 2012). The entrance of carbon through
this pathway is mediated by the DAHPS enzyme. While it has
been described that the expression of the DAHPS is regulated
in response to cellular levels of AAA in microbes (Aharoni and
Galili, 2011), there is limited information about its regulation
in plants. Studies with transgenic plants containing bacterial
feedback-insensitive DAHPS show that this enzyme is key in
the shikimate pathway and secondary metabolism derived from
AAA (Tzin et al., 2012; Oliva et al., 2015). The bifurcation of
the pathway toward Trp and Phe/Tyr pathways is controlled by
AS and CM enzymes, as both enzymes are feedback-inhibited by

the AAA of their corresponding pathways (Romero et al., 1995;
Bohlmann et al., 1996). Moreover, Trp also activates CM activity
to redirect flux from Trp to Phe/Tyr biosynthesis (Benesova
and Bode, 1992; Lopez-Nieves et al., 2017), while Tyr activates
arogenate dehydratase to redirect the flux from Tyr to Phe
biosynthesis (Siehl and Conn, 1988).

The EPSPS is the target of glyphosate (Steinrücken and
Amrhein, 1980), the most commonly used herbicide worldwide,
which makes the study of this enzyme and shikimate interesting
from an agronomic perspective. EPSPS has been studied
extensively in plants, although the significance of EPSPS activity
in the synthesis of AAA has still not been sufficiently addressed
(Aharoni and Galili, 2011).

The repeated use of glyphosate selects for the corresponding
resistance in weed populations, and one of the most problematic
weed species resistant to glyphosate is Amaranthus palmeri
S. Wats (Powles and Yu, 2010). EPSPS gene amplification is
the main mechanism conferring glyphosate resistance in this
species (Gaines et al., 2010; Chandi et al., 2012; Vila-Aiub et al.,
2014). When this gene is overexpressed, the EPSPS enzyme
accumulates such that the recommended field dose of glyphosate
is not sufficient to inhibit EPSPS activity, and consequently,
the plants survive. Although glyphosate induce upregulation of
the genes of the shikimate pathway in both glyphosate-sensitive
and glyphosate-resistant populations (Fernández-Escalada et al.,
2017, 2019), it is not clear how glyphosate affects shikimate
pathway regulation.

Despite the significance of the AAA and the herbicide
glyphosate accounting for the major motivation to clarify
the regulation of the shikimate pathway, it has not been
completely elucidated to date. The regulatory mechanisms
underlying the response of the pathway and the specific role
of the intermediates or final products (AAA) have not been
thoroughly investigated. Moreover, the use of a A. palmeri
population with EPSPS gene amplification offers the opportunity
to study if the regulation of the shikimate pathway is
affected by the overexpression of one of its enzymes due to
extra EPSPS copies.

The aim of this study was to evaluate the role of AAA and
its intermediates in the regulation of the shikimate pathway.
This evaluation was performed by analyzing whether AAA could
revert the effects of glyphosate on the pathway and if the supply of
intermediates of the pathway could mimic the glyphosate effects
using A. palmeri glyphosate-sensitive (GS) and glyphosate-
resistant (GR) plants. Finally, the shikimate content, relative gene
expression level and protein content of the shikimate pathway
were assessed in presence of glyphosate, intermediates and final
products of the AAA biosynthetic pathway in leaf disks of GS and
GR A. palmeri plants.

MATERIALS AND METHODS

Plant Material
Amaranthus palmeri GS and GR biotypes were originally
collected from North Carolina (United States) (Chandi et al.,
2012; Fernández-Escalada et al., 2016). The resistance mechanism

Frontiers in Plant Science | www.frontiersin.org 2 April 2020 | Volume 11 | Article 459

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00459 April 29, 2020 Time: 15:44 # 3

Zulet-González et al. Shikimate Pathway Regulation

FIGURE 1 | Leaf disks of glyphosate-sensitive (white bars, left; GS) and glyphosate-resistant (gray bars, right; GR) Amaranthus palmeri populations were incubated
for 24 h with water (C), aromatic amino acids (AAA), glyphosate (G) or the combination of aromatic amino acids and glyphosate (AAA+G) (Mean ± SE). Different
letters indicate differences between treatments in each population (p-value ≤0.05, Tukey). (A) Shikimate content (n = 10). (B) and (C) 3-deoxy-D-arabino-
heptulosonate-7-phosphate-synthase (DAHPS) and 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) protein contents. Analyses of band intensity on blots are
presented in graphs as the relative ratio of the control (n = 3). Control is arbitrarily presented as 100% of the Adjusted volume (Relative density * mm2). For each
protein, one representative blot is shown. Original blots are shown in Supplementary Figures 3 4. Lanes contained 40 µg of total soluble proteins for DAHPS
immunoblotting and, in the case of EPSPS, 80 µg of total soluble proteins for GS and 15 µg for GR.
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of the GR biotype was described to be EPSPS gene amplification
(Chandi et al., 2012), with 47.5 more gene copies in GR plants
than in GS plants (Fernández-Escalada et al., 2016). Seeds
were surface-sterilized and germinated. The seeds were then
transferred to 2.7-L tanks in a phytotron and grown in aerated
hydroponic culture under controlled conditions, as described
previously (Fernández-Escalada et al., 2016).

Before performing the incubation, a leaf of each plant of
the A. palmeri GR population was harvested and immediately
frozen in liquid nitrogen to determine the EPSPS relative
genomic copy number of those individuals. After evaluating
the results, 30 out of 48 evaluated plants were selected to
obtain a homogeneous population with a similar relative EPSPS
genomic copy number (between 60 and 100) to perform
the experiments.

Leaf Disk Incubation
When the GS and selected GR plants were 21 days old, leaf disks
were excised from the leaves using a Harris Uni-Core puncher (4-
mm diameter) (Healthcore, Bucks, United States), avoiding the
leaf nerves. From each plant, the two youngest fully expanded
leaves were used: one leaf to determine the shikimate content
and another leaf to determine transcript levels and enzyme
content measurements.

The same treatments and doses were applied in both
populations (Table 1). Leaf disks were incubated for 24 h
under continuous light (300 µmol m−2 s−1 photosynthetic
photon flux) at 24◦C. Solutions were freshly prepared, and
the pH was adjusted to 7.0 with NaOH in all the treatments.
Technical glyphosate (glyphosate, isopropylamine salt, 61%; Dr.
Ehrenstorfer GmbH, Augsburg, Germany) was used. All other
reagents were purchased from Sigma–Aldrich Chemical, Co. (St.
Louis, MO, United States).

The incubation system is shown in Supplementary Figure 2.
For shikimate content determination, individual disks were
placed in individual wells of a 96-well microtiter plate containing
100 µL of treatment solutions. To obtain one disk per treatment
from the same plant, as many disks as treatments were
obtained from the youngest leaf of the plant. For enzyme
content and transcript level determinations, 25 or 45 disks
were placed, respectively, in the wells of 6-well microplates

TABLE 1 | Treatments applied to glyphosate-sensitive and glyphosate-resistant
Amaranthus palmeri leaf disks.

Identification Treatment Dose

C Control

G Glyphosate 1.75 g a.e. L−1

S Shikimate 20 mM

Q Quinate 50 mM

Ch Chorismate 1 mM

At Anthranilate 1 mM

AAA Aromatic amino acids 10 µM (each AAA)

AAA+G Aromatic amino acids + Glyphosate 10 µM + 1.75 g a.e. L−1

a.e. = acid equivalents.

containing 2.5 mL of each treatment. In each well, disks
from different leaves were incubated, but the same proportion
of original plants was maintained in all treatments tested.
In both incubation options, each well was considered a
biological replicate.

After incubation, disks incubated in 96-well plants were
washed thoroughly before freezing, and the plates were placed
in a freezer (−20◦C). Disks incubated in 6-well microplates
were removed from the incubating medium, immediately frozen
in liquid nitrogen and stored at −80◦C. The experiment
was repeated twice.

Analytical Determinations
Shikimate Determination
The concentration of shikimate in each leaf disk located in
each cell was measured according to the procedure described
previously (Fernández-Escalada et al., 2016). Briefly, shikimate
was extracted from the frozen-thawed leaf disks by adding
25 µL of 1.25 N HCl and incubating the plates at 60◦C for
15 min. The concentration of shikimate in each cell was measured
spectrophotometrically after the addition of 0.25% periodic
acid/0.25% metaperiodate and 0.6 M sodium hydroxide/0.22 M
sodium sulfite (Cromartie and Polge, 2000).

EPSPS and DAHPS Immunoblotting
Protein extraction was performed using 0.1 g of ground leaf
tissue in 0.2 mL of extraction buffer (100 mM MOPS, 5 mM
EDTA, 1% Triton-X 100, 10% glycerin, 50 mM KCl, 1 mM
benzamidine, 100 mM iodoacetamide, 5% PVP and 1 mM
PMSF). Proteins were separated by 12.5% SDS-PAGE and
immunoblots were produced according to standard techniques.
The protein amount loaded per well for each antibody used
is specified in the figure legends. EPSPS and DAHPS antibody
dilutions were 1:2000 and 1:1000, respectively (Fernández-
Escalada et al., 2017). Bands were identified using a BCIP/NBT
kit which was Amplified alkaline phosphatase immunoblot
assay kit (BIORAD 170, BIORAD Laboratories, Inc., Hercules,
CA, United States). Immunoblots were scanned using a GS-
800 densitometer, and protein bands were quantified using
Quantity One software (BIORAD Laboratories, Inc., Hercules,
CA, United States).

Quantitative Reverse Transcription-PCR
The relative transcript level was measured for 11 genes of the
AAA biosynthesis pathway. RNA extraction and the subsequent
cDNA were performed as described in Fernández-Escalada et al.
(2017). As A. palmeri was not sequenced, primers were designed
using a related sequenced species of the Amaranthaceous family
and crossed with Arabidopsis thaliana. Most primers were used
previously (Fernández-Escalada et al., 2017). The primers for
the two isoenzymes of CM (plastidics 1–3 and cytosolic 2) and
the two isoforms of ADH (ADHα and ADHβ) were designed
in this study. The optimal annealing temperature for each
primer was determined using gradient PCR. All primers and
annealing temperatures are listed in Supplementary Table 1.
Melting curve analysis was conducted to verify amplification
of single PCR products. Gene expression was monitored in
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FIGURE 2 | Transcript abundance of genes in the shikimate pathway was measured in Amaranthus palmeri leaf disks. Glyphosate-sensitive (white bars, left; GS) and
glyphosate-resistant (gray bars, right; GR) populations were incubated for 24 h with water (Control, C), aromatic amino acids (AAA), glyphosate (G) or the
combination of aromatic amino acids and glyphosate (AAA+G). Relative transcript abundance was normalized using the normalization gene β tubulin and each
population to its own control. (A) 3-Deoxy-d-arabino-heptulosonate-7-phosphate synthase (DAHPS) (B) dehydroquinate synthase (DHQS). (C) 3-dehydroquinate
dehydratase/shikimate dehydrogenase (DQSD). (D) Shikimate kinase (SK). (E) 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS). (F) Chorismate synthase
(CS). (G) Anthranilate synthase (AS). (H) Chorismate mutase isoform 2 (CM2). (I) Chorismate mutase isoforms 1 and 3 (CM 1-3). (J) Arogenate dehydrogenase
isoform α (ADHα). (K) Arogenate dehydrogenase isoform β (ADHβ) (Mean ± SE; n = 4). Different letters indicate differences between treatments in each population
(p-value ≤0.05, Tukey).

four biological replicates. The relative transcript level was
calculated using the 2-11Ct method (Livak and Schmittgen,
2001). Relative transcript abundance was normalized using
the normalization gene β-tubulin and each population to
its own control.

Statistical Analysis
Analysis was performed using 10 biological replicates for
shikimate content determination and three or four biological
replicates for enzyme content or nucleic acid determination,
respectively. Replicates from both experiments were used. In the
study of glyphosate and AAAs, differences between treatments
for each population were evaluated by one-way ANOVA with
a multiple-comparison adjustment (Tukey) at p ≤ 0.05. In
the study using the intermediates, the difference between each
parameter of untreated disks and disks of each treatment was

evaluated using Student’s t-test (p ≤ 0.05). Statistical analyses
were performed using IBM SPSS statistics 24.0 (IBM, Corp.,
Armonk, NY, United States).

RESULTS AND DISCUSSION

Possible Pathway Regulation by
Aromatic Amino Acids. Could AAA
Revert the Changes Induced in the
Pathway by Glyphosate?
Shikimate content was low and similar (0.4 µg shikimate leaf
disk−1) among untreated plants in both populations (Figure 1A).
After glyphosate treatment, the shikimate content increased 11-
fold in the GS population and 1.7-fold in the GR population.
AAA applied alone did not modify the shikimate content in any
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of the populations, and when they were applied in combination
with glyphosate (AAA+G treatment), the shikimate content
was similar that accumulated by the herbicide-alone treatment
(around 5 or 0.6 µg shikimate leaf disk−1 in GS and in
GR, respectively).

DAHPS and EPSPS enzymes were determined by
immunoblotting of (40 µg of total soluble proteins for DAHPS
and, 80 µg or 15 µg for EPSPS for GS GR, respectively)
(Figure 1). In relation to the untreated control, the content of
these enzymes was no altered by glyphosate or AAA treatments
applied alone in any of the populations. The incubation with the
combination of both compounds provoked different responses
depending on the population. In the GS population, the
combined treatment provoked a 4.7-fold increase in DAHPS
content relative to the untreated plants, but did not modify the
content of EPSPS enzyme. In contrast, in the GR population,
DAHPS content was not affected by this treatment, but a two-fold
increase in EPSPS was observed.

In the GS population, glyphosate produced an increase (of
more than two-fold in all cases) in the relative expression level
of all the genes of the prechorismate part of the AAA biosynthetic
pathway (DAHPS, DHQS, DQSD, SK, EPSPS, andCS) and only an
increase of ADHα transcript level in the postchorismate pathway
(AS, CM2, CM1-3, ADHα, and ADHβ). In contrast, in the GR
population, glyphosate did not induce the relative expression
level of these genes in this pathway (Figure 2).

The only effect detected after AAA treatment was a five-fold
decrease in the DQSD relative mRNA level to control plants
in GS plants (Figure 2), and no effects were observed in the
GR population. When AAA was applied in combination with
glyphosate (AAA+G), a different response was observed in both
populations. On the one hand, the GR population did not show
changes in gene expression, with the exception of de DQSD gene
that presented an increase of 2.3 times compared to the control
(Figure 2). On the other hand, the presence of AAA in the
combined treatment reversed the increase in transcript levels of
the shikimate pathway detected after the herbicide alone in the
GS population, as in this treatment, the effect of glyphosate on
DQSD, SK, CS, or ADHα expression seemed to be abolished by
the presence of AAA (Figure 2) and the relative mRNA level was
not higher than control plants (Figure 2).

With leaf disk incubation, it was possible to reproduce the
same physiological effects of glyphosate observed on whole
plants. On the one hand, shikimate is a known marker of
glyphosate activity (Dyer et al., 1988; Baerson et al., 2002; Zhu
et al., 2008; Dillon et al., 2017), and it accumulated more in the
GS than in the GR population. On the other hand, glyphosate
upregulated the genes participating in the prechorismate pathway
in the GS population (Figure 2), as previously described in this
population (Fernández-Escalada et al., 2017) and in other species
(Baerson et al., 2002; Garg et al., 2014). These results validate the
incubation system used in this study to approach the regulation
of the shikimate pathway by final products and intermediates.

In both populations, the accumulation of shikimate was
similar in the two treatments with glyphosate, regardless
of the presence of AAA (Figure 1A), suggesting that
shikimate accumulation would be directly related to EPSPS

inhibition and not to other physiological changes caused
by the effect of the herbicide, such as a potential transitory
modification of AAA content.

An increase in DAHPS or EPSPS enzyme content was not
detected after incubation with glyphosate (Figure 1B,C), contrary
to previous reports (Pinto et al., 1988; Gaines et al., 2010, 2011;
Fernández-Escalada et al., 2017), which may be related to the
short incubation period or the low dose applied. In previous
experiments in which an increase in DAHPS and EPSPS content
was observed, the time of treatment was 48 or 72 h (Baerson et al.,
2002; Fernández-Escalada et al., 2017).

In microbes, it has been widely described that DAHPS activity
is regulated in response to cellular levels of AAA (Herrmann,
1995; Tzin and Galili, 2010). However, most of the studies
performed in plants suggest that DAHPS is not regulated by
AAA, and only a few reports have described a regulatory effect of
AAA levels on this enzyme activity in vitro (Graziana and Boudet,
1980; Suzich et al., 1985). Similarly, AAA treatment alone did not
modify DAHPS content in this experiment (Figure 1). Indeed,
the application of AAA and glyphosate together induced an
increase in the DAHPS content in the GS population, supporting
that in plants, the DAHPS content is not regulated by AAA levels,
as it was not downregulated when AAA were externally supplied.

It has been suggested that a reduced level of AAA may act as
a signal to induce the expression of the shikimate pathway and
restore carbon flux through the pathway in plants (Maeda and
Dudareva, 2012). In concordance with this hypothesis, a decrease
in the relative expression level after the exogenous supply of
AAA could have been expected. Nevertheless, this decrease did
not occur, as no changes in the relative expression level were
detected in the GS or GR population after AAA supply with the
exception of the bifunctional enzymeDQSD (Figure 2). Similar to
the results obtained in this study, the effect of the increase in Phe
and Tyr in Arabidopsis transgenic plants on the transcriptome
was low (Dubouzet et al., 2007; Tzin et al., 2009; Less et al., 2010).

The reversion of glyphosate effects on growth with exogenous
AAA has been previously shown in fungi, bacteria and higher
plant cell cultures (Jaworski, 1972; Gresshoff, 1979; Amrhein
et al., 1983), while in higher plants, the reversion of the effect
on growth effect has been detected in Arabidopsis (Gresshoff,
1979) but not in other plant species (Duke and Hoagland, 1978;
Cole et al., 1980; Duke et al., 1980). Nevertheless, reversion of the
physiological effects induced by glyphosate, such as anthocyanin
(Hollander and Amrhein, 1980) and protein (Tymonko and
Foy, 1978) synthesis, has been reported in several plant species.
Similarly, in this study, supplemental AAA completely prevented
one physiological effect of glyphosate: the upregulation of
shikimate pathway genes.

It appears that in the GS population, the increase in gene
expression of the enzymes in the shikimate pathway after
glyphosate might be mediated by a transitory lack of AAA, as
the exogenous supply of AAA can abolish the gene upregulation.
This finding might appear contradictory to previous studies
in which reduction of AAA was proposed to not elicit the
increased expression of AAA pathway genes because the AAA
concentrations increase with glyphosate dose (Vivancos et al.,
2011; Maroli et al., 2015; Fernández-Escalada et al., 2017). In the
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FIGURE 3 | Leaf disks of glyphosate-sensitive (white bars, left; GS) and glyphosate-resistant (gray bar, right; GR) Amaranthus palmeri populations were incubated
for 24 h with water (C), shikimate (S), quinate (Q), chorismate (Ch) or anthranilate (At) (Mean ± SE). *Symbol indicates differences between control and treatment in
each population (p-value ≤0.05). (A) Shikimate content (n = 10). (B) and (C) 3-deoxy-D-arabino-heptulosonate-7-phosphate-synthase (DAHPS) and
5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) protein contents. Analyses of band intensity on blots are presented in graphs as the relative ratio of the
control (n = 3). Control is arbitrarily presented as 100% of the Adjusted volume (Relative density * mm2). For each protein, one representative blot is shown. Original
blots are shown in Supplementary Figures 2, 4 Lanes contained 40 µg of total soluble proteins for DAHPS immunoblotting and, in the case of EPSPS, 80 µg of
total soluble proteins for GS and 15 µg for GR.
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same way, the previously reported DAHPS and EPSPS increases
after glyphosate (Pinto et al., 1988; Fernández-Escalada et al.,
2016) were not detected. Nevertheless, these results might be
explained by the short incubation time used in this study: 24 h
compared to 3 days. Indeed, previous studies have shown that
in glyphosate-treated pea roots the relative content of AAA was
transitorily decreased for 24 h and abolished after 3 days of
treatment (Orcaray et al., 2010). The reversion effect of AAA on
the upregulation of expression genes of the shikimate pathway
enzymes indicated that at least in the 24 h following application
of treatment, the effect was mediated by a lack of the end
products of the pathway.

Shikimate Pathway Regulation by
Intermediates of the Pathway
Shikimate content was determined after incubation with the
intermediates, and the pattern observed in both populations
was similar (Figure 3A). Shikimate content increased in
leaf disks after incubation with shikimate (40 times and
27 times in relation to the untreated control in the GS and
GR populations, respectively), confirming that the compound
was absorbed (Figure 3A). Shikimate content also increased
after quinate treatment also (3 times in GS and 1.4 times
in GR). These results showed that both in shikimate and
quinate treatments, the increase observed in GS population
was two times the increase observed in the GR population.
Interestingly, anthranilate induced an increase in shikimate
content in both populations, similar to the increase detected after
quinate incubation.

DAHPS and EPSPS contents were determined after disk
incubation in both populations (Figure 3). The incubation
with shikimate and quinate did not induce any changes in the
content of these enzymes in relation to the control disks in
any population. Incubation with anthranilate elicited different
responses, depending on the population and on the specific
enzyme: a 2.7-fold increase in EPSPS content in GS and a
5.8-fold decrease in DAHPS expression in the GR population.
Interestingly, chorismate was the only intermediate that induced
a general increase in both enzymes and in both populations
(DAHPS was increased 2.4 and 2.8 times and EPSPS 1.6 and 2.4
times, in GS and GR, respectively).

The incubation with shikimate induced the upregulation of
more than half of the genes of the AAA pathway in the GS
population (DHQS, CS, AS, CM2, ADHα, and ADHβ), with the
post-chorismate part being the more affected. Interestingly, this
pattern was not observed in the GR population, where only
DQSD and the ADHα isoform increased their relative mRNA
levels after shikimate (Table 2).

In the GS population, quinate treatment also increased the
relative expression level in five out of the genes, although the level
of increase was milder than that detected after shikimate, as the
medium relative increase detected after shikimate was 3 times
and 2.28 times after quinate (Table 2). In the GR population,
four genes of the pathway (DAHPS, DQSD, EPSPS, and ADHα)
were upregulated after quinate incubation. The incorporation of
quinate in the shikimate pathway can occur through two different

TABLE 2 | Transcript abundance of genes in the aromatic amino acid (AAA)
biosynthetic pathway.

Glyphosate-Sensitive (GS)

Shikimate Quinate Chorismate Anthranilate

DAHPS 1.13 ± 0.02 1.57 ± 0.40 2.59 ± 0.55 0.63 ± 0.04

DHQS 2.46 ± 0.08* 1.92 ± 0.11* 1.91 ± 0.30* 1.23 ± 0.21

DQSD 1.06 ± 0.20 0.39 ± 0.04* 0.71 ± 0.08 0.87 ± 0.18

SK 1.85 ± 0.48 2.01 ± 0.35 1.49 ± 0.22 1.02 ± 0.18

EPSPS 2.51 ± 0.41 1.26 ± 0.30 0.91 ± 0.10 0.90 ± 0.18

CS 3.43 ± 0.74* 1.58 ± 0.14* 1.34 ± 0.10* 0.94 ± 0.12

AS 5.22 ± 0.11* 2.67 ± 0.22* 4.36 ± 0.79* 1.25 ± 0.16

CM2 2.08 ± 0.39* 3.60 ± 0.52* 1.26 ± 0.14 1.58 ± 0.31

CM1-3 1.62 ± 0.22 0.68 ± 0.10 0.91 ± 0.04 0.70 ± 0.05*

ADHα 3.56 ± 0.85* 1.68 ± 0.31 2.03 ± 0.34 0.66 ± 0.06*

ADHβ 1.31 ± 0.06* 1.63 ± 0.17* 1.04 ± 0.04 0.93 ± 0.28

Glyphosate-Resistant (GR)

Shikimate Quinate Chorismate Anthranilate

DAHPS 1.06 ± 0.36 1.96 ± 0.38* 1.34 ± 0.32 0.57 ± 0.39

DHQS 0.53 ± 0.10 1.29 ± 0.41 0.93 ± 0.14 1.61 ± 0.18

DQSD 2.49 ± 0.29* 3.60 ± 0.75* 2.55 ± 0.59 1.10 ± 0.55

SK 0.88 ± 0.08 1.25 ± 0.32 1.14 ± 0.25 1.75 ± 0.19*

EPSPS 1.33 ± 0.14 2.55 ± 0.33* 1.59 ± 0.15 2.07 ± 0.52

CS 0.70 ± 0.17 1.51 ± 0.43 1.33 ± 0.16 0.58 ± 0.10

AS 0.79 ± 0.14 3.95 ± 1.16 3.82 ± 0.76 2.89 ± 0.53

CM2 1.49 ± 0.20 4.05 ± 1.02 1.51 ± 0.29 0.75 ± 0.24

CM1-3 1.00 ± 0.32 1.29 ± 0.36 0.78 ± 0.06 0.41 ± 0.06

ADHα 4.12 ± 0.71* 9.47 ± 1.47* 3.36 ± 0.56 2.08 ± 0.53

ADHβ 0.93 ± 0.06 1.79 ± 0.36 0.83 ± 0.15 0.95 ± 0.11

Leaf disks of glyphosate-sensitive (GS) and glyphosate-resistant populations of
Amaranthus palmeri were incubated for 24 h with shikimate, quinate, chorismate
or anthranilate. Relative transcript abundance was normalized using the β tubulin
gene and in each population to its own control. The measured genes were 3-
deoxy-d-arabino-heptulosonate-7-phosphate synthase (DAHPS), dehydroquinate
synthase (DHQS), 3-dehydroquinate dehydratase/shikimate dehydrogenase
(DQSD), shikimate kinase (SK), 5-enolpyruvylshikimate 3-phosphate synthase
(EPSPS), chorismate synthase (CS), anthranilate synthase (AS), chorismate mutase
isoform 2 (CM2), chorismate mutase isoforms 1 and 3 (CM1-3), arogenate
dehydrogenase isoform α (ADHα) and arogenate dehydrogenase isoform β (ADHβ)
(Mean ± SE; n = 4). *Symbol indicates differences between control and treatment
in each population (p-value ≤0.05).

pathways: through the reversible quinate dehydrogenase to 3-
dehydroquinate and through the quinate hydrolyase to shikimate
(Ossipov et al., 2000). The 2.6-fold reduction in the relative gene
expression in the DQSD gene complex in the GS population after
quinate would be related to the main incorporation of quinate
into the pathway after DQSD, and the increase in the flux only
at that point would act as a signal to reduce the relative gene
expression of the enzyme to regulate the pathway. The increase
in the relative transcript level of one of the isoforms of CM (3.6-
fold) and ADH (1.6-fold) genes in GS and ADH (9.4-fold) in GR
after quinate would confirm that quinate would direct the flux
to the synthesis of Tyr and Phe, as has been described recently
(Zulet-González et al., 2019).

The incubation with chorismate did not alter the transcription
level of DAHPS, DQSD, SK, EPSPS, CM2, CM1-3, ADHα,
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ADHβ in any population (Table 2). In the GR population,
no changes in relative gene expression were observed. In GS,
only upregulation was observed in DHQS, CS, and AS genes,
with the highest increase being observed for the AS gene (4.3-
fold), the enzyme that uses chorismate as a substrate. It seems
that as happens with glyphosate (Fernández-Escalada et al.,
2017), the flux would be redirected toward the Trp biosynthetic
pathway when chorismate is added exogenously. In addition,
chorismate increased the content of the enzymes DAHPS and
EPSPS (Figure 3), which does not match the results observed in
the relative transcription level of the genes (Table 2), in which no
changes were detected. It seems that the increase in the content of
both enzymes would be due to the posttranscriptional regulation
process elicited by the presence of chorismate. Nevertheless, it
has to be noted that plants regulate carbon flux toward AAA
biosynthesis at the transcriptional and post-transcriptional levels
(Maeda and Dudareva, 2012).

Anthranilate was the intermediate that less affected the
expression level of the shikimate pathway. In the GR population,
only SK expression was 1.75-fold upregulated. In the GS
population, a different response was observed on the two
isoenzymes of CM: the plastidics 1 and 3 isoenzymes but not the
cytosolic isoform 2 would be downregulated by anthranilate. In
the same way, the two isoenzymes of ADH also showed different
responses, and ADHα expression was the only downregulated
1.5-fold by anthranilate. In the same way, differences in the
regulation of the isoforms by other metabolites of the pathway has
been reported in Beta vulgaris, where only the activity of ADHα

exhibited relaxed sensitivity to Tyr and ADHβ was strongly
inhibited (Lopez-Nieves et al., 2017).

AAA biosynthesis is subjected to complex posttranscriptional
and allosteric regulations (Mir et al., 2015). How carbon flow into
the shikimate pathway is regulated in plants and the specific role
of each intermediate remain ambiguous Siehl (1997) suggested
that the inhibition of DAHPS activity by arogenate, a metabolite
of the post-chorismate part of the pathway, was the key regulatory
process in the shikimate pathway. In the case of glyphosate
exposure, this regulatory pathway cannot occur, since chorismate
and all its byproducts are not synthesized, resulting in an
increase in the flux through this pathway and the accumulation
of sikimate-3-phosphate (Gomes et al., 2014) and shikimate.
This hypothesis was not confirmed in this study as, contrary
to expectations, chorismate incubation increased the content of
DAHPS and EPSPS in both populations.

The results showed that in sensitive plants glyphosate
affects the shikimate pathway, and no such changes were
observed in the EPSPS overexpressing population, consistent
with its resistance to glyphosate, as has been reported before
in susceptible and resistant soybeans (Marchiosi et al., 2009).
Beside this, less effect on the pathway was detected on
the GR than on the GS population after of the shikimate
pathway intermediaries. Indeed, each intermediate induced
higher changes in gene expression in the GS population than
in the GR population, suggesting that the overexpression of
EPSPS would have an effect in the regulation of the pathway,
buffering or attenuating the transcriptional changes induced by
the intermediates.

CONCLUSION

The exogenous supply of AAA did not induce any notable change
in the transcriptome of the shikimate pathway. Nevertheless,
when applied in combination with glyphosate, the upregulation
of gene expression detected after glyphosate was abolished,
suggesting that the effect of glyphosate on relative expression
level of pre-chorismate genes is mediated by a transitory
lack of the final products, as detected in the GS population.
Shikimate accumulation was a dose-response direct effect of
EPSPS inhibition detected in both populations and cannot be
abolished by increased AAA availability.

In conclusion, this study suggests that any perturbation in
the shikimate pathway would provoke changes in the relative
transcript level of the genes and confirm a complex regulation
of this pathway with mechanisms interacting at different levels
and behaving differently in each population. No intermediate
fully mimicked the effect of the herbicide. Nevertheless, although
the toxic effect of the herbicide could be due to a combination
of different factors, shikimate incubation, similar to glyphosate,
elicited upregulation of most of the shikimate pathway genes.

The effects detected after the application of the final products
or the intermediates of the shikimate pathway were more severe
in the GS than in the GR population, suggesting that the
regulatory mechanisms that operate in the GS population are
disrupted or buffered when EPSPS is overexpressed.
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