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The utilization of machine vision and its associated algorithms improves the efficiency,
functionality, intelligence, and remote interactivity of harvesting robots in complex
agricultural environments. Machine vision and its associated emerging technology
promise huge potential in advanced agricultural applications. However, machine vision
and its precise positioning still have many technical difficulties, making it difficult for
most harvesting robots to achieve true commercial applications. This article reports the
application and research progress of harvesting robots and vision technology in fruit
picking. The potential applications of vision and quantitative methods of localization,
target recognition, 3D reconstruction, and fault tolerance of complex agricultural
environment are focused, and fault-tolerant technology designed for utilization with
machine vision and robotic systems are also explored. The two main methods used
in fruit recognition and localization are reviewed, including digital image processing
technology and deep learning-based algorithms. The future challenges brought about
by recognition and localization success rates are identified: target recognition in
the presence of illumination changes and occlusion environments; target tracking in
dynamic interference-laden environments, 3D target reconstruction, and fault tolerance
of the vision system for agricultural robots. In the end, several open research problems
specific to recognition and localization applications for fruit harvesting robots are
mentioned, and the latest development and future development trends of machine vision
are described.

Keywords: vision, agricultural harvesting robotic, 3D reconstruction, fault tolerance, recognition, classification

INTRODUCTION

The field of robotics is broad and covers several diverse technological areas (Yang et al., 2018).
Machine vision applications enable robots to actively and accurately identify and locate targets.
Robotic and automated systems are currently being developed to accomplish work done by
operators in the industry, medicine, and military fields (Li et al., 2017; Daudelin et al., 2018).
Recent technology advancement in visual identification and 3D reconstruction, positioning and
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fault tolerance increased the applications of robotics in
agriculture including crop harvesting. Like other robotic systems
in the field, agricultural robots use artificial intelligence to
perform various labor-intensive agricultural tasks such as
planting, spraying, trimming and harvesting (Edan et al.,
2009; Zhao et al., 2016; Zhang et al., 2019). In many
developing countries that are highly dependent on agriculture
for food, employment, income, and social stability, agriculture
harvesting robots have become an urgent need. With increasing
urbanization and shortage of labor, the application of agriculture
harvesting robots has the potential to increase productivity,
reduce waste, and improve agriculture sustainability.

Crops vary significantly in shape, size, color texture and
other physical, chemical and nutritional properties. Of many
agriculture crops, fruits are economically essential and have the
highest nutritional and health benefits. Fruits have biological
characteristics depending on their growth environment, spatial
position, geometric shape, size, color, and hardness. Fruit
harvesting is a mechanical and repetitive job that is time-
consuming labor-intensive. These reasons have prompted
research into fruit picking robots (Watts et al., 1983; Ceres et al.,
1998; Van Henten, 2006; Van Henten et al., 2009; Zou et al.,
2012, 2016; Hiroaki et al., 2017; Xiong et al., 2018a,b, 2019).
Several machine vision-based agricultural harvesting robots have
been developed (Sarig, 1993; Kendo et al., 1996; Bulanon et al.,
2002, 2004; Hayashi et al., 2002; Van Henten et al., 2003; Grift
et al., 2008; Scarfe et al., 2009; Yin H. et al., 2009; Bechar,
2010; Li et al., 2010, 2011; Wibowo et al., 2016; Yu et al.,
2018), based on advancements in visual recognition and position
detection, segmented fruits and their associated algorithms, and
reconstructed 3D fruits by stereo matching to calculate the spatial
coordinates of fruit targets. The main challenges for robotic
subsystems include hands-free navigation and fruit localization
(Jiménez et al., 2000b; Li et al., 2009; Kapach et al., 2012; Wang,
2018; Blok et al., 2019).

Most fruit fields have rough terrain with large obstacles,
causing heavy vibration in the vision system of mobile harvesting
robots as they traverse the terrain. This complication requires the
use of dynamic target tracking and automatic image de-blurring
algorithms. The topic attracted the attention of interdisciplinary
researchers. Tang et al. (2018) use binocular vision to track
vibrations caused by terrain deformation and to detect the
3D deformation surface. For example, when wild fruit trees
are blown by the wind and interfere with the mechanical
arm, the robot’s vision system experiences vibrations, which
cause imprecise target-tracking and imaging. Besides, binocular
vision is applied to detect the vibrations caused by target
movement. A spatial coordinate error model, together with a
comprehensive compensation model is established. The robot’s
fault-tolerant technology is tested via virtual and physical robots
(Zou et al., 2012).

A harvesting robot is designed to pick fruits automatically
under certain environmental conditions. Research on harvesting-
robot-based machine vision is still in its infancy. With the
development of artificial intelligence technology, 3D spatial
information about the target can be obtained and processed.
Stereo vision technology is a major bottleneck in harvesting robot

applications (Zou et al., 2012; Gongal et al., 2015), especially in
crop identification, localization algorithms, error handling and
small object dynamic tracking.

Here we report on fruit recognition and localization
algorithms in detail by examining the following three aspects.
First, the visual sensing technology; this is where stereoscopic
fruit recognition and localization algorithms are expounded.
Then, three techniques are used to explain how stereo vision
recognizes and locates fruits under different environmental
conditions. Finally, an algorithm based on 3D reconstruction
is reviewed. The algorithm provides the spatial coordinates of
fruit so that the robot can harvest it. Visual fault tolerance is an
essential step in the successful harvesting of fruit in locations with
rough terrains, which is rarely seen in most review articles. The
performance indicators of the references are listed in Table 1.
The “/” symbol signifies that the reference has not provided an
indicator for readers or the indicator is difficult to be concluded
from the literature.

VISUAL HARVESTING ROBOT

The working environment of the visual components of a fruit
harvesting robot is very complicated. The working objects are
the crops, which include apple, litchi, citrus, grape, strawberry,
or sweet pepper. These objects vary in size, shape, color, and
texture. The background and illumination of the crops vary
continuously (Bulanon et al., 2010; Zhao et al., 2011; Qingchun
et al., 2012; Hemming et al., 2014; Silwal et al., 2016; Liu et al.,
2019; Williams H. et al., 2019; Zhuang et al., 2019). Machine
vision-based harvesting robots should have the ability to sense
and adapt to different crop types or environmental changes (Zhao
et al., 2016; Silwal et al., 2017), collect information, detect targets,
and learn autonomously. The robots should also be able to apply
intelligent reasoning and engage in decision making. It is an
intelligent automated machine for human-computer interaction
(Kondo and Ting, 1998; Zou et al., 2012; Zhuang et al., 2019). The
robotic system should also have a network transmission function
for sending the crop images to a data center or server (Garcia-
Sanchez et al., 2011). Agricultural robotic systems have similar
structures and are composed of an autonomous mobile platform,
a light multi-degree-of-freedom mechanical arm, a force feedback
system with a flexible end effector, a multi-sensor machine vision
system, a drive control system, an intelligent decision system, and
auxiliary software and hardware.

The first task of a fruit harvesting robot is to use visual sensing
to perceive and learn crop information (Zou et al., 2012; Zhao
et al., 2016). Its tasks include camera calibration (Wang et al.,
2019), target recognition and positioning, target background
recognition, 3D reconstruction, visual positioning-based robot
behavior planning, mechanism, and vision. The system is also
collaborative and uses a visual servo-control picking mechanism
to perform clip-cutting operations. Changes in the illumination
of complex agricultural crop environments, vibrations caused by
wind or manipulators, and inaccurate positioning caused by a
variety of uncertain factors (Jiménez et al., 2000a; Gongal et al.,
2015; Wang C. et al., 2017; Xiong et al., 2018b) can result in
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TABLE 1 | Essential performance indicators of the introduces studies in this paper.

References Recognition accuracy (%) Recognition time (s) Harvesting success rate (%) Harvesting time for per fruit(s)

Zou et al. (2016) 85–94 0.8 84–88 11.3–15.5

Liu et al. (2019) 93.5 / / /

Hemming et al. (2014) 90 / / /

Qingchun et al. (2012) / / 86 10

Zhao et al. (2011) / / 77 15

Bulanon et al. (2010) 88–93 / / /

Zhao et al. (2016) 93 / / /

Wang Z. et al. (2017) 81.1–100 / / /

Tanigaki et al. (2008) 83.3 / 66.7 14

Barth et al. (2019) 73 / 52 /

Kondo et al. (2009) / / 73 /

Xiang et al. (2014) 87.9 0.5 / /

Si et al. (2015) 89.5 / / /

Makky and Soni (2013) 65–70 / / /

Wang et al. (2016) 97.5–98.8 / / /

Luo et al. (2016) 87 0.7 / /

Jimenez et al. (1999) / / / /

Bac et al. (2014b) 94 / / /

Peng et al. (2014) 95 / / /

Wei et al. (2014) 95 / / /

Wang C. et al. (2017) 87.3–93.6 / / /

Reis et al. (2012) 91–97 1.5 / /

Hayashi et al. (2005) 85 43.2 29.1 /

Arefi et al. (2011) 96 / / /

Hannan et al. (2007) 90 / / /

Kong et al. (2010) 90 0.19–0.27 / /

Tao et al. (2014) 73.93 1.1 / /

Dey et al. (2012) 96–98 / / /

Hannan et al. (2009) 90 / / /

Yamamoto et al. (2014) 88 / / /

Kurtulmus et al. (2011) 75.3 / / /

Xu et al. (2019) / 0.59 / /

Li et al. (2012) 90.15 / / /

Kim et al. (2014) 90 / / /

Zhang et al. (2008) 87.6 / / /

Yang et al. (2016) 86.5 / / /

Fu et al. (2018) 92.3 / / /

Sa et al. (2016) 80.7 0.3 / /

Horea and Mihai (2018) 96.3 / / /

Luo et al. (2018) 81.66 0.53–0.69 / /

Lin et al. (2019) 88 0.59 / /

Gongal et al. (2016) 82 / / /

Ehud et al. (2016) 55 / / /

Williams H. A. M. et al. (2019) 76.1 3 51.0 5.5

Lee et al. (2019) 82.16 / / 51.1

Tao et al. (2014) 80.34–92.3 / / /

Majeed et al. (2018) 88–93 / / /

Sa et al. (2017) 71 / / /

Silwal et al. (2016) 100 1.6 / 6.1

Liu et al. (2018) 95.35 / / /

Williams H. A. M. et al. (2019) / / 86 2.78

Vitzrabin and Edan (2016) / / 79 /

Onishi et al. (2019) 90 2 / 16
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harvesting failure. This is the leading technical challenge in the
development of visual systems for agricultural harvesting robots.
Figure 1 lists some representative forms of picking robots.

The vision system of fruit harvesting robots (see Figure 2)
has several sensing capabilities (e.g., visual sensing, collaborative
visual-mechanical control, visual recognition, 3D reconstruction,
coordinated visual-mechanical positioning and error tolerance).
Visual sensing focuses on the image-based data collection of
crops (Jiménez et al., 2000a). Vision-based target recognition
uses various perception modalities and an accurate recognition
scheme. For example, fruit imaging algorithms divide the
background into a series of features (Bulanon et al., 2010).
Background features, including branches, leaves, and adjacent
fruits, are obstacles for mechanical operation, affecting the fruit-
picking behavior of the robot. The area around the target can
be labeled the target space and used for 3D reconstruction of
the target. Visual-institutional coordination and error tolerance
can be used to enhance robotic anti-collision precision picking
guidance, picking sequence planning and the decision-making
behavior of a robot (Tanigaki et al., 2008; Zou et al., 2012; Barth
et al., 2019; Zhang et al., 2019).

The robot arm of a common vision harvesting robot has at
least 6 degrees of freedom (DOF); this ensures that the robot’s
movements are flexible. For example, Birrell et al. (2019) designed
an iceberg lettuce picking robot (see Figure 3A). They used a
deep detection network to roughly locate the iceberg lettuce, to
achieve accurate identification and to harvest the iceberg lettuce
via the device. The robot has a harvest success rate of 97%
and a harvest time of 31.7 ± 32.6 s. To increase the robot’s
flexibility, Kondo and Shunzo (1989) and Kondo et al. (2009)
studied a tomato picking robot with 7 degrees of freedom and
developed a visual recognition algorithm that could identify
individual fruits and bunches. The picking time of a single
fruit is about 15 s and the success rate is about 70%. Silwal
et al. (2017) designed an advanced seven degree of freedom
apple harvesting robot with precise positioning capability (see
Figure 3B). The average positioning time of each fruit is 1.5 s,
the average picking time is 6 s per fruit and the picking success
rate is 84%. This robot has fast speed and can meet the needs
of farmers. Adopting seven degrees of freedom improves the
robot’s flexibility and obstacle avoidance. However, the orchard
environment was highly controlled, e.g., the clusters of fruit were
removed, which reduced the complexity of the environment.

In general, the basic structure of the picking robot has
been formed. However, the success rate of most harvesting
robot prototypes has been around 66% (values ranging between
40 and 86%) with a cycle time of 33 s per fruit (values
ranging between 1 and 227 s) (Arad et al., 2020). These
measures of performance indicate that robotic harvesting
technology performance is still low. One of the main factors
restricting the development of harvesting robots is determining
an accurate three-dimensional visual perception and the
stability of machine operations in complex environments.
Therefore, most of the research has focused on improving
the stability and reliability of robotic functions so that the
harvesting robot can cope with various complex agricultural
operating environments.

In order to evaluate the overall performance of harvesting
robots, Bac et al. (2014b) reviewed 50 harvesting systems and
summarized their average performance: location finding (85%),
fruit detachment (75%), harvesting (66%), and rate of fruit
damage (5%). Some researchers have considered the use of
“cycle time” to evaluate the potential of a research study to
be transformed into a commercial product, which includes the
entire process from the start of the robotic work to the successful
harvesting of fruit. As of 2014, the average release cycle of non-
industrial systems was 33 s (Bac et al., 2014b; Williams H. A.
M. et al., 2019). However, this measure has not been widely
used. In fact, for different agricultural crops, the performance
parameters that a harvesting robot can achieve are different (see
Table 1). Commercial practitioners estimated that for kiwifruit,
at least 80% of the fruit in a canopy needs to be collected at
an average rate of four fruits per second (Williams H. A. M.
et al., 2019). According to our survey, users of litchi harvesting
requires that the picking time of a single bunch of litchi should
not exceed 15 s, and the picking rate should reach about 70%;
while for tomatoes, the picking time of each fruit should be 5–
8 s, and the picking rate should reach 90%. So far, there are
no unified and clear indicators to measure the comprehensive
commercial performance of harvesting robots, which needs
further discussion and research.

VISUAL SENSING TECHNOLOGY

The visual sensing technology of harvesting robots is designed
to detect crops and fruits. A robotic servo controller collects
3D information about the environment surrounding the fruit,
including geometry and 3D coordinates. The visual camera and
its control system can serve as the hardware support of the
visual sensing technology, which serves as a communication
interface between the external environment and the robot.
Images obtained by cameras are generally classified into digital
images, laser images, and multi-spectral images. This section will
review the overall visual sensing technology and its components
(see Figure 2).

Stereo-Vision Systems
Currently, two forms of stereo vision systems are mainly
deployed. The first is a binocular vision system based on optical
geometry. The 3D position of the target is obtained through
traditional optical principles and optimization algorithms. The
second is an RGB-D camera based on the time-of-flight
(ToF) method, which uses an infrared sensor to obtain
the depth information of the target. The ToF method is
sensitive to external interference and may not work in the
scene with strong light. On the other hand, the depth
measurement accuracy of this method is limited by the
working distance of the infrared sensor. By contrast, the
optical geometry-based method is a passive measurement
method, which does not rely on artificial light sources and
can be used in indoor and outdoor environments. Therefore,
to ensure stability in agricultural picking tasks, a binocular
vision system based on optical geometry is needed. Since the
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FIGURE 1 | Representative forms of picking robots in the references. (A) Autonomous coconut-harvesting-robot (Wibowo et al., 2016); (B) Strawberry harvesting
robot (Qingchun et al., 2012); (C) Apple harvesting robot (Zhao et al., 2011); (D) Sweet-pepper harvesting robot (Barth et al., 2019); (E) Another sweet-pepper
harvesting robot (Hemming et al., 2014); (F) Another apple harvesting robot (Si et al., 2015).

principle of the RGB-D camera is simple and the system
is compact, it can be used for many local tasks, such as
three-dimensional reconstruction of targets at specific locations.
Therefore, some brief introduction of the application of
RGB-D cameras will also be briefly introduced in section
3D Reconstruction Method for Vision-Based Target, but not
in this section.

The optical geometry based stereo-vision system consists
of two or more cameras separated by a fixed distance (Zou
et al., 2012; Zhao et al., 2016). Before the detection process,
the cameras are calibrated. First, two or more images of the
same target are obtained via stereo vision. The images are
processed and classified to identify the target object. The 3D
target is reconstructed by relating the spatial coordinates of
the target to those of the robot. This relationship provides
the physical parameters needed to achieve target identification
and localization.

The binocular stereo vision detection technology is based
on monocular vision. Early monocular vision systems used

a single camera to detect one two-dimensional image of
the target. Separate image analysis is performed to identify
its features. With the development of computers, scholars
in the 1960s began to explore theoretical research on 3D
images and stereoscopic machine vision (Roberts, 1965). The
application of target detection in crops has also undergone
a transformation from two-dimensional to 3D vision. Schertz
and Brown used light information testing for fruit harvesting
robots as early as the 1960s (Brown and Schertz, 1967). Since
the 1980s, the monocular vision was a standard component
of agricultural robots. The monocular vision was used to
detect the two-dimensional geometric features of crops, to
identify red fruits and green leaves by detecting geometric
shapes and color features. This feature detection process has a
detection accuracy of about 75% (Harrell et al., 1985; Slaughter
et al., 1986; d’Grand et al., 1987; Slaughter and Harrell, 1987;
Kondo and Shunzo, 1989; Xue et al., 2012). As the sensing
modalities and algorithms became sophisticated, researchers
began to examine the role of light to obtain information about
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FIGURE 2 | Vision-based fruit picking robot system.

crops (Kondo et al., 2009). These tasks often required multiple
monocular cameras (Edan et al., 2000).

The binocular stereo vision was first used in agricultural
harvesting robots to identify tomatoes, sweet peppers, and apples
(Buemi et al., 1996; Kitamura and Oka, 2005; Xiang et al.,
2014). Plebe and Grasso (2001) installed stereo cameras in each
arm of an orange harvesting robot. Stereo matching of the
oranges’ center-of-mass was performed to locate oranges in a 3D
coordinate system. Si et al. (2015) used a stereo camera to detect
and locate mature apples under a canopy. The authors reported
that over 89.5% of apples were successfully recognized and the
errors were less than 20 mm when the measuring distance was
between 400 and 1,500 mm.

Makky and Soni (2013) proposed a stereoscopic 3D vision
sensing system for a palm oil-collecting robot project. The
team obtained two stereo images using a mobile digital camera
and used image processing algorithms for target recognition,
thereby detecting palm fruit-based on image color analysis and
fruit maturity-based features. The method can calculate the

distance, size, and tangential position of the palm fruit. For
red fruit dense images and yellow-green apple images, the fruit
recognition rate was between 65 and 70%, with a ranging error
of ∼±5% (Takahashi et al., 2000). For stereoscopic detection
of a single fruit, the system needed to determine the center-of-
mass coordinate of the fruit first so that the robot’s fingers could
grip the fruit and twist the fruiting branch. This operation of
griping and twisting fruit is relatively straightforward using visual
inspection. No detection of the mother branch is necessary for
pinching the fruit; nevertheless, it can easily pick the fruit by
using a pinching action.

To improve the picking speed of the harvesting robot,
Williams H. A. M. et al. (2019) studied the kiwifruit harvesting
robot with four arms (see Figure 4). Each robotic arm has a
corresponding set of binocular vision to detect fruits and locate
their positions in 3D space. It takes 3 s to process the complete
image, and the visual recognition success rate is 76.3–89.6%. The
harvesting robot mechanism is flexible in design, and the four
arms and four pairs of binocular vision can work cooperatively
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FIGURE 3 | Multi-DOF fruit and vegetable harvesting robot and its vision system for field operation. (A) Iceberg lettuce picking robot (Birrell et al., 2019). (B) Apple
harvesting robot (Silwal et al., 2017).

with high efficiency. However, about a quarter of the fruit still fell
to the ground during the picking process. This was mainly due to
interference from obstacles, which caused positioning errors or
small friction between the robotic fingers.

Zou et al. (2016) proposed an end effector with certain
versatility to clamp and cut the fruit with fault-tolerant design.
The eccentric cutter is installed above the clamp so that the
damage to the fruit and its body is minimal(see Figure 5).
The picking method makes stereoscopic vision detection more
difficult. In addition to detecting and identifying the fruit, it
also identifies and estimates the spatial position and coordinate

FIGURE 4 | Kiwifruit harvesting robot based on stereo vision (Williams H. A.
M. et al., 2019).

points (also called picking points) needed to determine the
clamping and cutting points of the mother branch. Two color-
cameras were mounted on a six-degree-of-freedom robot that
was used to locate the litchi in an unstructured environment.
The litchi fruit was extracted by stereo matching two litchi
images in the same scene. The recognition method is robust
to changes in illumination, so 3D information can be used to
recognize litchi fruits accurately. The average recognition rates
of unobstructed litchi and partially occluded litchis were 98.8 and
97.5%, respectively (Wang et al., 2016). A binocular vision-based
recognition of grapes was also investigated. The feature matching
and localization capabilities of the robot to detect grapes and their
picking points were shown. Due to the complexity of the terrain,
the visual and stereo matching modalities are disturbed by noise,
which increased the positioning error (Luo et al., 2016).

The challenges can be identified as follows.

1. In dynamic environments, the shape of the fruit image is
inconsistent with the initial shape acquired by the camera,
which results in a large error in 3D positioning.

2. In 3D vision technology, the calculation amount of stereo
matching is great, which makes it somehow inefficient
in real tasks. This is also one of the consensuses in the
3D vision field.

3. With an unstructured environment, illumination and
occlusion can affect the accuracy of 3D fruit detection.

Laser Active Vision Technology
Jimenez et al. (1999) proposed a preliminary method that used
a laser-based machine vision system for automatic identification
of fruits. The method uses an infrared laser ranging sensor to
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FIGURE 5 | Litchi picking robot based on binocular stereo vision.

detect the 3D position, radius, and surface reflectivity of each
spherical fruit. Combined with the proposed image analysis
algorithm, the method can be applied to the citrus harvesting
with ∼80–90% detect rate. Slaughter et al. (1986) proposed an
active triangulation-based ranging system consisting of several
independent laser systems. Each laser system produces a light
scattering sheet that is projected onto the object. Besides,
two cameras were used to solve the occlusion problem. This
method integrates multiple distance measurements (obtained
from these cameras) into a single image to produce very
accurate depth measurements. Kondo et al. (2009) applied laser
range finder to tomato, cucumber, and grape harvesting robots.
A similar scheme for detecting mature cherries using 3D sensors
was reported. The results showed that 10 of the 12 fruits
were identified.

There are still problems with the use of structured light, such
as complex equipment installations, unpredictable occlusions,
and indirect measurements. For example, in some cases, the
laser may be blocked by obstacles and cannot be projected
onto the target. On the other hand, the laser may be out
of focus due to long distance and result in fewer features.
Furthermore, installing a laser will increase the structural
complexity of the entire vision system, which is undesirable in
field conditions.

Multi-Spectral Imaging Technology
The multi-spectral imaging technology can image in different
color spectra to see details that are invisible to the naked eye and
ordinary cameras. Multi-spectral techniques divide the incident
full-band or wide-band optical signal into a number of narrow-
band beams, and then image the beam over the sensor. Its
agricultural applications include pest and disease monitoring of
fruits and crops, and growth assessment of agricultural targets.
Multi-spectral technology has excellent research in the field of
fruit picking. Liu and Liu (2007) designed a system based on
multi-spectral vision technology and triangulation technology
to obtain the spatial position and maturity information of

apple fruit through a specific optical path, which was an
attempt to have great application value; Lu et al. (2011) used
multi-spectral imaging techniques to identify branches under
different lighting conditions, which ensured the efficiency of path
planning and safety of the operation of citrus picking robots in
complex natural scenes. Bac et al. (2014a) used different bands
to image segmentation, feature extraction and classification of
sweet pepper, which provided meaningful reference data for
constructing obstacle maps of fruit picking robots. Hung et al.
(2013) performed image segmentation using features extracted
from multi-spectral data to provide a yield estimation method
for fruit differences, and the algorithm reached high accuracy
and robustness. Navia et al. (2016) used an automatic four-
axis drone with a multi-spectral camera to capture multi-
spectral images of terrain and assemble topographic mosaics to
measure and evaluate green vegetation. This article provides an
integrated drone solution to capture multi-spectral images with
geotagging, which has important reference value in terrain and
scene perception. Fischer et al. (2019) combined multi-spectral
and drone technology and used feature extraction algorithms
to detect cornfield areas damaged by wild boar. This yields
a new monitoring technology that effectively acquires terrain
information and assesses the damage of crops based on its
description. Khaliq et al. (2019) obtained multispectral images
of vineyards using a ten-meter-resolution satellite and a low-
altitude drone platform. The system calculated three different
NDVI indices and compared drone data with satellite images
to analyze unbundled spectral contribution of different elements
in a vineyard. The vigor map, calculated from drone images,
has a higher correlation with on-site assessment compared with
satellite images, revealing that the multi-spectral and drone
platform can accurately complete the tasks of terrain and
crop perception.

The multi-spectral technology can provide satisfactory
positional and biological information for fruit harvesting tasks
and is a strong auxiliary means of vision-based picking
frameworks. Since multi-spectral cameras still follow the basic
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rules of optical imaging, they have the common disadvantages
of RGB cameras, e.g., the sampling quality may be affected by
changing and uneven light.

OBJECT RECOGNITION METHOD FOR
HARVESTING ROBOT

Single Feature Vision Method and
Improvement
The color of crops has significant and stable visual characteristics
that are less dependent on the size of the image itself. In machine
vision technology, an essential part of image processing is the
image segmentation algorithm.

Image segmentation predicts information based on each pixel
in an image. Image segmentation has two technical aspects; one
is to predict only the segmentation at the class level and to
mark the position for each pixel. The second is to distinguish
individual objects from a set of objects (Fu et al., 2019). The color
characteristics of the fruit are extracted by combining multiple
color spaces such as HIS, L∗a∗b∗ and LCD (Yin J. et al., 2009;
Cubero et al., 2014).

The algorithm still needs to be improved when the vision is
detected in the orchard. Wei et al. (2014) proposed an improved
OSTU algorithm based on a fruit recognition scheme that detects
and uses fruit color, e.g., red tomato and yellow persimmon
would be two distinct targets. The accuracy rate of this algorithm
was about 95%. However, robustness is reduced when segmenting
with color features, i.e., this method is sensitive to changes in the
field environment, especially in the wild.

For the identification of wild crop targets, Peng et al.
(2014) proposed a Double Otsu Algorithm to segment litchi
fruit orchards and achieved a correct recognition rate of
∼95%. To alleviate different illuminations, Wang Z. et al.
(2017) proposed a robust image segmentation algorithm
that detected illumination changes. Red litchi, purple grapes,
and yellow citrus were used as examples to conduct field
experiments; the detection rates were 93, 95, and 88%,
respectively (Zhuang et al., 2019). When the color of the
fruit is similar to the leaf color, the color characteristics are
not significant, and a color-based segmentation method alone
cannot be used to identify the fruit (Reis et al., 2012). Thus,
it is necessary to combine multiple algorithms to segment
the desired target.

Image shape features are mainly derived from the geometric
features of the target. There are many typical feature extraction
algorithms. These pre-existing algorithms often need to be
improved/amended when segmenting images. The algorithm is
usually unaffected by changes in illumination and is suitable for
field target recognition. Plá et al. (1993) proposed an early single
feature analysis method for citrus recognition. The method uses
a circular feature to segment the citrus fruit, but the recognition
rate is only 50%.

We analyzed individual images according to the geometric
features of the target for the round or long-shaped fruits. The
Canny operator and Hough transform algorithms are used to

detect the contour of the target. This operator-transform pair was
used to identify tomatoes, apples, and citrus (Hayashi et al., 2005;
Kondo et al., 2009; Zhao et al., 2011; Mehta et al., 2014).

Arefi et al. (2011) combined color space and fruit geometry.
The accuracy of tomato recognition in artificial greenhouses
was ∼96%. Hannan et al. (2007) proposed a citrus detection
method that combined a shape analysis technique and an orange
detection algorithm. Experimental results show that more than
90% of the fruits in the 110 images were detected. Kong
et al. (2010) used the color feature vector to train the LS-
SVM model for apple recognition. The results showed that the
recognition rate of apples can reach over 90%. Liu et al. (2019)
proposed that under Y’cbcr color space, a visual system was
designed by using mathematical models such as elliptic boundary
model and regional opening mathematical morphology model
to judge whether pomelo was mature or not, and the total
accuracy of the algorithm reached 93.5%. Arad et al. (2019)
proposed the controlled illumination acquisition protocol for
flash-no-flash (FNF). At the same time, a controlled illumination
acquisition protocol was obtained for one Flash and one non-
flash image. The color-based algorithm was shown to obtain
a maximum of 95% precision at a 95% recall level for FNF
images, compared to 99% precision at a 69% recall for Flash-only
images; this suggests the proposed FNF is effective for color-based
detection algorithms.

There are still challenges with the use of structured light, such
as the complexity of equipment installation, obstacles, and the
directionality of measurements. Tao et al. (2014) developed an
intelligent fruit recognition system that uses feature extraction
combined with the nearest neighbor (NN) classifier to achieve
fruit and vegetable recognition. The experimental results showed
that the recognition rate of the CCLBP (color completed
local binary pattern) was 5% higher than that of traditional
fruit and vegetable texture feature-detection algorithms. Song
et al. (2014) proposed a method for identifying fruits in a
greenhouse using a two-step method that combined clustered
fruit features. The method has a favorable correlation with
manual measurements (94.6%).

Although the analysis method based on a single feature can
detect fruits in natural environments, it cannot fully distinguish
between target features. Therefore, multi-feature methods are
often used to improve robustness and efficiency (Kurtulmus et al.,
2011; Rakun et al., 2011; Dey et al., 2012; Yamamoto et al., 2014;
Xu et al., 2019).

The use of texture differences, combined with the image color
space, geometric features, and other algorithms is more robust for
segmenting the target from the background. When the target or
fruit is clustered, obstructed or occluded, a histogram was used
to separate the color, texture. Moreover, the shape information
was used to implement the circular Gabor texture feature, and
an intrinsic fruit methodology was used in the fruit recognition
algorithm (Zhao et al., 2005; Kurtulmus et al., 2011; Rakun et al.,
2011; Xu et al., 2019).

Multi-Feature Fusion Method
Feature fusion methods combine different features to distinguish
different targets. This method can improve the recognition rate of
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uneven illumination conditions, partially occluded surfaces, and
similar background features. These algorithms are widely used for
fruit recognition in conjunction with classifiers (Zhuang et al.,
2018). A multi-feature integration method for vision systems
was proposed to guide fruit-picking robots, clustering multiple
feature detection schemes that detect color, morphological, and
texture features components of the target region algorithm. The
accuracy of multi-feature synthesis reached 90.15% on sunny
days and 93.90% on cloudy days (Li et al., 2012). A precise fruit
recognition method was proposed based on a set of multiple
shared features of multiple robots picking fruits in a mobile
environment. The test results showed that the average accuracy of
the fruit coding method reached 90% (Kim et al., 2014). Machine
vision strategies that combine strength, color, shape, and texture
characteristics can also be used to identify fruits (Huang and
He, 2012). These four features can be used to train a minimum
distance classifier. The resulting experimental images were well-
distinguished and had a high likelihood of accurate detection. An
artificial neural network with a RIB ratio and textured features
was used to segment fruit images; for backlight illuminated
image, the segmentation success rate for target in view was above
87.6%, and the bit error rate was about 13% (Zhang et al.,
2008). A fruit color recognition method was proposed based on
a multi-classifier combination, which combines a support vector
machine and fruit color type recognition. The experimental
results showed that the average recognition rate was 86.5% (Yang
et al., 2016). Algorithms based on a combination of multiple
processing and data mining techniques have been proposed to
segment fruits in scenes containing different elements and to
perform automated harvesting tasks in precision agricultural
applications. However, multi-feature fusion methods still prone
to light changes, especially in natural environments.

Deep Learning Method
The concept of deep learning originated from the study of
artificial neural networks, which have a multi-layer perceptron
with multiple hidden layers. Deep learning can form more
abstract high-level attribute categories or features. The high-
level features are combined with low-level features to discover
distributed feature representations of the data. This technology
has been applied in different fields. In fruit recognition,
researchers applied deep learning convolutional neural networks
(CNN) to the visual techniques of agricultural robots (Yang
et al., 2016; Bargoti and Underwood, 2017; Chen et al., 2017;
Rahnemoonfar and Sheppard, 2017; Tahir and Badshah, 2018).
Hou et al. (2016) developed a fruit recognition algorithm based
on a CNN. Fruits and non-fruits were classified using CNN
based on image entropy. The trained network produced a
significant fruit recognition rate. Fu et al. (2018) studied a
faster R-CNN to detect kiwifruit at a recognition rate of 92.3%.
Sa et al. (2016) proposed a fruit detection system combined
with a deep learning network, using a faster R-CNN model
combined with multimodal information (RGB and NIR) for
fruit detection. By comparison, this type of model improved
the previous model as seen in the test results. Similarly, Horea
and Mihai (2018) used deep learning techniques to form a fruit
detection data set that was trained using a deep learning model

through feature selection; the application software is packaged
into the fruit detection system. Horea believed that the system
is good at detecting fruit and that more fruit can be added for
extensive testing. Kushtrim et al. (2019) proposed that using
deep convolution neural network architecture based on single-
stage detectors to realize real-time detection of fruits in trees
was adopted to improve the detection speed. For video of apples
and pears in trees, the detection speed could be increased to
20 frames per second. Compared with the original hard-coded
feature extraction algorithms, this method has faster speed.
Liu et al. (2018) trained YOLOv3, ResNet50, and ResNet152
deep networks to verify the fruit recognition capability of
DNNs. Among them, the best performing ResNet152 network
has a recognition accuracy of 95.35% for citrus in natural
environments, a recognition accuracy of 97.86% for overlapping
citrus fruits, and 85.12% for the leaves and branches of citrus
trees. Vitzrabin and Edan (2016) introduced a nine-degree-
of-freedom greenhouse sweet pepper harvesting robot. With
the help of miniature RGB and ToF cameras, and a 3D
point cloud template matching algorithm, fruit positioning was
performed; the fruits that were successfully picked accounted
for 79% of the total. Kirk et al. (2020) proposed a fast
classification and recognition of strawberries by combining
color-opponent theory and first-order deep learning network
methods (see Figure 6). Its accuracy and recall are 0.793 and
0.799, respectively.

To identifying lychee, grape, and other fruits by training the
neural network, the authors proposed a more in-depth learning
method to divide the fruit image into multiple parts (Luo et al.,
2018; Wang et al., 2018; Xiong et al., 2018b), the image features
using the Faster R-CNN network algorithm were combined and
the lychee and guava fruit were divided into parts and identified.
Figure 7 shows the recognition effect of the image of the lychee in
the shade and the sun. Based on this algorithm (Lin et al., 2019),
a visual picking robot for lightweight guava has been developed
shown in Figure 8. Field experiments showed that the accuracy
and recall rate of the visual system were 0.88 and 1, respectively.
The average image of the vision system required 0.54 s and a robot
grab weight (load) of 3.5 kg. The total weight of the 6-degree-
of-freedom picking robot is 23 kg. Despite this progress, the
operational objects and environments of agricultural harvesting
robots are very complex, and their visual algorithms still need
to be improved. Despite this progress, the visual algorithms of
agriculture robots still need to be improved to deal with the
complex operational objects and environments.

A more in-depth learning approach was proposed, which
divides the fruit image into multiple parts and use these parts to
train the Network combination (Morimoto et al., 2000; Zhang
et al., 2008; Gatica et al., 2013; Makkar et al., 2018; Birrell
et al., 2019). The purpose of identifying fruits can be achieved
with an intensively trained network. Although the deep learning
method can produce a higher fruit recognition rate, the model
requires a longer training time and is not robust to complicated
environments. The training set also requires more image samples.
In addition, image classification based on big data has made
progress in the crop recognition field, and sometimes small
sample image data also exists. Small sample image classification
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FIGURE 6 | The image acquisition rig inside the strawberry polytunnels and algorithm performance (Kirk et al., 2020) (Improved results are shown in green and
detrimental results shown in red).

algorithms based on deep learning need to be studied further.
This explains why fruit recognition is still a bottleneck despite
the prevalent use of deep learning techniques.

3D Reconstruction Method for
Vision-Based Target
3D reconstruction refers to the establishment of a mathematical
model suitable for computer representation and processing of
spatial objects. It is the basis for processing, manipulating, and
analyzing an object’s properties in a computational environment.
In the machine vision of an agricultural robot, 3D reconstruction
refers to the process of reversing the 3D information collected
about the target by a set of visual sensors. Since the information
of each visual image is incomplete, 3D reconstruction often
requires the use of empirical knowledge. The purpose of the 3D
reconstruction scheme found in fruit-picking robots is multiple:
first, to obtain the spatial coordinates of the fruit; second, to guide
the robot to the target; third, to determine information such as
the posture and shape of the fruit; fourth, to provide information
that the robot end-effector can use for to establish a behavioral
decision. The 3D reconstruction process based on a visual image
is as follows:

1. Camera calibration: The camera calibration is done to
establish an imaging model, to ensure the internal and
external parameters of the camera are resolved and ensure
that the coordinates of the image can be combined to
obtain the coordinates of multiple 3D points in the space.

2. Image acquisition: Before performing image processing,
the camera is used to acquire a two-dimensional
image of a 3D object.

3. Feature extraction: Features mainly include feature points,
lines, and regions. In most cases, the feature points
are used as matching primitives, the form in which
the feature points are extracted is closely related to the
matching strategy.

4. Stereo matching: Stereo matching refers to the
correspondence between image pairs according to their
extracted features, that is, one-to-one correspondence of
imaging points of the same physical space point in two
different images.

5. 3D reconstruction: After stereo matching, the 3D scene
information can be recovered using the internal and
external parameters of the camera calibration.

Over the years, researchers have carried out extensive research
on the orchard environment, the visual recognition, and the 3D
positioning of the objects picked.

Keerthy et al. (2017) used RGB-D sensors to perform 3D
positioning for automatic broccoli harvesting. Mature broccoli
heads in the field were detected. They evaluated the application
of different 3D features, machine learning and time filtering
methods in broccoli head detection. The recognition results
and the point cloud showed that the 3D position of the
broccoli was accurate.

To minimize the impact of outdoor changes in illumination
on the visual 3D reconstruction of the image, Gongal et al. (2016)
developed a new vision sensor system that used a cross-platform
for flushing the apple tree and images were obtained from both
sides of the apple tree. The platform structure protects the apple
tree from direct sunlight, significantly reducing the illumination

FIGURE 7 | Litchi image recognition effect.
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FIGURE 8 | Visual system interface and robot field picking of guava.

changes and increasing the recognition rate of the apple. Luo
et al. (2016) determined the anti-collision space surrounding of
grape-based on binocular stereo vision and reconstructed the
spatial encirclement of the grape cluster by solving the spatial
coordinates of each grapefruit. This provided the decision for
robot anti-collision picking behavior. Ehud et al. (2016) proposed
an object pose solution method for RGB images and shape
features of objects in 3D space. This method combines 3D
surface normal features, 3D plane reflection symmetry, and image
plane highlights from the elliptical surface points to detect fruit.
After using the proposed algorithm, the mean average precision
improved (from 0.52 to 0.55). Onishi et al. (2019) used a multi-
box detector and a stereo camera to detect the 3D position of the
target fruit, and then controlled the robotic arm to harvest the
fruit by rotating the hand shaft. More than 90% of the fruit targets
were detected, and the single fruit harvest time was about 16 s.

To accurately identify and locate litchi fruits under non-
structural dynamic environment, Xiong et al. (2018b) proposed
a method for calculating the location of disturbed litchi picking
points based on binocular stereo vision motion analysis. This
method uses the principle of single pendulum motion to
establish the vibration angle of litchi clusters under static, small
disturbance and large disturbance. Improved fuzzy C-means
clustering method was used to segment the litchi fruits and stem
segments. The binocular stereo vision was also used. The picking
point space coordinates were calculated. Williams H. A. M. et al.
(2019) designed a kiwi fruit picking visual system by combining
deep neural network and stereoscopic vision technology, which
can reliably detect kiwi fruit under natural light. With the new
end-effect-designed system, 51% kiwi fruit in the orchard can
be picked, and the average time spent on picking a kiwi fruit is
only 5.5 s. To facilitate the picking robot to carry out mobile
navigation operations in the orchard, Matsuzaki et al. (2018)
obtained orchard point cloud data to reconstruct 3D scenes and
provide support for mobile navigation path planning of fruit-
picking robots. This research has revealed the important role
of mapping methods in agricultural robots, which can provide

robots with more comprehensive environmental information. On
the other hand, depth monitoring cameras are well integrated
into agricultural mapping tasks. This work gives a good example
of integrating different modules such as deep learning, depth
cameras and mapping into agricultural tasks. Lee et al. (2019)
used three cameras to develop the visual servo system of sweet
pepper automatic harvest. Two cameras were used to achieve
stereoscopic vision, and the third camera was used to act together
with the end-effector to correct the pose of sweet pepper during
the action. To improve the recognition and perception of the
apple picking robot in 3D space, Tao and Zhou (2017) proposed
an automatic apple recognition method based on point cloud
data, which first acquired the orchard point cloud data via
the RGB-D camera of time of flight technology, and merged
the color features. 3D geometric features were extracted from
point cloud data. The point cloud data is further divided into
apples, branches, and leaves to provide a more comprehensive
sensing capability for the system. The three data classifiers
are optimized by using support vector machine and genetic
algorithm. Finally, the accurate recognition of the fruit target is
achieved (see Figure 9). The classification accuracy rates obtained
by the proposed Color-FPFH features for apples, branches and
leaves are 92.30, 88.03, and 80.34% respectively, which are
significantly higher than those of the compared features from
different algorithms.

During the process of harvesting crops, in addition to
environmental noise, the surrounding background related to
positioning also contains branches and leaves. Because the fruit
grows on the fruit branches when it is positioned, it will
cause interference and caused the collide between the branches
and leaves, lending it inaccurate positioning. Therefore, these
branches and leaves are treated as an obstacle, and an obstacle
map is used to describe 3D spatial information. Decision-making
behavior was used by picking robots to avoid obstacles. Bac et al.
(2014a) used a support line wrapped around a pepper stem as a
visual clue to detect pepper stems. The correct rate of this method
was 0.94. Zhang and Xu (2018) proposed an unsupervised
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FIGURE 9 | Apple identification implemented via RGB-D camera and SVM classifier (Tao and Zhou, 2017).

conditional random field algorithm to cluster tomato plants with
leaves and stems. Majeed et al. (2018) segmented the apple
tree trunks and branches in the RGB-D image and achieved
favorable results.

Through the comparison and analysis of the literature on 3D
reconstruction of the picking robot, it is found that current 3D
reconstruction methods require a binocular stereo vision system
(Si et al., 2015; Wang et al., 2016) or an RGB-D based vision
system (Wang et al., 2016; Qureshi et al., 2017; Sa et al., 2017;
Matsuzaki et al., 2018; Lin et al., 2019). Among the algorithms,
an algorithm based on binocular stereoscopic 3D reconstruction
mainly focuses on visual stereo matching and fruit feature point
extraction in complex orchard environments. 3D reconstruction
based on the RGB-D vision sensor mainly focused on point cloud
data processing and target extraction. The posture reversal of the
picking target is the output of the algorithm.

Unmanned aerial vehicles-based 3D technology has been
widely applied to agriculture due to its unique advantages such
as crop yield evaluation and disease monitoring (Honkavaara
et al., 2012; Chen et al., 2019; Vanbrabant et al., 2019). Additional
research can be found in Sekhar et al. (2010) and Comba et al.
(2018). Although the technology provided by this literature is not
directly related to fruit picking robots, this literature provides
information about the advancement in technology for fruit
recognition. We have not retrieved literature about UAV-based
fruit picking robots. However, in some patents, the inventors
proposed the design scheme of fruit picking robots mounted
on UAVs, and some companies also published information
about UAV-based fruit picking robotics on their home pages.
Unfortunately, specific flight picking technology could be not
investigated and may be investigated in future research.

VISUAL FAULT TOLERANCE

The working environment for agricultural picking robots is
complex. There are often many disturbances and occlusions.
Thus, the robotic visual positioning system often encounters
large random errors, and the laws of these errors are difficult
to describe and compensate. For this reason, the collaboration
between robot vision and mechanical fault tolerance has become
a research hotspot in recent years. For significant random
errors, traditional vision does not consider mechanical or visual

correlations; Fruits were found by acquiring 3D coordinates.
The original system can only compensate for the original error
caused by the visual hardware. Thus, it is difficult to compensate
for unknown random errors. Second, the calculation error and
transitivity need to be applied because the image processing and
calculation separate the background and the fruit trees in the
scene, and then processes the fruit trees, branches, or leaves.
These errors are found using the part of the processing and
calculation process of multi-objective image. Calculation errors
can also be caused by noise. Errors, especially their transitivity,
are easily overlooked. Therefore, visual and institutional synergy
is needed to correct various types of errors. The main influencing
factors need to be further studied such as calculation error,
random error, and transitivity.

Robot positioning errors and fault tolerance have attracted
the attention of scholars in various fields (Gong et al., 2019;
Guo et al., 2019; Rasouli et al., 2020). Blas and Blanke (2011)
have studied automatic baling robots, which can locate plants
using binocular vision and classify the appearance of plants.
Finally, the fault tolerance of the machine was also verified.
Zou et al. (2016) proposed the concept of mechanical and
visual coordination fault tolerance. By analyzing the spatial
distribution range and peak characteristics of random errors
and finding out random variables and transmitting the main
factors, the factors that influence the error with a high
probability were separated, and an evaluation model was
constructed. The comprehensive error compensation model
is used for data organization, vision, and control (Zou
et al., 2016). Xiong et al. (2019) developed a strawberry
harvesting robot with a cable-driven gripper. An RGB-D
camera was used to detect strawberries. A fixture embedded
with an infrared sensor was designed to compensate for
positioning errors in the vision system, which has good
stability (Xiong et al., 2019). In the field of plant harvesting
robots, the fault tolerance theory needs to be further explored
in order to achieve precise operation and improve the
reliability of the machine.

FUTURE PERSPECTIVE

This paper reviewed stereo vision technology and the application
of harvesting robots. Research into stereo vision systems mainly
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included crop identification and localization, stereo vision and
cooperative behavior control of the robot manipulator, and
error processing. The system identifies the crop by collecting
a set of images and extracting information about the target.
To identify fruit, the resulting fruit, fruit branch and the fruit
branch obstacle in a 3D reconstruction are processed via space
coordinate calculation. After this calculation is complete, the
calculated spatial coordinates are transmitted to the robot drive.
The system controls the robot’s work. Algorithms and intelligent
decision-making are implemented through visual software.

When the crop environment is different under the
illumination and occlusion conditions of the field environment,
the recognition and location accuracy are affected. Geometric
features, image features, new image algorithms, and intelligent
decision theory was applied by the researchers to solve the
problem. In most image algorithms, current deep learning
algorithms require a large number of samples. In agricultural
crops, sometimes only a small dataset can be obtained, such
as immature fruits and crops with a pest problem. The deep
learning image recognition methods that process these small
datasets needs further research.

Although artificial intelligence and its deep learning methods
have improved the recognition rate, there are still large
positioning errors in the application of the visual system
due to the complexity and uncertainty of the agricultural
environment. Thus, incorporating the robot’s control system
and the innovative design of the mechanism is required to
improve the vision and combined error tolerance technology,

to achieve precise positioning and operation. Further researches
are also worth exploring for combining artificial intelligence
technology with the robot’s active fault tolerance and its
intelligent behavior decision.

Agricultural harvesting robots are subject to dynamic
interference from external forces during operation. The key
technology is dynamic tracking of curved surfaces from
irregularly shaped fruits. The dynamic tracking of the object
with high accuracy remains an unsolved issue for visual
harvesting robots.
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