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INTRODUCTION

The recent Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services
(IPBES) report highlighted the large scale of extinction risks to biodiversity (Díaz et al., 2019).
Assessing species’ extinction risk is vital for setting conservation priorities and the first step toward
protecting particular areas or groups. A widely accepted approach to assess extinction risk, and
a key source of data underpinning the IPBES report, is the IUCN Red List of Threatened Species
(hereafter Red List). However, with only 9% of plants represented by assessments at the latest update
(IUCN, 2019), slow progress in increasing Red List coverage of mega-diverse groups like plants has
limited their inclusion in analyses of global conservation priorities (Venter et al., 2014; Betts et al.,
2017; Di Marco et al., 2018). Responding to this problem, there is growing interest in speeding
up the assessment process. Automation, particularly through machine learning, offers an attractive
solution. However, we advocate caution before adopting it to help set global conservation priorities.

We draw on two recent examples from the literature (Pelletier et al., 2018; Stévart et al., 2019)
that deserve attention as the largest studies to date that use machine learning or automation to
predict the conservation status of plants. Each study recommends a protocol for rapidly generating
preliminary conservation assessments, and both share the goal of using their preliminary
assessments to highlight global or continent-wide conservation priorities. The potential impact of
these studies merits careful scrutiny. Herein we highlight aspects of their design and reporting that
can be improved so that future studies of this kind can have maximum impact.

LARGE-SCALE APPROACHES TO PREDICTING EXTINCTION
RISK OF PLANTS

In the most ambitious plant extinction risk prediction study to date, Pelletier et al. (2018) aimed
to use machine learning to predict the conservation status of all known land plants. Using GBIF
occurrences, Pelletier et al. trained separate random forest models for plants endemic to each
continent, and a further model for plants native to more than one continent, to make predictions
for all species with at least five occurrence records. Their best-performing set of models predicted
extinction risk of over 150,000 species of land plants, with 73–82% of species predicted correctly as
threatened or not threatened.

In a contrasting approach, Stévart et al. (2019) automated the calculation of certain metrics
used in Criteria A and B for Red List assessments and evaluated species using a new approach:
Preliminary Automated Conservation Assessments (PACA). Designed to be complementary but
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separate to the Red List schema, PACA comprises two systems.
The first recognizes three main levels: Likely Threatened (LT);
Potentially Threatened (PT) and Potentially Not Threatened
(PNT). The PNT level is divided further into three sublevels:
Likely Rare (LR), Potentially Rare (PR), and Likely Not
Threatened (LNT). The second system recombines these
sublevels with the first two main levels as follows: Likely
Threatened & Likely Rare (LT+LR), Potentially Threatened &
Potentially Rare (PT+PR), and Likely Not Threatened (LNT).
The three levels of each system are intended as triage toward
three subsets of Red List categories; Critically Endangered &
Endangered, Vulnerable, and Near Threatened & Least Concern
respectively. Stévart et al. use their first system to report that
31.7% of the tropical African flora is potentially threatened (i.e.,
assigned to LT or PT) and their second system to report their
best performance metrics when comparing PACA predictions to
published Red List assessments.

CLARITY IN REPORTING PERFORMANCE

Clear and consistent reporting of method performance is
paramount to enable readers to judge the reliability/credibility
of published predictions. Both studies compare predictions
to published IUCN Red List assessments to estimate method
performance, as do previous studies (Bland et al., 2015; Darrah
et al., 2017; Nic Lughadha et al., 2018). Accuracy, or its
inverse the error rate, are most often quoted, but these give an
incomplete picture of predictive performance. For predictions
of extinction risk in particular, the number of not threatened
species usually far outweighs the number of threatened species.
It is therefore important to provide separate measures of how
well a method correctly predicts species as threatened and not
threatened. Two popular measures for these are sensitivity and
specificity (Bland et al., 2015; Darrah et al., 2017; Di Marco et al.,
2018), respectively.

Pelletier et al. report their random forest models to achieve
predictive accuracies comparable to previous studies. However,
neither sensitivity nor specificity are reported for any of their
models. Without these measures readers cannot judge whether
predicted numbers of threatened species are inflated by mis-
predictions of not threatened species or depressed by mis-
predictions of threatened species.

More concerning, however, is that Pelletier et al. use different
classification thresholds when reporting model performance of
predicted numbers of potentially threatened species. To evaluate
the performance of their models, by default, they classify as
potentially threatened species having predicted probability of
being threatened exceeding 0.5. Then, citing caution as their
motive, they use two higher thresholds (0.6, 0.8) to predict
numbers of threatened species. They fail to report model
performance at these higher thresholds, or how performance
changes with the threshold, leaving readers unable to fully
evaluate their estimates.

Pelletier et al. are not alone in highlightingmodel performance
for one procedure and reporting predictions from another,
losing a clear link between predictions and performance. As
described above, Stévart et al. introduce two different systems
within their PACA procedure. They use their first system

(LT>PT>PNT[= LR+PR+LNT]) to generate their headline
figure: a third of tropical African flora potentially threatened.
But they use their second system (LT+LR > PT+PR > LNT)
when reporting their best measure of performance—a sensitivity
of 0.84 for the LT+LR level. They claim that PACA has high
sensitivity, but in fact sensitivity for the LT level of system 1,
used for their headline, is just 0.20. In contrast, had they used
the better performing system 2, their headline figure would
have been 70.1% of tropical African plants potentially threatened
(compared to 31.7% reported). We commend Stévart et al.
for providing the data needed to calculate this, however, their
failure to establish a clear link between prediction and model
performance renders their headline claim potentially misleading.

EXPLORING THE EFFECTS OF MODELING
CHOICES

Large-scale automation of preliminary extinction risk
assessments inevitably involves simplifications and choices
in model building. Where authors fail to explore how such
choices and simplifications may affect results, the value of their
research is reduced as readers cannot know which choices
are defensible.

Stévart et al. attempt to automate application of Criteria
A and B for Red List assessments, but do not fully explore
the effect of simplifications they make when calculating the
required metrics. These metrics comprise, for each species, the
area of occupancy (AOO), extent of occurrence (EOO), number
of threat-defined locations, number of occurrence records in
declining habitats, and expected reduction in AOO. They
calculate EOO and AOO in a standard way but their novel
methods for estimating the number of threat-defined locations
and decline in habitat introduce simplifications inconsistent
with IUCN recommendations. The reader cannot tell if these
simplifications are reasonable in the absence of any exploration
of their impact on the performance of the PACA method.

Pelletier et al. choose to build separate random forest
models for each continent but do not calibrate the predicted
probabilities of threat, making these predictions incomparable
between continents. This reduces the reliability of probability
maps for identification of global conservation priorities, a goal of
the paper. We followed the protocol of Pelletier et al. as closely as
possible, using the data they provided, to: (i) reproduce their map
of continental predictions and (ii) produce a map of predictions
from a single global model (Figure 1). Comparison suggests that
predicted threat levels were overstated for North America and
understated for South America and Africa. In our view, their
choice to build separate models for each continent, combined
with their data-cleaning process and down-sampling scheme,
introduced these discrepancies into their predictions.

TREATMENT OF THREAT

Documentation of threats faced by species is central to Red List
assessment but challenging to automate due to the specificity
of IUCN concepts, such as threat-defined locations, combined
with the diversity of threats and variability in how they may
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FIGURE 1 | (A) Difference in average per grid-cell probability of being threatened between (B) our reproduction of the continental predictions in Pelletier et al. and (C)

predictions made from a single global model following the same protocol and using the same species. Map (A) highlights regions with potentially over-stated

extinction risk (red), and potentially under-stated extinction risk (blue).

affect different species at the same location. Stévart et al. attempt
to document threats in the calculation of two of their metrics
described above. First they identify which occurrences face
habitat decline and loss, using data on land cover and mining
concessions. This approach omits some species-specific threats
but incorporates some information about plausible threats.
Second they estimate the number of “threat-defined locations”
for each species but their estimate is based almost entirely on
the spatial distribution of species occurrences, incorporating no
information about threat. Stévart et al. make clear that both
approaches are simplifications. However, the links made between
their approaches and the IUCN Red List criteria risk leading
readers to think that these approaches are more consistent
with IUCN guidelines than they actually are. Furthermore,
while increasing availability of threat data may improve these
approaches, performance may still be limited by the way in which
threat data are used. Stévart et al.’s approach to estimating the
number of threat-defined locations in particular has the potential
to inflate numbers of species identified as threatened by being
overly conservative (Nic Lughadha et al., 2018).

In contrast, Pelletier et al. make no attempt to directly
incorporate threat in their models. Their best-performing
models includes only environmental and geographical
predictors, whereas previous studies show human impact
predictors as among the most important in modeling extinction

risk (Darrah et al., 2017; Di Marco et al., 2018). We consider it
important to incorporate measures of threat as predictors in
such models, as well as others based on information like habitat
type that may be a proxy for extinction risk. These predictors, as
well as possibly improving the quality of predictions, would also
enhance the utility of results concerning the relative importance
of predictors.

LIMITATIONS OF BIODIVERSITY DATA

Automatedmethods andmachine learningmodels for generating
preliminary conservation assessments are necessarily based on
widely available biodiversity data. These data, including plant
occurrence records, have well-documented biases and gaps
(Meyer et al., 2016). Furthermore, plant species assessed for
the IUCN Red List are not randomly selected but reflect
taxonomic and geographic preferences and the imperative to list
threatened species. Understanding and addressing these biases
is important if automated preliminary assessments are to be
reliable/useful.

Pelletier et al. take steps to account for the imbalance of
threatened and not threatened species in the IUCN Red List by
down-sampling when building their models. They also attempt
to address geographic biases in species assessed by using separate
models for each continent.
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However, their process for data cleaning may introduce
further biases. Pelletier et al. remove all species with 4 or fewer
georeferenced occurrences, reducing representation to <50% of
known species (c. 150,000). Species with such limited numbers
of occurrence records are very numerous and tend to be rare
(Enquist et al., 2019), so this pruning inevitably resulted in
removal of disproportionate numbers of threatened species.

This is a familiar problem in conservation science
(Duffy et al., 2009): in addressing urgent needs to understand
extinction risk and prioritize actions we must avoid focusing
primarily on the fraction of plant species that are sufficiently
well-documented to model, potentially overlooking under-
collected areas and those richest in range-restricted species
likely to be threatened. One potential way forward is to use
coarser-scale but more complete distribution data, which has
proved useful in predicting conservation status of bulbous
monocot plants (Darrah et al., 2017).

TOWARD BETTER PREDICTIONS

Machine learning and automation are undoubtedly useful for
accelerating assessment of plant extinction risk, as already

demonstrated in smaller-scale studies of taxonomically- (Bland
et al., 2015; Darrah et al., 2017) or geographically-defined groups
(Leão et al., 2014; Nic Lughadha et al., 2018). However, as their
use becomes more widespread and is advocated to inform global

conservation priorities (Wearn et al., 2019), we must demand
rigor and transparency in their application and scrutinize their
predictions thoroughly.

We seek to ensure that future predictions factor in
lessons learned from previous studies and make dedicated
efforts toward reporting method performance clearly,
exploring the effects of modeling choices, including sensible
treatment of threat and accounting for limitations of the
underlying plant data. Such efforts should help to generate
increasingly trustworthy predictions as input for conservation
decision-making.
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