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Gene co-expression networks (GCNs) can be prepared using a variety of mathematical
approaches based on data sampled across diverse developmental processes, tissue
types, pathologies, mutant backgrounds, and stress conditions. These networks are
used to identify genes with similar expression dynamics but are prone to introducing
false-positive and false-negative relationships, especially in the instance of large and
heterogenous datasets. With the aim of optimizing the relevance of edges in GCNs
and enhancing global biological insight, we propose a novel approach that involves
a data-centering step performed simultaneously per gene and per sub-experiment,
called centralization within sub-experiments (CSE). Using a gene set encoding the plant
mitochondrial proteome as a case study, our results show that all CSE-based GCNs
assessed had significantly more edges within the majority of the considered functional
sub-networks, such as the mitochondrial electron transport chain and its complexes,
than GCNs not using CSE; thus demonstrating that CSE-based GCNs are efficient at
predicting canonical functions and associated pathways, here referred to as the core
gene network. Furthermore, we show that correlation analyses using CSE-processed
data can be used to fine-tune prediction of the function of uncharacterized genes; while
its use in combination with analyses based on non-CSE data can augment conventional
stress analyses with the innate connections underpinning the dynamic system being
examined. Therefore, CSE is an effective alternative method to conventional batch
correction approaches, particularly when dealing with large and heterogenous datasets.
The method is easy to implement into a pre-existing GCN analysis pipeline and can
provide enhanced biological relevance to conventional GCNs by allowing users to
delineate a core gene network.

AUTHOR SUMMARY

Gene co-expression networks (GCNs) are the product of a variety of mathematical
approaches that identify causal relationships in gene expression dynamics but are
prone to the misdiagnoses of false-positives and false-negatives, especially in the
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instance of large and heterogenous datasets. In light of the burgeoning output of next-
generation sequencing projects performed on a variety of species, and developmental
or clinical conditions; the statistical power and complexity of these networks will
undoubtedly increase, while their biological relevance will be fiercely challenged. Here,
we propose a novel approach to generate a “core” GCN with enhanced biological
relevance. Our method involves a data-centering step that effectively removes all primary
treatment/tissue effects, which is simple to employ and can be easily implemented into
pre-existing GCN analysis pipelines. The gain in biological relevance resulting from the
adoption of this approach was assessed using a plant mitochondrial case study.

Keywords: correlation, gene co-expression network, metabolism, method, plant mitochondria

INTRODUCTION

Over the last two decades, the growth of available transcriptome
data in an increasing number of species has given rise
to a multitude of gene co-expression networks (GCNs). By
constructing these networks on data sampled from diverse
developmental processes, tissue types, pathologies, mutant
backgrounds, or stress conditions; researchers can better
comprehend the physiological and molecular pathways that
underpin complex biological systems (Carrera et al., 2009;
Emmert-Streib et al., 2014; Liesecke et al., 2018; Castro et al.,
2019). These networks rely on mathematical approaches to
identify causal relationships in gene expression dynamics and
the most prevalent are those based on undirected correlation
approaches, such as Pearson correlation coefficient, Spearman’s
rank correlation coefficient, partial correlation, or biweight
midcorrelation (Langfelder and Horvath, 2008; Song, 2012).

For experiments where the number of genes greatly exceeds
the number of samples, it is common to assume that the network
is sparse, i.e. the most pronounced correlations are concentrated
within sub-networks. A number of shrinkage techniques for
estimating correlations in sparse networks have been proposed
(Friedman et al., 2000, 2008, 2014; Schäfer and Strimmer, 2005;
Wang and Huang, 2014). Independent of the approach, the
resulting correlation matrix is commonly used to construct an
adjacency matrix (a 0 to 1 matrix where edges are indicated by
the presence of a “1”), which defines an unweighted network.
These conventional correlation methods have been demonstrably
successful at identifying cohorts of strongly co-expressed genes,
and thus have been used extensively in the generation of GCNs.
However, these methods also have their disadvantages. This is
especially apparent with large and heterogenous datasets, in
which a substantial fraction of the predicted correlations are
expected to be statistically significant, and causal gene-to-gene
connections are obscured by the overwhelming presence of false-
positives and false-negatives. Non-causal relationships can arise
from indirect connections with other gene products (i.e. an
edge between two genes via a gene-intermediate) and from non-
biological sources such as influences resulting from experimental
design. Therefore, validation of GCNs can be challenging as
there are only a limited number of gene-to-gene relationships
(positive or negative) experimentally demonstrated (Qian and
Dougherty, 2013; Chai et al., 2014; Banf and Rhee, 2017). Partial

correlation is a standard approach used to attenuate non-causal
relationships generated by the influence of other genes. One such
approach, Gaussian Graphical Modeling (GGM), is commonly
used to interrogate the direct association between two genes,
independent of the effects of surrounding genes present in the
dataset. A number of thorough GGM studies in the model plant
species Arabidopsis thaliana (Arabidopsis) have demonstrated
the statistical power of this technique, both for selected pathways
and on a genome-wide scale (Wille et al., 2004; Ma et al.,
2007, 2015). Yet, since the biological relevance of an edge
linking two nodes in such networks can be called into question,
a complementary approach is to base the validation (i.e. the
biological relevance of the output) on physical and functional
proximity, arguing that the fraction of causal relationships should
be relatively high within sets of genes encoding proteins that
are part of the same complex or are involved in the same
metabolic pathway.

GCNs are commonly constructed in four steps, which include:
(i) data pre-processing, (ii) estimation of pair-wise associations,
(iii) prediction of the network, and (iv) identification of the
sub-networks in the network (van Dam et al., 2018). For the
pre-processing step, several approaches to alleviate the potential
heterogeneity between the samples have been proposed. For
instance, batch-effect removal approaches effectively eliminate
the systematic, technical errors inherent to multi-experiment
comparisons (Chen et al., 2011; Nygaard et al., 2016). An
alternative approach is to split the heterogenous data into more
homogenous subsets (e.g. into tissue/treatment/stress specific
datasets) and to construct set-specific networks that are later
merged into a consensus network (Langfelder and Horvath,
2008; Wren, 2009). However, in splitting the data a trade-
off can arise between subset sample size and the resulting
subset homogeneity. Despite these alternatives, GCNs obtained
utilizing partial correlation, batch-effect removal approaches,
or subset division will not reduce non-causal relationships
resulting from unquantifiable factors, e.g. treatment/tissue effects
between samples. Hence, there is currently a lack of methodology
to robustly derive informative GCNs from complex datasets
generated by heterogeneous experiments.

With the aim of optimizing the biological relevance of edges
in GCNs and enhancing global biological insight, we challenged
different methodologies in the generation of these networks by
using, as a case study, a subset of nuclear genes encoding proteins
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targeted to the plant mitochondrion (as defined in Chrobok et al.,
2016). To achieve this, we applied a novel pre-processing step
that we call centralization within sub-experiments (CSE), which
reduces the impact of the confounding effects of treatment-
induced and tissue-specific responses. In contrast to conventional
batch-effect removal approaches, the CSE step is applied to
datasets at the level of biological replicates derived under
the same experimental conditions. Hence, CSE also removes
technical bias introduced by variability between experiments.
Here, we compared several widespread GCN approaches with,
or without the CSE pre-processing step. Biological validation
was conducted by categorizing a subset of genes encoding
for plant mitochondrial proteins with respect to expression
patterns, functional proximity, and functional categories. CSE
combined with GCN (utilizing Pearson correlation) provided the
optimum balance for the ease of data processing vs. the utility
of the output. Consequently, a mitochondrial network based on
CSE Pearson correlation was selected for further downstream
applications of the method.

RESULTS

To gain clarity, this results section has been divided in three parts:
Methodology, Validation, and Application.

Methodology
Definition of the Problem
We consider a problem where we have gene expression data
from a large number of diverse experiments, e.g. experiments
from different tissues, treatments, and developmental stages. The
objective is to predict the edges of an undirected graph with n
nodes (i.e. genes), where an edge represents the most pronounced

co-expression between a pair of genes. Often, the level of co-
expression between genes will be context-dependent, e.g. tissue,
growth condition or developmental stage (Figure 1). Here, we are
primarily interested in detecting the core network, i.e. to estimate
the co-expression between genes that are prominent in the
majority of the considered sub-experiments. A sub-experiment
is defined as a set of assays derived under “identical settings”, i.e.
the assays within the sub-experiment can be treated as biological
replicates. We thus propose a pre-processing step (CSE) that
enables prediction of the core network.

Centralization Within Sub-Experiments
We consider normalized gene expression data from s sub-
experiments, i.e.{

xijk
}
, i = 1, ..., n, j = 1, ..., s, k = 1, ..., rj,

where xijk denotes the normalized gene expression for gene i
observed on the kth biological replicate in sub-experiment j.
CSE is a simple pre-processing step whereby mean-centralization
within sub-experiments is applied to each gene separately, i.e. the
CSE-processed expressions are obtained as:

xCSEijk = xijk − x̄ij.,

where x̄ij. denotes the mean-expression of gene i in the jth sub-
experiment, i = 1, . . . , n, j = 1, . . ., s, k = 1, . . ., rj.

It should be noted that the mean value of the centralized
data within a sub-experiment will always be zero. Thus, CSE
negates pronounced correlations driven by differences between
the sub-experiments. For example, a given stress may induce gene
expression in genes that are expressed in “independent” pathways
resulting in false-positive and false-negative predictions (Figure 1
and Supplementary Figure S1).
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FIGURE 1 | Schematic illustrating the utility of centralization within sub-experiments (CSE) when comparing genes from a diverse background of treatments.
(A) Conventional correlation analysis of two genes (Gene A and Gene B) under control conditions reveals a high positive correlation. Corresponding correlation
analysis of the same two genes in response to a stress treatment again reveals a high positive correlation. (Bi) When both the control and stress experiments are
combined, conventional correlation analysis results in a low level of correlation (false negative). (Bii) By carrying out CSE, the mean effect between replicates is
removed, and subsequent conventional correlation analysis now reveals the “core” high correlation between Gene A and Gene B.
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Construction of Gene Co-expression Networks
Gene co-expression networks can be constructed in various
way, but we selected commonly used approaches to assess the
effect of CSE application. The GCNs were constructed in a
three-step procedure: (i) the pre-processed dataset was either
centralized using CSE (CSE) or not centralized (non-CSE),
(ii) pairwise correlations were calculated using either Pearson
correlation or partial correlation, and (iii) the sign matrix (i.e. an
adjacency matrix whose entries are either 1 or 0) was constructed
by controlling the fraction ω of edges at a desired level, i.e.
controlling the sparsity at level ω. The network was defined by
the output of the adjacency matrix; where a “1” represents an
edge corresponding to a level of the absolute co-expression value
between genes that satisfies a given cut-off. In this study, four
different principal networks were evaluated: combining CSE and
Pearson correlation (CSE Pearson correlation), CSE and partial
correlation (CSE partial correlation), and Pearson and partial
correlation applied in the absence of CSE (non-CSE Pearson
correlation and non-CSE partial correlation, respectively). In
addition to the four main networks described above, a further
comparison was performed using two permutations of a
commonly used networking approach, known as weighted gene
correlation network analysis (WGCNA) (Zhang and Horvath,
2005). To that end, we constructed: (i) a network based on
all data (WGCNA All) and (ii) a consensus network based
on four tissue-specific sub-networks (WGCNA Consensus). In
both cases, networks were prepared using either non-CSE or
CSE data (cf. “Materials and Methods” section). Furthermore,
a final comparison was conducted introducing two additional
methods, BC3Net (de Matos Simoes and Emmert-Streib, 2012)
and GeneNet (Schäfer et al., 2001) with CSE and non-CSE data.
The sparsity of all GCNs was controlled at ω = 0.005 and the
Walktrap community detection algorithm (Pons and Latapy,
2005) was used to identify communities in the predicted GCN
based on Pearson correlation. The objective here was not to
predict all edges in the core network, but to predict the most
pronounced edges, which justifies the use of an arbitrary chosen
threshold. Moreover, having the same sparsity in all predicted
networks simplified the validation steps as described below.

Applying the conceptual reasoning outlined above on a
network using simulated data demonstrated that CSE partial
correlation removes non-causal edges arising from the influence
of other genes and non-causal edges caused by external factors
(Supplementary Figure S1). Similar results were obtained for
CSE Pearson correlation, with the exception that a few false,
but relatively weak, edges appeared. The network utilizing non-
CSE data in tandem with Pearson correlation, arguably the most
standard approach, resulted in dense networks with multiple false
positives. Due to computational constraints, partial correlation
approaches may not be suitable for constructing GCNs when the
number of genes is much larger than the number of experiments
(see the section “Discussion”).

Evaluation of Gene Co-expression Networks
We consider a core network C, with n nodes and k edges, where
the edges correspond to the fraction ω of the strongest co-
expression correlation. A sub-network A⊂ C, with nA nodes and

kA edges is said to be pronounced if kA is larger than the expected
number of edges in a randomly selected sub-network with nA
nodes, i.e.

kA > ω

(
nA
2

)
.

The network C is commonly unknown, but it may still
be possible to identify several pronounced sub-networks, e.g.
by considering physical or functional proximity [see the
section “Preparing Elements of the Mitochondrial Working
Model” (iii, iv)].

We propose that the relative performance of predicted GCNs,
all with the same sparsity ω, can be evaluated based on the
observed number of edges within defined sub-networks. In short,
we argue that the more observed edges (the lower P-values)
within sub-networks, the better the predicted networks are (see
“Materials and Methods” for further details). With that being
said, there is a risk to overestimate the number of edges within the
sub-networks resulting in an incorrect ranking of the considered
networks; however, this risk decreases as the number of sub-
networks is increased.

Validation
For this study, we chose the plant mitochondrion as a focal
point for three reasons: (i) assessing the biological relevance
of our findings became much easier due to our pre-existing
knowledge of plant mitochondrial metabolism, (ii) the number
of genes to work with is low (ca. 1000 nuclear genes
coding for mitochondrial-targeted proteins), hence easing the
application of partial correlation methods, and (iii) the interest
in mitochondrial biology is strong, as this organelle is recognized
as a central energetic, signaling, and stress response hub in most
eukaryotic cells.

The Effect of Tissue Type on Gene Co-expression
Networks
Visualization of the four GCNs generated using Cytoscape
(organic layout; Shannon et al., 2003) revealed networks that
shared strong similarities in structure depending on whether CSE
was applied or not (Figure 2 and Supplementary Table S2).
Those networks based on non-CSE data displayed two distinct
primary clusters of nodes (Figures 2A,B), while those based
on CSE data were more integrated (Figures 2C,D). To uncover
the source of these distinct clusters in the non-CSE data, we
returned to the original data from the AtGenExpress expression
atlas, and defined each gene as presenting dominant expression
in either below-ground tissues (e.g. roots) or above-ground
photosynthetic tissues (e.g. shoots and leaves) (see the section
“Materials and Methods” for details). Using these definitions,
nodes (genes) from the networks were colored based on their
classification as either below-ground dominant (brown), above-
ground dominant (green) or dominance in neither tissue (yellow)
(Figure 2). This rapidly demonstrated the strong influence tissue-
of-origin has over the resulting GCN, and the efficacy of CSE in
resolving this. Notably, in addition to the increased integration
of genes with different tissue-dominances, the number of nodes
with edges to other nodes was significantly (P < 0.0001; Fisher’s
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CSE partial correlation

Nodes: 585 
Below-ground: 272 (46%)
Above-ground: 103 (18%)
Neither: 212 (36%)

DCSE Pearson correlation

Nodes: 490 
Below-ground: 238 (49%)
Above-ground: 86 (17%)
Neither: 169 (34%)

C

Non-CSE partial correlation

Nodes: 325 
Below-ground: 172 (53%)
Above-ground: 83 (25%)
Neither: 72 (22%)

BNon-CSE Pearson correlation

Nodes: 288 
Below-ground: 151 (52%)
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Neither: 64 (22%)

A

 Total 985
Below ground: 349 (36%)
Above ground: 201 (20%)
Neither: 435 (44%)

FIGURE 2 | Visualization of the mitochondrial network using four different pre-processing and correlation approaches. A manually curated mitochondrial gene list
was cross-referenced with the AtGenExpress Expression Atlas spanning different tissues, developmental stages, and stresses (Schmid et al., 2005; Kilian et al.,
2007; Goda et al., 2008). This data was either subject to CSE or left unprocessed, prior to correlation analysis using either Pearson correlation or partial correlation.
Each of the four resulting networks was visualized using Cytoscape. For each network, only nodes with at least one edge to another node were included. Each node
(gene) was colored based on their classification as either below-ground dominant (brown), above-ground dominant (green) or dominance in neither tissue (yellow).
The diameter of each node is proportional to the number of edges it has to a neighboring node. (A) Network of non-CSE Pearson correlation. (B) Network of
non-CSE partial correlation. (C) Network of CSE Pearson correlation. (D) Network of CSE partial correlation.

exact test) larger following CSE. Here, the null hypothesis
was that the number of nodes with edges was the same for
networks derived using CSE or not using CSE. Furthermore,
the distribution of genes with tissue-dominance established an
increased inclusion of genes with no tissue dominance (Neither),
which brought these networks closer to the native distribution
of tissue of origin dominance observed in the total set. This
suggests that by removing external biases, CSE of data could
introduce a wider cross-section of genes into a GCN and thus
reveals novel interactions.

Assessing Interactions Based on Functional
Proximity
Our first approach at challenging the four main different GCNs
was to examine the resulting distribution of edges upon a
small isolated subset of the mitochondrial network, encoding
components of the mitochondrial electron transport chain
(mETC). The mETC is central to the bioenergetic function
of mitochondria and the array of genes that comprise its five
complexes have been demonstrated to be expressed at relatively
stable levels in a variety of tissue types and developmental stages
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(Lee et al., 2011). In a first step, a comparison between the mETC
set isolated from four networks (non-CSE/CSE, Pearson or partial
correlations, respectively) revealed a significantly (P < 0.0001;
two-tailed Fisher’s exact test) higher number of edges (derived
from connections within and between the five complexes of the
mETC) in the networks based on CSE data, while the influence
of partial correlation vs. Pearson correlation was comparatively
small (Figure 3A). Similarly, two WGCNA approaches (i.e. All
and Consensus; cf. “Materials and Methods”) demonstrated that
the resulting networks based on CSE data detected significantly
(P < 0.0001) more edges within and between the five complexes

of the mETC than in non-CSE networks (Supplementary
Figure S2A). Of note, the non-CSE networks detected very few
edges, with zero edges detected for non-CSE WGCNA All and
only one edge for non-CSE WGCNA Consensus.

As the same sparsity is applied to all approaches, the total
number of edges in the entire network is held consistent between
them. Thus, the enrichment of edges within the mETC observed
here represents a valuable indication of putative biological
interaction. Our next step was to assess the distribution of
edges within a single complex of the mETC. The NADH
dehydrogenase, commonly known as Complex I, is composed of
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FIGURE 3 | Comparative analysis of four different correlation methods in defining interactions based on functional proximity. The following gene subsets of the
mitochondrial electron transport chain were analyzed using non-CSE Pearson correlation, non-CSE partial correlation, CSE Pearson correlation and CSE partial
correlation. P-values were calculated (two-tailed binomial test) for the probability associated with the expected vs. observed number of edges and a color-grading
scheme of the resulting P-values applied. (A) A Venn diagram illustrating the overlap of connections between the complexes of the mitochondrial electron transport
chain (mETC), when analyzed using the four different correlation methods. A two-tailed Fisher’s exact test was employed to test the significance of the difference in
the number of edges (derived from connections within and between the five complexes of the mETC) in the networks based on non-CSE vs. CSE data. (B) The
significance of the edges between the three domains of Complex I. (C) The significance of the edges within a given complex or between the different complexes of
the ETC. (D) Between the individual complexes of the mETC vs. the unified mETC or the rest of the mitochondrial set excluding the mETC.
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three domains: the peripheral arm domain (PAD), the membrane
arm domain (MAD), and the carbonic anhydrase domain (CAD)
(Peters et al., 2013). In turn, each domain is composed of an
assembly of proteins that carry out highly specialized functions,
and thus proved ideal to assess the relevance of the distribution
of edges between the different approaches. Similar to the
distribution of edges for the entire mETC, networks prepared
using CSE data showed a greater number of edges within
PAD and MAD domains as well as between them (Figure 3B,
Supplementary Figure S2B, and Supplementary Table S3). Yet,
the number of edges between CAD and PAD/MAD domains
became non-significant when data were CSE pre-processed
(Figure 3B, Supplementary Figure S2B, and Supplementary
Table S3). As a matter of fact, CAD appears to have a function
independent of the primary role of Complex I, which is the
oxidation of NADH and the transfer of electrons to the pool
of ubiquinone. Indeed, a recent study has reported that CAD
may have a supporting role in Complex I assembly, rather
than a direct enzymatic function (Fromm et al., 2016). When
this examination was expanded to look at the distribution of
edges within and between all five complexes of the mETC, a
similar enrichment of significant interactions was observed with
the CSE data, but not with the non-CSE data (Figure 3C and
Supplementary Figure S2C). Interestingly, when the distribution
of edges between individual complexes and either (i) pooled
complexes of the mETC, or (ii) the rest of mitochondrial set (total
mitochondrial set, excluding the mETC), the networks based
on non-CSE data showed relatively poor correlations with the
pooled mETC and even weaker connections with the non-mETC
components (Figure 3D and Supplementary Figure S2D). In
contrast, the CSE data showed significant (P < 0.001; two-tailed
binomial test) connections between the individual complexes and
the pooled mETC, with weaker connections to the non-mETC
components. One important exception to this was the significant
(P < 0.01 in CSE Pearson correlation, and P < 0.001 in CSE
partial correlation) connection observed between Complex II and
the non-mETC components. Notably, Complex II (also called
succinate dehydrogenase) lies at the confluence of two essential
bioenergetic functions of the mitochondrion: the mETC and
the TCA cycle. As such, it is particularly notable that the CSE
data (although not for WGCNA networks) identified Complex
II as having significant interaction with non-mETC components.
Examination of the composition of edges between Complex
II and these non-mETC genes revealed that they were indeed
significantly (P < 0.0001) enriched in components of the TCA
cycle. Taken together, these observations strongly support that
CSE of data prior to correlation analysis can reveal gene-to-gene
interactions indicative of highly valuable biological relationships
such as association to shared protein domains or consecutive
enzymes in a metabolic pathway. Furthermore, Pearson or partial
correlations seem to provide a better biological insight than the
two weighed networks.

Assessing Interactions Based on Connectivity Within
and Between Mitochondrial Functional Categories
Using the newly updated functional annotations established
for the MapMan platform (MapMan X4 Release 1.0, 2018;

Usadel et al., 2009), each gene of the mitochondrial set was
assigned to one of 29 functional categories. By grouping
genes belonging to the same functional categories, we were
able to measure the number of edges between genes within
a functional category, versus those between different, yet
interrelated, functional categories (Figure 4). In brief, when
CSE had been carried out (Figures 4C,D), the number of
predicted edges between genes within the same category is
much higher (nearly double; P < 0.01; one-tailed binomial
test) than is observed when the data is non-CSE; also, direct
intra-category comparison revealed significantly (P < 0.05;
Fisher’s exact test) more edges within the majority of these
CSE networks (Figures 4A,B). Additionally, in the two CSE
datasets, the number of significant edges between different
functional categories also increases, when compared to their non-
CSE counterparts. These inter-category edges were often highly
biologically relevant: for example, a significant (P < 0.0001)
edge was observed between nucleotide metabolism and protein
biosynthesis in each of the four methodologies (Figures 4A–D),
which is hardly surprising given their canonic interconnectivity.
In contrast, some connections were only observed in the case
of the CSE datasets (Figures 4A,B), such as the significant
(P < 0.0001) edges between cellular respiration and carbohydrate
and lipid metabolism, as well as the connection between protein
biosynthesis and protein translocation. For these processes to
operate efficiently, a high level of coordination is required in the
regulation of the genes involved, which supports these additional
inter-category edges.

Furthermore, corresponding analyses of networks prepared
using WGCNA All/WGCNA Consensus with or without
CSE pre-processing revealed similar findings, though the
enhancement provided by CSE appeared diminished in the
case of WGCNA Consensus (Supplementary Figure S3). In
summary, the known biological pathways strongly corroborate
the input from the CSE co-expression data generated with
our mitochondrial dataset and undoubtedly strengthen its
consideration for future analyses. Following these validation
steps, the negligible difference in results between CSE Pearson
correlation, partial correlation, and WGCNA, contrasted with
both time and computational demands, especially in the case
of partial correlation. We therefore used only CSE Pearson
correlation for the subsequent applications.

Application
Using the Network to Predict the Function
of Uncharacterized Mitochondrial Genes
The functional annotations applied to the genes comprising
the mitochondrial network (introduced above) encompassed a
subset of mitochondrial genes that at the time of the publication
of the MapMan hierarchical set of functional categories (BINs;
MapMan X4 Release 1.0, 2018), encoded proteins with no
assigned functions (NAFs; Functional Category 35). This provided
an ideal target group that we could systematically interrogate, in
a “guilt by association manner,” to determine if their relationship
to other genes of known functions could support their putative
function. A subsequent mitochondrial network was established,
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FIGURE 4 | Comparative analysis of four different correlation methods based on connectivity between different functional categories in mitochondria. Using newly
updated MapMan annotations (MapMan X4 Release 1.0, 2018; Usadel et al., 2009), the mitochondrial set was subdivided into 29 different functional categories. Only
functional categories with at least one significant (P < 0.0001; one-tailed binomial test) connection to another category are displayed for each method. Nodes with a
black outline indicate functional categories with significant (P < 0.001) intra-connectivity, nodes with a faint outline indicates functional categories with significant
(P < 0.01) intra-connectivity, nodes lacking an outline indicates functional categories that do not have a significant (P > 0.01) number of edges within a functional
category. Lines between functional categories indicate a significant (P < 0.0001) number of edges exist between the genes comprising both function categories. The
presence of an * indicates that there is a significantly (P < 0.05; two-tailed Fisher’s exact test) greater proportion of edges when comparing CSE-processed data vs.
non-CSE data. (A) Non-CSE Pearson correlation, (B) non-CSE partial correlation, (C) CSE Pearson correlation, and (D) CSE partial correlation.

which comprised 111 NAF genes and 257 mitochondrial genes
encoding proteins with known functions that had at least one
edge to a NAF gene (Figure 5A and Supplementary Table S4).
The NAF genes were then arranged in descending order based
on those with the greatest number of edges to genes with known
functions. We then selected the top five NAF genes and identified
the genes they interacted with. The distribution of their associated
functional annotations was then assessed to discern if they were
enriched in a particular function (Figure 5B).

The top five NAF genes displayed significant (following a
z-score analysis) over-representations with a range of different
functional categories. The NAF with the greatest number of
connections with genes of known function, AT4G26780, had a
significant enrichment of edges with (i) protein biosynthesis –
organelle translation machineries (P < 0.05), (ii) protein

translocation – TOM translocation and TIM insertion systems
(P < 0.05), and (iii) external stimuli response – heat-shock-
responsive protein (P < 0.05). Interestingly, this protein has been
proposed to encode Mge2, which is one of two mitochondrial
GrpE proteins in Arabidopsis. The remaining homolog, Mge1
serves as a co-chaperone alongside Hsp70, which together form
a vital part of the presequence-assisted motor (PAM) complex
that aids in the transport of precursor proteins through the
TIM17:23 translocase (Hu et al., 2012; Ghifari et al., 2018).
While Mge1 appears to have more constitutive house-keeping
duties, Hu et al. (2012) demonstrated that Mge2 was specifically
induced by heat and suggested that it could be required for
mitochondrial protein import and folding during periods of
heat stress, a hypothesis that appears to be supported by our
GCN predictions. The second gene interrogated (AT1G02150),
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FIGURE 5 | Identification of candidate functions for mitochondrial proteins with unknown functions. Pearson correlation was carried out on CSE pre-processed data
spanning the mitochondrial set, over 370 unique conditions comprising the AtGenExpress Expression Atlas. Out of this list, a sub-population of genes was
established which had unknown functional annotations. This sub-population was then analyzed to identify significant interactions with mitochondrial proteins with
known functions, resulting in a suite of 109 mitochondrial proteins with unknown functions. By annotating the functional categories of the known mitochondrial
genes, putative functional relationships can be assigned to these as yet uncharacterized proteins. (A) Network representation of the interactions between 109
mitochondrial proteins with no annotated functions and 248 mitochondrial proteins with known functions. (B) The five proteins with no annotated functions
displaying the highest number of edges to the mitochondrial set are shown, with a functional breakdown of the distribution of edges. Significant over-representation
of a given functional category was assessed using a z-score approach and the results have been marked with the following: *p < 0.05; **p < 0.01; ***p < 0.001.
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had a significant enrichment of edges with (i) photosynthesis
functions (P < 0.01), (ii) amino acid metabolism (P < 0.05),
and (iii) protein biosynthesis – aminoacyl-tRNA synthetase
(P < 0.001). At present, little is known about this protein,
however, the Arabidopsis Information Portal (Araport) 11
classifies it as belonging to the tetratricopeptide repeat (TPR)-like
superfamily (Cheng et al., 2017). TPR domains can be found in a
diverse number of proteins, where they mediate protein–protein
interactions; particularly in the formation of protein complexes.
The strong significant (P < 0.001) over-representation with
aminoacyl-tRNA synthetase functions (and the weaker, though
still significant over-representation of amino acid metabolism
functions) observed here is particularly interesting, as there is
evidence that TPR-containing proteins can act as interacting
mediators and co-chaperones in the formation of aminoacyl-
tRNA synthetases (Han et al., 2007; Kim et al., 2014); suggesting
that this protein may have a role in assisting amino acid
loading of tRNAs in Arabidopsis. The third gene interrogated
(AT1G80270) had a significant enrichment of edges with (i)
RNA processing (P < 0.001) and (ii) protein biosynthesis –
organelle translation machineries (P < 0.05). Assessing the
available literature, this protein has been reported as belonging
to the pentatricopeptide (PPR) superfamily (Doniwa et al.,
2010), which are predominately mitochondrial or plastid targeted
proteins and have been demonstrated to have a diverse array
of roles associated with RNA metabolism, such as RNA editing,
splicing, stability, and translation (Barkan and Small, 2014).
AT1G80270, known as PPR596, has been demonstrated to be
involved in the C-to-U editing efficiency of ribosomal protein
S3 (RPS3; AtMg00090), which is noteworthy as in our study,
PPR596 was also significantly enriched in connections with
organelle translation machinery functions (Doniwa et al., 2010).
Regarding AT3G47520, despite the surprising lack of a proper
annotation by Mapman, this gene had been characterized
and encodes an isoform of the mitochondrial dehydrogenase
(mMDH2; Tomaz et al., 2010; Lindén et al., 2016). Although
no functional categories were enriched, the big proportion taken
by the categories redox homeostasis, cellular respiration and
protein biosynthesis strongly supports the physiological role
of mMDH2. Finally, the protein encoded by AT4G35850 had
a significant (p < 0.001) enrichment of edges with protein
biosynthesis – organelle translation machineries (large and small
mitoribosome subunit) functions. Very little is known about
this protein, but it has been classified as belonging to the
PPR superfamily by Araport11, and could thus have a similar
role to that of PPR596; as an editing factor associated with
the correct processing of transcripts encoding mitoribosomal
subunits, or be associated with ribosomes in other ways
described in the literature; such as maintaining the stability
of assembled mito-ribosomes following translation (Schmitz-
Linneweber and Small, 2008); or promoting translational
initiation by selectively recruiting mitoribosomes to the start
codon of their target transcripts (Manavski et al., 2012; Haïli
et al., 2016). Taken together, these findings suggest that CSE pre-
processing aids guilt-by-association analyses and offers an easy to
implement first step in the process of characterizing genes with
unknown functions.

Synergy of CSE Approaches in the Analysis
of Plant Stress
In the field of transcriptomics, the application of conventional
co-expression networks has proven a highly powerful approach
in characterizing stress responses in a diversity of organisms.
In this study, we have demonstrated that CSE of data prior to
correlation analysis effectively identifies the innate relationship
between genes, and thus delineates a “core gene-network”.
However, as previously mentioned, a caveat of this approach
is that it is predicated on the suppression of extraneous
effects, such as stress, tissue, treatment, or genotype from a
given dataset, which therefore hinders downstream efforts
to interrogate the impact of these outside influences on the
dynamics of the resulting GCN. On the other hand, quite
often researchers must adjust different parameters (cut-offs,
thresholds, etc.) to introduce enough genes to reposition
the stress-responsive network in a wider biological context
and gain understanding. Here, we propose an alternative
method, with a powerful reference tool that can augment
conventional co-expression analyses. By clustering the CSE
data of the entire AtGenExpress Expression Atlas using
a Walktrap community detection algorithm (Pons and
Latapy, 2005), we generated a hierarchical CSE reference
community composed of 27 communities (Figure 6A). This
additional filter based on co-expression metadata could
then be layered onto a conventional, i.e. non-CSE GCN
(based on any treatment, developmental stage, or tissue
type selected by the researcher), and thus provide a more
detailed and nuanced view of the innate relationships between
the genes, when stress/treatment/tissue/genotype effects
have been nullified.

To illustrate this, we identified a subset of 65 mitochondrial
genes that are highly co-expressed in shoot tissues in response
to the following four stress treatments: heat, cold, drought,
and salt, using non-CSE pre-processed data (Kilian et al.,
2007). As shown in Figure 6B, conventional co-expression
analysis (here based on Pearson correlation coefficient)
provides an initial network, which illustrates the influence
of various stresses on the relationship between specific
stress-responsive genes. When the expression network of
the core stress responsive genes was cross-referenced with
the CSE reference community, the resulting subdivisions
revealed unique insights into the functional composition
and basal connectivity of this network (Figure 6C and
Supplementary Table S5). For example, most of genes grouped
in Community 1 were associated with photorespiration
and thiamine biosynthesis, two metabolic pathways often
associated with stress response in plants, and notably in
photosynthetic tissues (Supplementary Figure S4) (Rapala-
Kozik et al., 2012; Hodges et al., 2016). Furthermore,
Community 3 was overwhelmingly composed of functions
associated with translation (e.g. ribosomal protein L36),
import (e.g. TOM6, TIM9, and the TIM-family protein
AT1G18320), and assembly (e.g. HSP60-3A, HSP6, Hsp89.1,
CR88, and MGE2). Interestingly, a number of the genes in
this core stress set prepared from shoot samples were also
present in a corresponding network prepared from root
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FIGURE 6 | Synthesis of a conventional co-expression network of Arabidopsis shoots common to four stresses with a CSE reference community. (A) A CSE
reference community was generated utilizing the entire AtGenExpress Expression Atlas (Schmid et al., 2005; Kilian et al., 2007; Goda et al., 2008), using CSE
pre-processed data. This network was divided into 27 primary clusters using a Walktrap community detection algorithm (Pons and Latapy, 2005). (B) A core set of
stress-responsive genes was isolated from the AtGenExpress stress dataset (Kilian et al., 2007) covering heat, drought, cold, and salt stresses and from this, a
network was generated based on Pearson correlation coefficient with no CSE. (C) The initial network of non-CSE core stress response generated using Pearson
correlation coefficient was cross-referenced with the CSE reference community; providing deeper insight into the connectivity between genes, independent of
outside influences such as stress or tissue type. The diameter of each node is proportional to the number of edges it has to a neighboring node and node coloration
denotes occupation within a given CSE reference community.

data (denoted with a black outline in Figure 6B). Of these
shared genes, 2/3rd are found in Community 3, which again
emphasizes their importance. Therefore, we propose that
viewing traditional GCNs through a prism of a CSE reference

community can rapidly reveal hidden degrees of connectivity
between genes and could have far-reaching applications
in the field of transcriptomics, regardless of organisms,
treatments or pathologies.
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DISCUSSION

In light of the burgeoning output of next generation sequencing
projects performed on a variety of species, tissues, developmental
or clinical conditions, the statistical power and complexity
of these networks will undoubtedly increase, while their
biological relevance will be fiercely challenged. Therefore,
it is essential that current methodologies be refined to
keep apace of this progress and utilize these resources to
generate more accurate and informative gene networks to
answer hypothesis-driven questions. With the present study,
we proposed an alternative method to conventional batch
corrections and demonstrated that the implementation of CSE
(performed simultaneously per gene and per sub-experiment)
to conventional correlation approaches can provide additional
biological relevance to GCNs.

Arguably, there is no universal GCN that can define the
relationship between genes under every conceivable tissue,
developmental stage or treatment. Nonetheless, we believe
there is utility in approximating this by generating a core
network, where the edges correspond to essential interactions
and highlight conserved pathways. Furthermore, the predicted
number of edges in a GCN is user-defined, e.g. an edge is
predicted if the correlation is significant and/or has a value
greater than an arbitrary threshold. From a biological point of
view, these inclusion criteria are problematic since the number of
edges depends on (i) the number of samples (the more samples,
the lower the P-values and thus the more edges) and (ii) which
method is used to calculate co-expression. For example, GCNs
using CSE will on average estimate fewer extreme correlations
than GCNs not using CSE, although they may share several
edges (Table 1 and Supplementary Figure S5). We argue that
a sensible alternative approach is to control the sparsity of the
network and to consider the predicted edges simply as the most
pronounced co-expression.

TABLE 1 | Table of pros and cons associated with implementing CSE approaches
in GCN analysis.

Cons Pros

Non-CSE • Struggles with complex
heterogenous dataset, i.e.
ranging from different
treatments/tissues samples
• Prone to generating false

positives, i.e. co-expression
confounded by external factors

• Allows the user to process
homogeneous datasets
• Retains and queries conditional

effects such as
treatment/stress
• Well established methods

CSE • Large dataset required
• Limited detection of

co-expression driven by
external factors

• Facilitates analyses of complex
heterogenous dataset
originating from different time
points/tissues/treatments/stresses
• Provides a “core network”,

which can act as a reference
for comparison analyses
• Effectively reduce the amount

of false positives
• Easy to implement to any

pre-existing workflow

The predicted core network depends on the coverage
of included samples, which necessitates extensive sampling;
covering different tissue types, developmental stages, and stresses.
Yet, a consequence of sampling broadly is the integration
of samples from contextually different experiments, with core
gene co-expression being obscured by treatment-associated
co-expression. One interesting solution would be to split the
experimental data into subsets where each subset consists of data
from similar experiments, and predict a separate network for each
dataset, and finally estimate the core network with a consensus
network. However, such approach would still suffer from some
shortcomings; it may be difficult to define the subsets, there may
be relatively few samples within the subsets and it is unclear how
to derive the consensus network. To a certain extent, a CSE-
based network can be regarded as an extreme consensus network,
which bases the analysis on the smallest homogenous subsets
and use all CSE-processed samples to estimate the GCN. The
proposed CSE pre-processing method, which can theoretically be
combined with any GCN method, defines the subsets (i.e. the
sub-experiments) conservatively and mechanically, where each
sub-experiment consists of biological replicates, and removes all
treatment effects including batch effects, thus allowing for a direct
estimation of the core network based on all available samples.
A drawback with the CSE approach is that it will reduce the
signal-to-noise ratio (Table 1). For the considered Arabidopsis
data, with 887 samples, this seems to be a minor problem, but for
relatively small data sets it remains an open question whether this
could become a hurdle. Recently Kuijjer et al. (2019) proposed
a novel approach to derive sample-specific regulatory networks
from an estimated GCN. An interesting, but as yet unexplored
idea, would then be to base the sample-specific regulatory
networks on a CSE-derived GCN and then use the sample-
specific networks to predict tissue/stress specific networks.

Evaluation and validation of GCNs is a challenge, since we
have limited information on the “true” relationship that exists
between genes. We commonly have experimentally confirmed
protein–protein interactions and for some subsets of genes it may
be reasonable to assume a relatively high degree of co-expression.
We usually lack information on truly non-existing edges. In fact,
from a theoretical point of view, we may argue that all pairs
of genes are co-expressed to some extent. We propose that the
validation should be based on pronounced sub-networks for
which we expect to observe higher co-expression (i.e. more edges)
than expected by chance. This approach allows us to compare
different GCNs, all with the same sparsity, and to easily assess
statistical significance. It should be stressed that the result of the
validation depends on the sparsity level and which pronounced
sub-networks are used in this validation (Table 1). In particular, if
the number of genes is high it may be recommended to construct
a relatively dense network and to include several pronounced
sub-networks to ensure high power of the tests.

In this study, we used a plant mitochondrial case study, where
a series of validation steps established the strength of GCNs
built upon data that had been pre-processed with CSE. Plant
mitochondria are highly adaptive organelles that can tailor their
protein complement to undertake a multitude of specialized
roles. Nonetheless, there are a set of canonical functions and

Frontiers in Plant Science | www.frontiersin.org 12 June 2020 | Volume 11 | Article 524

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00524 June 2, 2020 Time: 20:40 # 13

Law et al. Centralization Within Sub-Experiments

associated pathways that are maintained in most tissues, growth
conditions, developmental stage, etc. even though such pathways
(e.g. respiration, TCA cycle, amino acid catabolism) can of course
be differentially regulated to modulate activity i.e. regulation of
metabolic fluxes. This means that the genes encoding proteins
involved in those pathways are functionally correlated even
though their respective expression profiles may diverge slightly
to satisfy a certain metabolic modularity. Our results show that
CSE-based conventional GCNs (Pearson, partial, WGCNA) had
significantly more edges within the majority of the considered
pronounced sub-networks (i.e. the mETC and its complexes;
and sub-networks defined by functional annotation) than GCNs
not using CSE (Figures 3, 4 and Supplementary Figures S2,
S3); which demonstrates that the CSE-based GCNs are efficient
at predicting canonical functions and associated pathways.
Furthermore, we showed that CSE, in conjunction with Pearson
correlation can be used to fine-tune the prediction of the
function of uncharacterized genes (Figure 5); while combination
with non-CSE data can augment conventional stress analyses
with the innate connections underpinning the dynamic system
examined (Figure 6). Furthermore, we benchmarked our method
to existing pipelines for gene network analyses and demonstrated
that CSE in combination with either Pearson or partial
correlations was significantly superior overall (Supplementary
Table S6). Three of the tested methods are included in the
NetMiner pipeline (Yu et al., 2018), which was developed to
make a consensus GCN from RNA-seq data. This method uses
a voting system to generate the consensus pipeline based on
WGCNA, BC3Net, and GeneNet methods. As our dataset was
based on microarray data, which estimates transcript abundance
based on fluorescence rather than read counts, we have not
directly used NetMiner but instead compared BC3Net and
GeneNet, in addition to the four methods already employed in
our study. While CSE does not enhance the biological relevance
of BC3Net and GeneNet approaches, it demonstratably improves
the depth of the WGCNA approach. Yet, at this stage, it
remains unclear why BC3Net and GeneNet approaches were
not affected by centralization. Nonetheless, these two methods
arguably performed worse than the more conventional approach
of Pearson correlation with centralized data. Of note, in our
study, GeneNet does not seem to provide relevant data as the
number of edges is equal to what is predicted by chance, which
thus seems biologically unsound.

Indeed, the trade-off of implementing a CSE approach
is that the biological precision gained by strengthening a
core gene-network results in a loss of information from any
stress/treatment/genotype components of the dataset (Table 1).
Despite this, if the focus of a given study is centered on
determining the network articulated around specific stress-
responsive genes, one can apply a CSE reference community onto
a conventional “stress” co-expression network. This augments
the network with extended biological insights, and provides
the user with a resource to better interrogate the biological
context of the data. Such context is often hindered by the use of
stringent cut-offs and thresholds throughout GCN establishment
(Table 1). Finally, although based on a plant mitochondrial
set to streamline the biological validation of our method, the

present study provides an alternative approach for interrogating
the biological relevance of any GCN, regardless of organism or
biological context.

MATERIALS AND METHODS

Dataset Generation
To obtain the widest coverage possible of a plant transcriptome,
the AtGenExpress expression atlas was utilized. This resource
is the result of a multinational consortium that aimed to
define an exhaustive transcriptome, covering (i) Arabidopsis
developmental stages and tissues types (Schmid et al., 2005),
(ii) biotic and abiotic stress treatments (Kilian et al., 2007),
and (iii) hormone and chemical treatments (Goda et al., 2008).
These studies used Affymetrix ATH1 arrays and, where possible,
maintained consistent experimental practices between samples so
as to optimize comparability. For this study, 887 CEL files from
the AtGenExpress set (spanning over 370 unique experimental
conditions) were quantile normalized together resulting in the
pre-processed dataset. For each unique condition (henceforth
referred to as sub-experiment) there were two or three samples,
which can be regarded as biological replicates observed under
similar conditions, where the conditions were defined with
respect to tissue developmental stage and treatment, e.g. a
different type of stress (see Supplementary Table S1).

Construction of Gene Co-expression
Networks
All analysis, if not stated elsewhere, was conducted with
the statistical programming language R version (R 3.5.1)
(R Core Team, 2018). The R-code used to construct the
GCNs described below are found in our GitHub repository1

(Kellgren and Rydén, 2019).
Pearson correlation was obtained using the function “cor” in R

and the partial correlation was obtained using the function “pcor”
with default setting in the R-package “ppcor” (Kim, 2015).

The adjacency matrices were derived by controlling the
fraction of edges in the off-diagonal adjacency matrix at a user
defined level ω. The elements of the adjacency matrix were
derived from a correlation matrix where the elements were set
to “1” if the absolute value of the correlations were larger than a
cut-off α, and “0” otherwise. The threshold α was obtained by an
iterative procedure controlling the sparsity at the level ω = 0.005.

The above approach was used for all analyses with the
exception of the analysis resulting in the predicted reference
communities presented in Figure 6, where an alternative
bootstrap approach was used. Here, samples were randomly
chosen with replacement, followed by calculation of the
adjacency matrix as described above. This procedure was
repeated 50 times and the resulting adjacency matrices were
combined, generating a matrix with values ranging from 0 to
50. The elements of the adjacency matrix were derived from the
aggregated matrix, where the elements were set to “1” if the values

1https://github.com/Tezinha/Gene-Co-expression-Network
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exceeded a cut-off β, and “0” otherwise. Here β was chosen to
control the sparsity ω at 0.005.

Due to computational constraints, partial correlation
approaches are often carried out on subsets of genes, rather
than the whole genome of an organism. An example of this
was detailed in Ma et al. (2007), which used a modified GCN
approach to carry out partial correlation analysis on batches of
∼2000 genes at a time. Aided by iterative random samplings
of genes, this study increased their coverage to that of the
Affymetrix ATH1 array; resulting in a network composed of
18,625 interactions (edges) and 6760 genes (nodes) (Ma et al.,
2007). Ren et al. (2015) expanded on this and proposed an
algorithm for constructing GCN with high-dimensional data by
implementing asymptotically normal estimation of large GCNs,
and in doing so, made it realistic to perform partial correlation
at a whole-genome scale (Wang et al., 2016). Unsurprisingly,
this approach is enormously computationally taxing, which can
prove prohibitive to researchers lacking dedicated servers and
advanced computer processing power.

The WGCNA networks were prepared using unsigned
biweight midcorrelation (Song, 2012) with a soft thresholding
power of 5 as the weight function. A topological overlap metric
(TOM) similarity matrix (Yip and Horvath, 2007) was derived
from the resulting correlation matrix that in turn was used to
derive an adjacency matrix with a sparsity of 0.005. The WCGNA
Consensus networks were derived by splitting the original data
into five subsets based on tissue (flower n = 63, leaf = 168,
root n = 133, shoot n = 154, and seedling n = 207) while the
remaining 162 samples were removed from the analysis. For
each subset an unsigned biweight midcorrelation network with
a soft thresholding power of 6 (CSE data) or 11 (non-CSE data)
was constructed and used to construct a TOM similarity matrix.
A consensus TOM similarity matrix was derived by combining
the five tissue-specific TOM matrices by, for each cell, taking the
minimum value the five TOM matrices. The consensus TOM was
then converted to an adjacency matrix with a sparsity of 0.005.
The analysis was carried out using the R package WGCNA v 1.68
(Langfelder and Horvath, 2008, Langfelder and Horvath, 2012).

The BC3Net networks were constructed by using the function
“bc3net” with default settings except increasing to 200 bootstrap
datasets and the igraph parameter to FALSE in the R “bc3net”
package (de Matos Simoes and Emmert-Streib, 2016). The
“ggm.estimate.pcor” function from the R package “GeneNet”
(Schäfer et al., 2020) with default settings was used to construct
the GeneNet networks.

Evaluation of Gene Co-expression
Networks
We consider a predicted network with sparsity ω. For any sub-
network, with n nodes and K observed edges it is possible to
test if the sub-network is pronounced (i.e. the sub-network has
significantly more edges than expected by chance) versus that the
sub-network is not pronounced (the null hypothesis). Under the
null hypothesis K is binomial distributed, i.e.

K ∼ Bin
((

n
2

)
, ω

)

Here, the binomial test, using the R-function “binom.test” with
a one-sided alternative hypothesis, was used to derive the p-values
of interest. It should be stressed that the P-values depend on
the sparsity. Hence, all tough not necessary, having the same
sparsity in all networks simplifies the evaluation. In addition to
test if the sub-networks are pronounced it is also of interest
to compare two predicted networks, e.g. network A and B. We
consider a sub-set with n nodes, where we observe KA and KB
edges within the sub-network for network A and B respectively.
Here the null hypothesis is that the expected values of KA and
KB are the same and the alternative hypothesis that they differ.
Fisher’s exact test, using the R-function “fisher.test” (R 3.5.1)
with a two-sided alternative hypothesis, was used to derive the
P-values of interest. For some selected genes we tested if the gene
had more (or less) edges then expected by chance to genes within
a functional category. The binomial test, using the R-function
“binom.test” with a one-sided alternative hypothesis, was used to
test the hypothesis.

Z-Score Analysis
Z-score analysis was carried out to compare two proportions
(subset versus whole mitochondrial set) to determine if
there was a statistically significant overrepresentation or
underrepresentation of a particular MapMan subcategory. In the
calculation below, π refers to the mean and n is the number of
genes in the subset.

z =
π̂1 − π̂2√

π̂(1− π̂)
(

1
n1
+

1
n2

)
Following this calculation, a cumulative standard normal table

was used to match the z-score and determine the P-value.

Preparing Elements of the Mitochondrial
Working Model
(i) Defining the Mitochondrial Gene List
The manually curated list of genes encoding proteins targeted
to the mitochondrion from Chrobok et al. (2016) was used as
a basis for a mitochondrial case-study. Matching this list with
the AtGenExpress Expression Atlas resulted in a list of 984
mitochondrial genes, which were used for downstream analysis.
The samples were taken from different tissues: flower, root,
shoot, seedling, leaf, pollen, and silique. Mitochondrial genes
were categorized with respect to expression patterns, functional
proximity and functional categories for downstream validation
(Supplementary Table S1).

(ii) Defining Below-Ground and Above-Ground
Dominant Genes
The mitochondrial genes were classified into two categories with
respect to their expression patterns in below-ground tissues
(e.g. root) and above-ground tissues (e.g. shoot and leaf). For
each gene i, the difference between the mean expressions in
below-ground tissues, x̄Bi and above-ground tissues, x̄Ai was
calculated, i.e. 1i = x̄Bi − x̄Ai. Genes with a difference larger than
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one standard deviation, i.e. 1i > s1, were classified as below-
ground dominant genes, while those with a difference smaller than
one standard deviation, i.e. 1i < −s1, were classified as above-
ground dominant genes. The estimated standard deviation was
based on all the 1-values of genes.

(iii) Defining Components of Complex I of the
Mitochondrial Electron Transport Chain
Complex I of the mitochondrial electron transport chain (mETC)
was an ideal model to test the effect of functional proximity of the
resulting networks, as the identity and molecular arrangement
of these constituents have been thoroughly characterized in
Arabidopsis using proteomic approaches (Klodmann et al., 2010;
Peters et al., 2013).

(iv) MapMan Annotations
Using the newly updated functional annotations established
for the MapMan platform (MapMan X4 Release 1.0, 2018;
Usadel et al., 2009), each gene of the mitochondrial set was
assigned to one of 29 functional categories.

Preparing a Reference Community Set
The Walktrap community detection algorithm runs short random
walks and merges separate communities in a bottom-up manner
to produce clusters, and was applied to the derived networks
to identify gene communities, i.e. sets of genes with a high
degree of predicted intra-gene-gene interactions. The function
“walktrap.community” with default settings in the R package
igraph (Csárdi and Nepusz, 2006) was used to conduct the
analyses. Here, gene communities were predicted based on a
network obtained using CSE data from all experiments, Pearson
correlation and an adjacency matrix derived using the absolute
value of the correlations. The result was a CSE reference
community composed of 27 clusters.

Combining Results Obtained Using
CSE and Non-CSE Data
We claim that gene communities should be estimated based on
networks derived using all the available CSE data, while networks
based on non-CSE data describe how genes are affected by an
external factor, e.g. stress induced by heat, cold, salt or drought.
Combining the two type of networks allowed us to study how
gene communities were affected by stress.

The combined analysis was made as follows. First the
communities were predicted as described above, resulting in the
community network. Secondly, for each of the considered stresses,
samples exposed to the stress were selected (heat n = 16, cold
n = 24, salt n = 24, and drought n = 28). An adjacency matrix
was calculated using non-CSE data, Pearson correlation, and
non-bootstrap approach with a cut-off = 0.82. The sum of the
four stress-related adjacency matrices was calculated and edges
with an aggregated score equal to 4 were set to “one” in the
combined adjacency matrix (i.e. the stress network) and regarded
as gene-gene interaction caused by a general stress response.

The community and stress networks were combined.
Communities enriched with respect to general stress were
identified similarly as described above. An enrichment analysis

with respect to functional categories was made for each of the
enriched communities.
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FIGURE S1 | Schematic representations of the conclusions that can be drawn
from different correlation analysis approaches of gene expression data. Five genes
were simulated to illustrate a network in the following way; Gene A expression
affects Gene B expression, Gene C expression affects the expression of Gene D
and Gene E. The gene’s expression values are regarded as functions of a normally
distributed random variable, with a mean µ = 0, and a standard deviation σ = 0.5.
The expression of two of the genes, Gene A and Gene C are also affected by an
external stress treatment, which can be seen as a categorical variable with two
levels. Level one represents no external influences and the variable takes a value
of zero, at level two the gene is influenced by an external factor and the
categorical variable takes the value ten. Gene B expression is affected by the
expression of Gene A, so for each Gene B value a Gene A value multiplied by a
constant β = 0.5 is added. In the same way, Gene D and Gene E is simulated but
with the exception that they are affected by Gene C. For each of the scenarios
100 expression values were simulated for each gene. To compare Pearson’s
correlation against partial correlation the relative correlation, i.e. the most
correlated edge, was set as a baseline and received a correlation value of 1. This
was done for each setup. In the first column the true network is represented and if
it is affected by the external factor. In column 2 to 5 the strength of the relative
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correlations is represented by the thickness of the line. (A) The network is not
affected by any external factor and all four methods have the correct edges among
the top three candidates. There is no difference between non-CSE and CSE data
which is as expected when there is no external factor to remove with CSE. (B) The
stress treatment is affecting gene C expression, which has an effect on the
non-CSE networks. Pearson correlation gives a false positive among the top three
candidates, the partial correlation networks gives the correct top three candidates
but the edge between Gene A and B is weak. When we preform CSE both
networks give the correct top three edges. (C) In this case, the stress treatment is
affecting the expression of both Gene A and C, which leads to false positives with
both methods. By carrying out CSE, the stress treatment, is removed and both
Pearson and partial correlation output the correct top three edges.

FIGURE S2 | Comparative analysis of four different correlation methods in defining
interactions based on functional proximity. The following gene subsets of the
mitochondrial electron transport chain were analyzed using non-CSE WGCNA All,
non-CSE WGCNA Consensus, CSE WGCNA All, and CSE WGCNA Consensus.
P-values were calculated (two-tailed binomial test) for the probability associated
with the expected vs. observed number of edges and a color-grading scheme of
the resulting P-values applied. (A) A Venn diagram illustrating the overlap of
connections between the complexes of the mitochondrial electron transport chain
(mETC), when analyzed using the four different correlation methods. Two tailed
Fisher’s exact test was used to test the significance of the number of edges within
the mETC between CSE and non-CSE approaches. (B) The significance of the
edges between the three domains of Complex I. (C) The significance of the edges
within a given complex or between the different complexes of the ETC. (D)
Between the individual complexes of the mETC vs. the unified mETC or the rest of
the mitochondrial set excluding the mETC.

FIGURE S3 | Comparative analysis of four different correlation methods based on
connectivity between different functional categories in mitochondria. Using newly
updated MapMan annotations (MapMan X4 Release 1.0, 2018; Usadel et al.,
2009), the mitochondrial set was subdivided into 29 different functional categories.
Only functional categories with at least one significant (P < 0.0001; one-tailed
binomial test) connection to another category are displayed for each method.
Nodes with a black outline indicate functional categories with significant
intra-connectivity, nodes lacking an outline indicates functional categories that do
not have a significant (P < 0.001) number of edges within a functional category.
Lines between functional categories indicate a significant (P < 0.0001) number of
edges exist between the genes comprising both function categories. The
presence of an ∗ indicates that based on a two-tailed Fisher’s exact test, there is a
significantly (P < 0.05) greater proportion of edges when comparing
CSE-processed data vs. non-CSE data. (A) Non-CSE WGCNA All, (B) non-CSE
WGCNA Consensus, (C) CSE WGCNA All, and (D) CSE WGCNA Consensus.

FIGURE S4 | Synthesis of a conventional co-expression network of Arabidopsis
shoots common to four stresses with a CSE Reference Community Set. A core
set of stress-responsive genes isolated from non-CSE AtGenExpress stress
dataset (Kilian et al., 2007) covering heat, drought, cold, and salt stresses,
cross-referenced with the CSE Reference Community.

FIGURE S5 | Correlation between the 985 mitochondrion related genes were
estimated using Pearson correlation without centralization (Non-Centralized data)
and Pearson correlation with CSE preprocessing (CSE preprocessed data). For
each approach 484,620 correlations were estimated and the 0.5% (2423) gene
correlations with the highest absolute value were used to predict edges in the
corresponding gene co-expression network. (A) Estimated density functions over
all estimated correlations for non-centralized data (green) and CSE preprocessed
data (red). The black line shows the density for correlations estimated on
simulated noise. (B) The estimated correlations for the two approaches plotted
against each other. Edges shared by both approaches are marked blue (620
(25.6%) of the edges were shared), unique edges for the CSE preprocessing
network are marked red, and unique edges for the Non-centralized network are
marked green.

TABLE S1 | List of 984 genes encoding proteins targeted to the mitochondrion,
referenced with the AtGenExpress Expression Atlas (Schmid et al., 2005; Kilian
et al., 2007; Goda et al., 2008). Note that dues to its large size (ca. 250 MB), the
file is available at: https://www.upsc.se/documents/olivier/Supplemental_Table_1_
Law_et_al_2020_DOI_10.3389-fpls_2020:00524.xlsx

TABLE S2 | (i) Non-CSE Pearson correlation; (ii) non-CSE partial correlation; (iii)
CSE Pearson correlation; (iv) CSE partial correlation.

TABLE S3 | Statistics supporting Figure 3. Table of the expected, observed,
ratios, and associated P-values. This is carried out for interactions within Complex
I, within and between the five Complexes of the mETC, and between the mETC
and the rest of the mitochondrion.

TABLE S4 | List of source and target genes comprising genes encoding proteins
targeted to the mitochondrion, with unknown functions (as per MapMan X4
annotations) and their edges with known mitochondrial genes.

TABLE S5 | Table of the 27 communities generated using the Walktrap algorithm
on the whole AtGenExpress Set that has been centralized.

TABLE S6 | Comparison of the number of edges observed within the mETC and
within the functional categories (WFC) 1-27 using different approaches, with or
without CSE. Six methods were included: Pearson correlation, partial correlation,
WGCNA, WGCNA Consensus network, BC3Net, and GeneNet; and these were
utilized on either non-centralized data (non-CSE) or centralized data (CSE). All
networks were fixed to a similar sparsity, each with approximately 2400 edges
(0.5%). The number of edges observed for the different approaches and data were
compared to the number of edges expected by chance within the mETC and
WTC. Here, blue numerals indicate that the observed number was significantly
larger (p < 0.05) than expected by chance. For each approach, the performance
applying centralized versus non-centralized data were tested. Here, an ∗ indicates
that significantly more edges (p < 0.05) were observed when using CSE adjusted
data. Finally, the results obtained using Pearson correlation and centralized data
(PeCSE) were compared to all other methods. Approaches with significantly
fewer (p < 0.05) number of edges than PeCSE were marked with a
minus sign ‘−’.

REFERENCES
Banf, M., and Rhee, S. Y. (2017). Computational inference of gene regulatory

networks: approaches, limitations and opportunities. Biochim. Biophys.
Acta Gene Regul. Mech. 1860, 41–52. doi: 10.1016/j.bbagrm.2016.
09.003

Barkan, A., and Small, I. (2014). Pentatricopeptide repeat proteins in plants. Annu.
Rev. Plant Biol. 65, 415–442. doi: 10.1146/annurev-arplant-050213-040159

Carrera, J., Rodrigo, G., Jaramillo, A., and Elena, S. F. (2009). Reverse-
engineering the Arabidopsis thaliana transcriptional network under changing
environmental conditions. Genome Biol. 10:R96. doi: 10.1186/gb-2009-
10-9-r96

Castro, D. M., de Veaux, N. R., Miraldi, E. R., and Bonneau, R. (2019). Multi-study
inference of regulatory networks for more accurate models of gene regulation.
PLoS Comput. Biol. 15:e1006591. doi: 10.1371/journal.pcbi.1006591

Chai, L. E., Loh, S. K., Low, S. T., Mohamad, M. S., Deris, S., and Zakaria, Z.
(2014). A review on the computational approaches for gene regulatory network

construction. Comput. Biol. Med. 48, 55–65. doi: 10.1016/j.compbiomed.2014.
02.011

Chen, C., Grennan, K., Badner, J., Zhang, D., Gershon, E., Jin, L., et al. (2011).
Removing batch effects in analysis of expression microarray data: an evaluation
of six batch adjustment methods. PLoS One 6:e17238. doi: 10.1371/journal.
pone.0017238

Cheng, C. Y., Krishnakumar, V., Chan, A., Schobel, S., and Town, C. D. (2017).
Araport11: a complete reannotation of the Arabidopsis thaliana reference
genome. Plant J. 89, 789–804. doi: 10.1111/tpj.13415

Chrobok, D., Law, S. R., Brouwer, B., Lindén, P., Ziolkowska, A., Liebsch, D., et al.
(2016). Dissecting the metabolic role of mitochondria during developmental
leaf senescence. Plant Physiol. 172, 2132–2153. doi: 10.1104/pp.16.01463

Csárdi, G., and Nepusz, T. (2006). The igraph software package for complex
network research. InterJ. Complex Syst. 1695, 1–9.

de Matos Simoes, R., and Emmert-Streib, F. (2012). Bagging statistical network
inference from large-scale gene expression data. PLoS One 7:e33624. doi: 10.
1371/journal.pone.0033624

Frontiers in Plant Science | www.frontiersin.org 16 June 2020 | Volume 11 | Article 524

https://www.upsc.se/documents/olivier/Supplemental_Table_1_Law_et_al_2020_DOI_10.3389-fpls_2020:00524.xlsx
https://www.upsc.se/documents/olivier/Supplemental_Table_1_Law_et_al_2020_DOI_10.3389-fpls_2020:00524.xlsx
https://doi.org/10.1016/j.bbagrm.2016.09.003
https://doi.org/10.1016/j.bbagrm.2016.09.003
https://doi.org/10.1146/annurev-arplant-050213-040159
https://doi.org/10.1186/gb-2009-10-9-r96
https://doi.org/10.1186/gb-2009-10-9-r96
https://doi.org/10.1371/journal.pcbi.1006591
https://doi.org/10.1016/j.compbiomed.2014.02.011
https://doi.org/10.1016/j.compbiomed.2014.02.011
https://doi.org/10.1371/journal.pone.0017238
https://doi.org/10.1371/journal.pone.0017238
https://doi.org/10.1111/tpj.13415
https://doi.org/10.1104/pp.16.01463
https://doi.org/10.1371/journal.pone.0033624
https://doi.org/10.1371/journal.pone.0033624
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00524 June 2, 2020 Time: 20:40 # 17

Law et al. Centralization Within Sub-Experiments

de Matos Simoes, R., and Emmert-Streib, F. (2016). bc3net: Gene Regulatory
Network Inference with BC3Net. R package version 1.0.4.

Doniwa, Y., Ueda, M., Ueta, M., Wada, A., Kadowaki, K., and Tsutsumi, N. (2010).
The involvement of a PPR protein of the P subfamily in partial RNA editing of
an Arabidopsis mitochondrial transcript. Gene 454, 39–46. doi: 10.1016/j.gene.
2010.01.008

Emmert-Streib, F., Dehmer, M., and Haibe-Kains, B. (2014). Gene regulatory
networks and their applications: understanding biological and medical
problems in terms of networks. Front. Cell. Dev. Biol. 2:38. doi: 10.3389/fcell.
2014.00038

Friedman, J. H., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance
estimation with the graphical lasso. Biostatistics 9, 432–441. doi: 10.1093/
biostatistics/kxm045

Friedman, J. H., Hastie, T., and Tibshirani, R. (2014). glasso: Graphical Lasso-
Estimation of Gaussian Graphical Models (R package version 1.8).

Friedman, N., Linial, M., Nachman, I., and Pe’er, D. (2000). Using bayesian
networks to analyze expression data. J. Comput. Biol. 7, 601–620. doi: 10.1089/
106652700750050961

Fromm, S., Braun, H.-P., and Peterhansel, C. (2016). Mitochondrial gamma
carbonic anhydrases are required for complex I assembly and plant
reproductive development. New Phytol. 211, 194–207. doi: 10.1111/nph.13886

Ghifari, A. S., Gill-Hille, M., and Murcha, M. W. (2018). Plant mitochondrial
protein import: the ins and outs. Biochem. J. 475, 2191–2208. doi: 10.1042/
BCJ20170521

Goda, H., Sasaki, E., Akiyama, K., Maruyama-Nakashita, A., Nakabayashi, K., Li,
W., et al. (2008). The AtGenExpress hormone and chemical treatment data set:
experimental design, data evaluation, model data analysis and data access. Plant
J. 55, 526–542. doi: 10.1111/j.0960-7412.2008.03510.x

Haïli, N., Planchard, N., Arnal, N., Quadrado, M., Vrielynck, N., Dahan, J.,
et al. (2016). The MTL1 pentatricopeptide repeat protein is required for
both translation and splicing of the mitochondrial NADH DEHYDROGENASE
SUBUNIT7 mRNA in Arabidopsis. Plant Physiol. 170, 354–366. doi: 10.1104/
pp.15.01591

Han, D., Oh, J., Kim, K., Lim, H., and Kim, Y. (2007). Crystal structure of YrrB:
a TPR protein with an unusual peptide-binding site. Biochem. Biophys. Res.
Commun. 360, 784–790. doi: 10.1016/j.bbrc.2007.06.129

Hodges, M., Dellero, Y., Keech, O., Betti, M., Raghavendra, A. S., Sage, R., et al.
(2016). Perspectives for a better understanding of the metabolic integration of
photorespiration within a complex plant primary metabolism network. J. Exp.
Bot. 67, 3015–3026. doi: 10.1093/jxb/erw145

Hu, C., Lin, S. Y., Chi, W. T., and Charng, Y. Y. (2012). Recent gene duplication and
subfunctionalization produced a mitochondrial GrpE, the nucleotide exchange
factor of the Hsp70 complex, specialized in thermotolerance to chronic
heat stress in Arabidopsis. Plant Physiol. 158, 747–758. doi: 10.1104/pp.111.
187674

Kellgren, T., and Rydén, P. (2019). Tezinha/Gene-Co-expression-Network: Gene
Co-expression Network (Version 1.0). Available online at: https://github.com/
Tezinha/Gene-Co-expression-Network

Kilian, J., Whitehead, D., Horak, J., Wanke, D., Weinl, S., Batistic, O., et al. (2007).
The AtGenExpress global stress expression data set: protocols, evaluation and
model data analysis of UV-B light, drought and cold stress responses. Plant J.
50, 347–363. doi: 10.1111/j.1365-313X.2007.03052.x

Kim, J. H., Han, J. M., and Kim, S. (2014). “Protein–protein interactions
and multi-component complexes of aminoacyl-tRNA synthetases,” in
Aminoacyl-tRNA Synthetases in Biology and Medicine. Topics in Current
Chemistry, Vol. 344, ed. S. Kim (Dordrecht: Springer). doi: 10.1007/128_
2013_479

Kim, S. (2015). ppcor: an R package for a fast calculation to semi-partial correlation
coefficients. Commun. Stat. Appl. Methods 22, 665–674. doi: 10.5351/CSAM.
2015.22.6.665

Klodmann, J., Sunderhaus, S., Nimtz, M., Jänsch, L., and Braun, H. P. (2010).
Internal architecture of mitochondrial complex I from Arabidopsis thaliana.
Plant Cell 22, 797–810. doi: 10.1105/tpc.109.073726

Kuijjer, M. L., Tung, M. G., Yuan, G., Quackenbush, J., and Glass, K. (2019).
Estimating sample-specific regulatory networks. iScience 14, 226–240. doi: 10.
1016/j.isci.2019.03.021

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted
correlation network analysis. BMC Bioinformatics 9:559. doi: 10.1186/1471-
2105-9-559

Langfelder, P., and Horvath, S. (2012). Fast R functions for robust correlations and
hierarchical clustering. J. Stat. Softw. 46. doi: 10.18637/jss.v046.i11

Lee, C. P., Eubel, H., O’Toole, N., and Millar, A. H. (2011). Combining proteomics
of root and shoot mitochondria and transcript analysis to define constitutive
and variable components in plant mitochondria. Phytochemistry 72, 1092–1108.
doi: 10.1016/j.phytochem.2010.12.004

Liesecke, F., Daudu, D., Dugé de Bernonville, R., Besseau, S., Clastre,
M., Courdavault, V., et al. (2018). Ranking genome-wide correlation
measurements improves microarray and RNA-seq based global and
targeted co-expression networks. Sci. Rep. 8:10885. doi: 10.1038/s41598-018-
29077-3

Lindén, P., Keech, O., Stenlund, H., Gardeström, P., and Moritz, T. (2016).
Reduced mitochondrial malate dehydrogenase activity has a strong effect on
photorespiratory metabolism as revealed by 13C labelling. J. Exp. Bot. 67,
3123–3135. doi: 10.1093/jxb/erw030

Ma, S., Bohnert, H. J., and Dinesh-Kumar, S. P. (2015). AtGGM2014, an
Arabidopsis gene co-expression network for functional studies. Sci. China Life
Sci. 58, 276–286. doi: 10.1007/s11427-015-4803-x

Ma, S., Gong, Q., and Bohnert, H. J. (2007). An Arabidopsis gene network based
on the graphical Gaussian model. Genome Res. 17, 1614–1625. doi: 10.1101/gr.
6911207

Manavski, N., Guyon, V., Meurer, J., Wienand, U., and Brettschneider, R. (2012).
An essential pentatricopeptide repeat protein facilitates 5’maturation and
translation initiation of rps3 mRNA in maize mitochondria. Plant Cell 24,
3087–3105. doi: 10.1105/tpc.112.099051

Nygaard, V., Rødland, E. A., and Hovig, E. (2016). Methods that remove batch
effects while retaining group differences may lead to exaggerated confidence in
downstream analyses. Biostatistics 17, 29–39. doi: 10.1093/biostatistics/kxv027

Peters, K., Belt, K., and Braun, H. P. (2013). 3D gel map of Arabidopsis complex I.
Front. Plant Sci. 4:153. doi: 10.3389/fpls.2013.00153

Pons, P., and Latapy, M. (2005). “Computing communities in large networks using
random walks,” in Computer and Information Sciences - ISCIS 2005. ISCIS 2005.
Lecture Notes in Computer Science, Vol. 3733, eds Yolum, T. Güngör, F. Gürgen,
and C. Özturan (Berlin: Springer).

Qian, X., and Dougherty, E. R. (2013). Validation of gene regulatory network
inference based on controllability. Front. Genet. 4:272. doi: 10.3389/fgene.2013.
00272

R Core Team (2018). R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing.

Rapala-Kozik, M., Wolak, N., Kujda, M., and Banas, A. K. (2012). The upregulation
of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under
salt and osmotic stress conditions is mediated by abscisic acid at the early
stages of this stress response. BMC Plant Biol. 12:2. doi: 10.1186/1471-
2229-12-2

Ren, Z., Sun, T., Zhang, C.-H., and Zhou, H. H. (2015). Asymptotic normality and
optimalities in estimation of large Gaussian graphical models. Ann. Stat. 43,
991–1026.

Schäfer, J., Opgen-Rhein, R., and Strimmer, K. (2001). Reverse engineering genetic
networks using the GeneNet package. J. Am. Stat. Assoc. 96, 1151–1160.

Schäfer, J., Opgen-Rhein, R., and Strimmer, K. (2020). GeneNet: Modeling and
Inferring Gene Networks. R package version 1.2.14.

Schäfer, J., and Strimmer, K. (2005). A shrinkage approach to large-scale covariance
matrix estimation and implications for functional genomics. Stat. Appl. Genet.
Mol. Biol. 4:32. doi: 10.2202/1544-6115.1175

Schmid, M., Davison, T. S., Henz, S. R., Pape, U. J., Demar, M., Vingron, M.,
et al. (2005). A gene expression map of Arabidopsis thaliana development. Nat.
Genet. 37, 501–506. doi: 10.1038/ng1543

Schmitz-Linneweber, C., and Small, I. (2008). Pentatricopeptide repeat proteins:
a socket set for organelle gene expression. Trends Plant Sci. 13, 663–670. doi:
10.1016/j.tplants.2008.10.001

Shannon, P., Markiel, A., Ozier, O., Baliga, N., Wang, J., Ramage, D., et al. (2003).
Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome Res. 13, 2498–2504. doi: 10.1101/gr.1239303

Frontiers in Plant Science | www.frontiersin.org 17 June 2020 | Volume 11 | Article 524

https://doi.org/10.1016/j.gene.2010.01.008
https://doi.org/10.1016/j.gene.2010.01.008
https://doi.org/10.3389/fcell.2014.00038
https://doi.org/10.3389/fcell.2014.00038
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1089/106652700750050961
https://doi.org/10.1089/106652700750050961
https://doi.org/10.1111/nph.13886
https://doi.org/10.1042/BCJ20170521
https://doi.org/10.1042/BCJ20170521
https://doi.org/10.1111/j.0960-7412.2008.03510.x
https://doi.org/10.1104/pp.15.01591
https://doi.org/10.1104/pp.15.01591
https://doi.org/10.1016/j.bbrc.2007.06.129
https://doi.org/10.1093/jxb/erw145
https://doi.org/10.1104/pp.111.187674
https://doi.org/10.1104/pp.111.187674
https://github.com/Tezinha/Gene-Co-expression-Network
https://github.com/Tezinha/Gene-Co-expression-Network
https://doi.org/10.1111/j.1365-313X.2007.03052.x
https://doi.org/10.1007/128_2013_479
https://doi.org/10.1007/128_2013_479
https://doi.org/10.5351/CSAM.2015.22.6.665
https://doi.org/10.5351/CSAM.2015.22.6.665
https://doi.org/10.1105/tpc.109.073726
https://doi.org/10.1016/j.isci.2019.03.021
https://doi.org/10.1016/j.isci.2019.03.021
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.18637/jss.v046.i11
https://doi.org/10.1016/j.phytochem.2010.12.004
https://doi.org/10.1038/s41598-018-29077-3
https://doi.org/10.1038/s41598-018-29077-3
https://doi.org/10.1093/jxb/erw030
https://doi.org/10.1007/s11427-015-4803-x
https://doi.org/10.1101/gr.6911207
https://doi.org/10.1101/gr.6911207
https://doi.org/10.1105/tpc.112.099051
https://doi.org/10.1093/biostatistics/kxv027
https://doi.org/10.3389/fpls.2013.00153
https://doi.org/10.3389/fgene.2013.00272
https://doi.org/10.3389/fgene.2013.00272
https://doi.org/10.1186/1471-2229-12-2
https://doi.org/10.1186/1471-2229-12-2
https://doi.org/10.2202/1544-6115.1175
https://doi.org/10.1038/ng1543
https://doi.org/10.1016/j.tplants.2008.10.001
https://doi.org/10.1016/j.tplants.2008.10.001
https://doi.org/10.1101/gr.1239303
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00524 June 2, 2020 Time: 20:40 # 18

Law et al. Centralization Within Sub-Experiments

Song, L. (2012). Comparison of co-expression measures: mutual information,
correlation, and model based indices. BMC Bioinformatics 13:328. doi: 10.1186/
1471-2105-13-328

Tomaz, T., Bagard, M., Pracharoenwattana, I., Lindén, P., Lee, C. P., Carroll, A. J.,
et al. (2010). Mitochondrial malate dehydrogenase lowers leaf respiration and
alters photorespiration and plant growth in Arabidopsis. Plant Physiol. 154,
1143–1157. doi: 10.1104/pp.110.161612

Usadel, B., Obayashi, T., Mutwil, M., Giorgi, F. M., Bassel, G. W., Tanimoto, M.,
et al. (2009). Co-expression tools for plant biology: opportunities for hypothesis
generation and caveats. Plant Cell Environ. 32, 1633–1651. doi: 10.1111/j.1365-
3040.2009.02040.x

van Dam, S., Võsa, U., van der Graaf, A., Franke, L., and de Magalhães, J. P. (2018).
Gene co-expression analysis for functional classification and gene–disease
predictions. Brief. Bioinform. 19, 575–592. doi: 10.1093/bib/bbw139

Wang, T., Ren, Z., Ding, Y., Fang, Z., Sun, Z., MacDonald, M. L., et al. (2016).
FastGGM: an efficient algorithm for the inference of gaussian graphical model
in biological networks. PLoS Comput. Biol. 12:e1004755. doi: 10.1371/journal.
pcbi.1004755

Wang, Y. R., and Huang, H. (2014). Review on statistical methods for gene network
reconstruction using expression data. J. Theor. Biol. 362, 53–61. doi: 10.1016/j.
jtbi.2014.03.040

Wille, A., Zimmermann, P., Vranová, E., Fürholz, A., Laule, O., Bleuler, S., et al.
(2004). Sparse graphical Gaussian modeling of the isoprenoid gene network in
Arabidopsis thaliana. Genome Biol. 5:R92. doi: 10.1186/gb-2004-5-11-r92

Wren, J. D. (2009). A global meta-analysis of microarray expression data to predict
unknown gene functions and estimate the literature-data divide. Bioinformatics
25, 1694–1701. doi: 10.1093/bioinformatics/btp290

Yip, A. M., and Horvath, S. (2007). Gene network interconnectedness and the
generalized topological overlap measure. BMC Bioinformatics 8:22. doi: 10.
1186/1471-2105-8-22

Yu, H., Jiao, B., Lu, L., Wang, P., Chen, S., Liang, C., et al. (2018). NetMiner-
an ensemble pipeline for building genome-wide and high-quality gene
co-expression network using massive-scale RNA-seq samples. PLoS One
13:e0192613. doi: 10.1371/journal.pone.0192613

Zhang, B., and Horvath, S. (2005). A general framework for weighted gene co-
expression network analysis. Stat. Appl. Genet. Mol. Biol. 4. doi: 10.2202/1544-
6115.1128

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 Law, Kellgren, Björk, Ryden and Keech. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 18 June 2020 | Volume 11 | Article 524

https://doi.org/10.1186/1471-2105-13-328
https://doi.org/10.1186/1471-2105-13-328
https://doi.org/10.1104/pp.110.161612
https://doi.org/10.1111/j.1365-3040.2009.02040.x
https://doi.org/10.1111/j.1365-3040.2009.02040.x
https://doi.org/10.1093/bib/bbw139
https://doi.org/10.1371/journal.pcbi.1004755
https://doi.org/10.1371/journal.pcbi.1004755
https://doi.org/10.1016/j.jtbi.2014.03.040
https://doi.org/10.1016/j.jtbi.2014.03.040
https://doi.org/10.1186/gb-2004-5-11-r92
https://doi.org/10.1093/bioinformatics/btp290
https://doi.org/10.1186/1471-2105-8-22
https://doi.org/10.1186/1471-2105-8-22
https://doi.org/10.1371/journal.pone.0192613
https://doi.org/10.2202/1544-6115.1128
https://doi.org/10.2202/1544-6115.1128
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	Centralization Within Sub-Experiments Enhances the Biological Relevance of Gene Co-expression Networks: A Plant Mitochondrial Case Study
	Introduction
	Results
	Methodology
	Definition of the Problem
	Centralization Within Sub-Experiments
	Construction of Gene Co-expression Networks
	Evaluation of Gene Co-expression Networks

	Validation
	The Effect of Tissue Type on Gene Co-expression Networks
	Assessing Interactions Based on Functional Proximity
	Assessing Interactions Based on Connectivity Within and Between Mitochondrial Functional Categories

	Application
	Using the Network to Predict the Function of Uncharacterized Mitochondrial Genes
	Synergy of CSE Approaches in the Analysis of Plant Stress


	Discussion
	Materials and Methods
	Dataset Generation
	Construction of Gene Co-expression Networks
	Evaluation of Gene Co-expression Networks
	Z-Score Analysis
	Preparing Elements of the Mitochondrial Working Model
	(i) Defining the Mitochondrial Gene List
	(ii) Defining Below-Ground and Above-Ground Dominant Genes
	(iii) Defining Components of Complex I of the Mitochondrial Electron Transport Chain
	(iv) MapMan Annotations

	Preparing a Reference Community Set
	Combining Results Obtained Using CSE and Non-CSE Data

	Data Availability Statement
	Author Contributions
	Funding
	SupplementaRy Material
	References


