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Enriching of kernel zinc (Zn) concentration in maize is one of the most effective ways
to solve the problem of Zn deficiency in low and middle income countries where
maize is the major staple food, and 17% of the global population is affected with Zn
deficiency. Genomic selection (GS) has shown to be an effective approach to accelerate
genetic gains in plant breeding. In the present study, an association-mapping panel
and two maize double-haploid (DH) populations, both genotyped with genotyping-
by-sequencing (GBS) and repeat amplification sequencing (rAmpSeq) markers, were
used to estimate the genomic prediction accuracy of kernel Zn concentration in maize.
Results showed that the prediction accuracy of two DH populations was higher than that
of the association mapping population using the same set of markers. The prediction
accuracy estimated with the GBS markers was significantly higher than that estimated
with the rAmpSeq markers in the same population. The maximum prediction accuracy
with minimum standard error was observed when half of the genotypes were included in
the training set and 3,000 and 500 markers were used for prediction in the association
mapping panel and the DH populations, respectively. Appropriate levels of minor allele
frequency and missing rate should be considered and selected to achieve good
prediction accuracy and reduce the computation burden by balancing the number of
markers and marker quality. Training set development with broad phenotypic variation
is possible to improve prediction accuracy. The transferability of the GS models across
populations was assessed, the prediction accuracies in a few pairwise populations were
above or close to 0.20, which indicates the prediction accuracies across years and
populations have to be assessed in a larger breeding dataset with closer relationship
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between the training and prediction sets in further studies. GS outperformed MAS
(marker-assisted-selection) on predicting the kernel Zn concentration in maize, the
decision of a breeding strategy to implement GS individually or to implement MAS and
GS stepwise for improving kernel Zn concentration in maize requires further research.
Results of this study provide valuable information for understanding how to implement
GS for improving kernel Zn concentration in maize.

Keywords: maize, kernel Zn concentration, genomic selection, GBS, rAmpSeq

INTRODUCTION

Known as “hidden hunger,” micronutrient malnutrition is mainly
prevalent among pregnant women and infants in the low and
middle income countries (LMIC), where people rely mostly
on cereal-based diets (Diepenbrock and Gore, 2015). Low
levels of micronutrients, including zinc (Zn), iron and pro-
vitamin A, lead to malnutrition-related health impairments
(Cakmak, 2002; Tiwari et al., 2015). According to the World
Health Organization, Zn deficiency affected 17% of the global
population1. Zn micronutrient deficiency, prevalent among
young children in developing countries, is associated with
decreased immune-competence and increased rates of infectious
diseases, which have been reported as an extensive food-
related primary health problem in LMIC (Gibson, 1994; White
and Broadley, 2009). Biofortification is a promising approach
to improve micronutrient malnutrition through breeding and
biotechnology, and enrich the micronutrient in the food by
develop new varieties (Bouis and Saltzman, 2017).

The HarvestPlus project, a CGIAR research program, has been
working to micronutrient malnutrition through bio-fortification
of staple crops (Ortiz-Monasterio et al., 2007). Maize is one
of the target crops of HarvestPlus, and the most important
staple food for millions of people in major developing countries
in sub-Saharan Africa, Latin America, and Asia (Jones and
Thornton, 2003; Beyene et al., 2016). In maize, the baseline
of kernel Zn concentration is about 20 mg/kg, the breeding
target established by HarvestPlus project was 33 mg/kg, assuming
the estimated average requirement of 1,860 µg per day of
Zn in maize (Bouis and Welch, 2010). Therefore, an increase
of at least 13 mg/kg is targeted by breeding. This target is
achievable, due to the significant genetic variation for kernel Zn
concentration exists in tropical maize germplasm, ranging from
4 to 96 mg/kg (Bänziger and Long, 2000; Ortiz-Monasterio et al.,
2007; Prasanna et al., 2011, 2020; Hindu et al., 2018). Enriching
the kernel Zn concentration in maize through bio-fortification
is one of the most effective ways to solve the problem of Zn
deficiency for pregnant women and young children living in the
above-mentioned areas. Dissecting the genetic architecture of
kernel Zn concentration in maize with genome-wide molecular
markers will allow breeders to improve their breeding efficiency
by facilitating the introgression of the related genes into low
Zn germplasm through marker-assisted selection or genomic
selection (GS). Several studies have been conducted to dissect

1www.harvestplus.org

the genetic architecture of kernel Zn concentration in maize
(Qin et al., 2012; Simic et al., 2012; Baxter et al., 2013; Jin
et al., 2013; Hindu et al., 2018). Jin et al. (2013) identified five
significant QTL and ten meta-QTL in 218 F2:3 maize families.
Hindu et al. (2018) detected 20 SNPs significantly associated with
kernel Zn concentration in maize by implementing association
mapping in a collection of 923 inbred lines, and 11 of those SNPs
were validated in 3 DH populations by single marker linkage
mapping analysis.

Genomic selection has been shown to be an effective approach
to accelerate genetic gains in maize breeding (Lorenzana and
Bernardo, 2009; Lian et al., 2014; Zhang et al., 2015, 2017; Cao
et al., 2017). Highly variable prediction accuracy levels have been
reported in plants depending on the training population size, the
relationship between the training and the prediction sets, trait
complexities, marker densities, and genotyping platforms (Zhao
et al., 2012; Bian and Holland, 2017; Norman et al., 2018). Several
studies have shown similar results, i.e., that prediction accuracy
increases as trait heritability, size of training set, and number of
markers in various types of maize populations increase (Heffner
et al., 2009; Hickey et al., 2014; Liu et al., 2018; Norman et al.,
2018). Norman et al. (2018) showed that prediction accuracy
can be improved by broadening the genetic diversity within
the training set, particularly when relatedness between training
and validation sets is low. Genomic prediction analyses were
conducted on a collection of 284 maize inbred lines, which were
genotyped with both 1,148 and 55,000 SNPs. Results indicated
that the prediction accuracies increased as the number of markers
used across all the trait-environment combinations increased
(Crossa et al., 2010; Gonzalez-Camacho et al., 2012).

An economical genotyping platform is always required in
order to make GS more cost-effective. GBS, a next-generation
sequencing technology, is a high-throughput, multiplex and
short-read sequencing approach that reduces genome complexity
via restriction enzymes and generates high-density genome-
wide markers (∼1 million) at a low cost per sample by tagging
randomly shared DNA fragments from different samples with
unique, short DNA sequences (barcodes) and pooling samples
into a single sequencing channel (Elshire et al., 2011; Wu
et al., 2016). Several studies have indicated that GBS is a
promising genotyping platform for GS applications (Poland
et al., 2012; Crossa et al., 2013; Zhang et al., 2015; Yu et al.,
2016). Zhang et al. (2015) showed that GBS outperformed low-
density SNPs for both complex and simple traits evaluated under
stress conditions with low-to-moderate heritability in 19 tropical
maize bi-parental populations evaluated in multi-environment
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trials. Rio et al. (2019) obtained good prediction accuracies for
grain moisture, grain yield, yield index and male flowering in
a collection of 389 dent kernel type maize inbred lines that
were genotyped with GBS and other sequencing technology.
Developing a high-throughput genotyping platform with high
quality, flexibility, and affordable genotyping cost is still critical
for implementing GS routinely in large-scale breeding programs.
rAmpSeq is a simple, robust platform for designing primers,
PCR amplification, and high-throughput multiplex sequencing,
which allows hundreds to thousands of markers to be scored
for less than $5 per sample (Buckler et al., 2016). rAmpSeq is
specifically tailored to GS approaches (Voss-Fels et al., 2019).
However, GS applications that include genotyping the training
and validation sets with rAmpSeq markers have not been
reported until now.

In the present study, an association-mapping panel and two
maize DH populations, genotyped with GBS and rAmpSeq
markers, were used to estimate the genomic prediction
accuracy of kernel Zn concentration in maize. The main
objectives were to: (1) estimate the genomic prediction accuracy
for kernel Zn concentration in different maize populations
using GBS and rAmpSeq markers; (2) compare the genomic
prediction accuracies of kernel Zn concentration within and
across multiple maize populations estimated by the different
genotyping platforms; (3) assess the effect of training population
size (TPS), marker density (MD) and marker quality on
genomic prediction accuracy estimation; and (4) explore training
population development base on the phenotypic variation of
the target trait.

MATERIALS AND METHODS

Plant Materials
An association-mapping panel and two DH populations were
used to perform genomic prediction analyses in the current study.
The association-mapping panel, designated Drought Tolerant
Maize for Africa (DTMA), consists of 300 lowland tropical and
mid-altitude tropical inbred lines. These lines originated from
different CIMMYT maize breeding programs and have abundant
genetic variation.

The two DH populations, designated DH1 and DH2, were
derived from F1 crosses between two inbred lines. DH1 consisted
of 108 lines, and the F1 cross was made between two elite maize
inbred lines of CML503 and CLWN201. DH2 consisted of 143
lines, and the F1 cross was made between two elite maize inbred
lines of CML465 and CML451.

Field Trial and Zn Concentration Analysis
The DTMA panel was planted in Mexico at CIMMYT’s research
stations in Agua Fria, Puebla, Mexico (20◦27′N, 97◦38′W;
110 m above sea level) during winter seasons (November–
May) in the 2012–2013 and 2013–2014, and at the Instituto
Nacional de Investigaciones Forestales, Agricolas y Pecuarias
(INIFAP) station in Celaya, Guanajuato, Mexico (20◦34′N,
100◦49′W; 1,750 m above sea level) during summer season (May–
November) in the 2012 (CE12B). The trials conducted during the
winter season in 2012–2013 at Agua Fria and during the summer
season at Celaya were laid out in a randomized complete block
design with two replications and an alpha lattice design with two
replications was used at Agua Fria in winter 2013–2014.

Two DH populations were planted at the INIFAP station
in Celaya in the 2014 summer season (May–November),
Tlaltizapan, Morelos, Mexico (18◦41′N, 99◦07′W, 940 m above
sea level) in the 2015–2016 winter season (November–May),
and Agua Fria in the 2017–2018 winter season (November–
May). Single replication trials were planted in the Celaya and
Tlaltizapan research stations. In the Agua Fria research station,
the trials were planted using an alpha lattice design with
two replications.

Plot size for all experiments was single row 2.5 m length,
with 75 cm between rows, and 0.23 m between plants in each
row. In each plot, six plants were self-pollinated, hand-harvested
and hand-shelled to avoid any metal contamination, and bulked
kernel samples from each plot were dried and sent for analysis
at the maize nutritional quality analysis laboratory in Mexico.
More details on the analyses of kernel Zn concentration have
been previously described by Hindu et al. (2018).

Phenotypic Data Analysis and Heritability
Estimation
In each of the three populations, least-squares means of
genotypes were calculated across environments through the
“lsmeans” function of the R program, version 5.6.1 (R Core Team,
2019). The least-squares means were proposed to analyze the
data with unequal subclass numbers, and which are predictions
from linear or mixed models (Lenth, 2016). For the locations
with replicated data, mean values across the two replications were
calculated for predictions of least-squares means. A linear mixed
model was fitted to the data as follow:

Yik = µ+ Envi + Genk + εik

where Y ik is the mean performance of a certain genotype, µ is
the overall mean effect, Envi is the effect of ith location, Genk
is the main effect of the kth genotype, εik is the error associated

TABLE 1 | Basic information of three populations of DTMA association mapping panel, and two DH populations (DH1 and DH2), including population size, name of
parents for DH populations, kernel Zn concentration in each population of the values of mean, minimum, maximum, and stand deviation, and heritability (h2), number of
locations and number of replications.

Population Population size Parent 1 Parent 2 Mean (mg/kg) Minimum (mg/kg) Maximum (mg/kg) Stand deviation h2 Loc. Rep.

DTMA 236 27.11 18.35 39.53 3.41 0.84 3 6

DH1 108 CML503 CLWN201 24.59 16.87 36.45 4.01 0.75 3 4

DH2 143 CML465 CML451 25.59 18.38 37.93 3.50 0.62 3 4
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FIGURE 1 | Phenotype distribution of maize kernel Zn conentration of: (A) all the inbred lines across the three population used in the present study; (B) all the inbred
lines in the DTMA panel; (C) all the inbred lines in the DH1 population; (D) all the inbred lines in the DH2 population.

with the ith location and the kth genotype, which is assumed to
be normally and independently distributed, with mean zero and
homoscedastic variance. All factors except genotype were set as
random.

Narrow-sense heritability was estimated as the ratio of additive
genetic variance to total phenotypic variance:

h2
= VA / VP,

where VA was an estimate of the additive genetic variance, and
VP was the total phenotypic variance. The total phenotypic
variance was the sum of VA and Ve, and Ve was an estimate
of the residual variance. The variance components of VA and

Ve were estimated based on the genomic relationship matrix in
the rrBLUP package (Endelman, 2011) of the R program, version
5.6.1 (R Core Team, 2019).

In both the DTMA panel and the two DH populations,
the Pearson correlation coefficients of kernel Zn concentration
between locations were estimated in each population using the R
program version 5.6.1 as well.

Genotyping and Genotypic Data Analysis
For all the lines in each population used in the present study, leaf
samples of each line were collected 3–4 weeks after seeding for
DNA extraction with a CTAB procedure (CIMMYT Laboratory
protocol, 2005). All the lines in the two DH populations and a
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FIGURE 2 | Distribution of MAF and missing rate across all the three populations before and after filtering: (A) MAF distribution of the GBS marker dataset before
filtering; (B) MAF distribution of the GBS marker dataset after filtering; (C) MAF distribution of the rAmpSeq marker dataset before filtering; (D) MAF distribution of the
rAmpSeq marker dataset after filtering; (E) missing rate distribution of the GBS marker dataset before filtering; (F) missing rate distribution of the GBS marker
dataset after filtering.

subset of the DTMA panel of 236 inbred lines were sent to the
Biotechnology Resource Center of Cornell University for both
GBS and rAmpSeq.

A GBS protocol commonly used by the maize research
community was applied in this study (Elshire et al., 2011).
Genomic DNA was digested with the restriction enzyme ApeKI,
and a DNA library was constructed in 96-plex and sequenced
on Illumina HiSeq2000. Details of analyses of SNP calling and
imputation have been previously described (Cao et al., 2017).
Initially, 955,690 SNPs evenly distributed on maize chromosomes
were called for each line; 955,120 of them were assigned to
chromosomes 1–10, and 570 of them could not be anchored to
any of the 10 maize chromosomes.

rAmpSeq is a simple, robust, and cost-effective genotyping
strategy developed by Cornell University for large-scale GS
projects. Details of the rAmpSeq primer pair information have
been described by Buckler et al. (2016). DNA libraries were

constructed in 3072-plex and sequenced on Illumina HiSeq2000,
and each sequence tag was treated as a unique dominant
marker. Initially, 7,595 dominant markers identified from the
intergenic regions were called for in each of the genotyped
samples.

Genomic Prediction Analysis Within Each
Population
Genomic prediction was performed in the rrBLUP package in the
R program version 5.6.1 (Endelman, 2011). The mixed model is
described as:

y = Xβ + Zu + ε

where y is the vector (n × 1) of observations, X is the vector
(n × 1) of individuals and β is the fixed effects, ε is the
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vector (n × 1) of independently random residuals with assumed
distribution N (0, Iσε

2), Z is the design matrix (n × m) for
random effects, and u is the vector of random effects with u ∼ N
(0, Kσu

2), K being an identity matrix in this case (Endelman,
2011; Liu et al., 2018). In addition, n is the number of individuals,
and m is the number of markers.

A fivefold cross-validation scheme was used to generate
the training and validation sets and assess the prediction
accuracy within each population, where the average value of the
correlations between the true breeding value and the genomic
estimated breeding values was defined as genomic prediction
accuracy. In each population, the data were divided into two
subsets, with 80% of the lines randomly selected and assigned
to the training set and the remaining 20% assigned to the
validation set. In total, 150 replications of cross-validation were
performed for each population. In the GBS dataset, TASSEL
version 5.0 (Bradbury et al., 2007) was used to filter the
markers in each of the three populations with a minor allele
frequency (MAF) greater than 0.05 and a missing rate less than
20%. In total, 262,919, 65,430, and 46,426 GBS markers were
selected for further genomic prediction analyses in the DTMA
panel, DH1 population, and DH2 population, respectively. In
the rAmpSeq dataset, markers with an MAF greater than 0.05
were filtered in each of the three populations. In total, 6,150,
3,859, and 2,795 markers were selected for further genomic
prediction analyses in the DTMA panel, DH1 population, and
DH2 population, respectively. In the same population, the
prediction accuracies estimated from the GBS and rAmpSeq
datasets were compared, and a t-test was conducted to obtain
the significance.

FIGURE 3 | Genomic prediction accuracies of kernel Zn concentration in the
DTMA panel, DH1 population, and DH2 population estimated with the GBS
and rAmpSeq marker datasets.

Effect of Training Population Size (TPS),
Marker Density (MD) and Marker Quality
on Genomic Prediction Accuracy
Estimation
To assess the effect of TPS on the estimation of genomic
prediction accuracy, the training population was set from 10 to
90%, with an interval of 10%, in each of the three populations.
The number of markers used for prediction in each population
were same as those used in the cross-validation analyses. In total,
the analysis was repeated 100 times in each population.

To evaluate the effect of MD on the estimation of genomic
prediction accuracy, the number of markers varying from 10
to all markers (i.e., 10, 50, 100, 300, 500, 1,000, 3,000, 5,000,
10,000, 50,000, and all markers) were used for genomic prediction
analyses in each of the three populations. In the GBS datasets,
all markers with an MAF greater than 0.05 and a missing rate
less than 20% were filtered. In the rAmpSeq datasets, all markers
with an MAF greater than 0.05 were filtered. The fivefold cross-
validation scheme was repeated 100 times in each population with
different marker datasets.

To examine the effect of marker quality on the estimation
of genomic prediction accuracy, different levels of MAF and
missing rates were used to filter the marker datasets and control
marker quality. In GBS datasets, markers were filtered with the
combinations between MAF and missing rate in each population;
MAF ranging from 0.10 to 0.40, with an interval of 0.10; missing
rates ranging from 0 to 80%, with an interval of 20%. In rAmpSeq
datasets, markers were filtered with MAF in each population,
and MAF ranging from 0.10 to 0.40, with an interval of 0.10.
The fivefold cross-validation scheme was used to compare the
prediction accuracies estimated from the marker datasets with
different quality levels. In total, the analysis was repeated 150
times in each population.

Training Set Development Based on the
Phenotypic Variation of the Target Trait
Training sets were formed according to the phenotypic variation
information of the target trait. Five scenarios were simulated and
compared in each of the three populations, where the training
set was formed by sampling the same percentage of genotypes
with random selection (Random), with selection from the top
tail (Top), with selection from the bottom tail (Bottom), with
selection from the middle part (Middle), and with selection from
the two tails (Two tails). In each scenario, the validation set was
the whole population, and the training set ranged from 10 to 90%,
with an interval of 20%. In each of the three populations, a total of
25 combinations and comparisons were conducted between the
five scenarios and the five percentage levels of the training set.

Genomic Prediction Analysis Between
Pairwise Populations
Among the three populations, genomic prediction analyses
between pairwise populations were performed, when one
population was used as training set to predict the other
population as validation set, the correlations between the true
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FIGURE 4 | Genomic prediction accuracies of kernel Zn concentration in the DTMA panel, DH1 population, and DH2 population, when the training population size
was set from 10 to 90% of total genotypes, with an interval of 10%. Panel (A) in the DTMA panel estimated with GBS markers; (B) in the DTMA panel estimated with
rAmpSeq markers; (C) in the DH1 population estimated with GBS markers; (D) in the DH1 population estimated with rAmpSeq markers; (E) in the DH2 population
estimated with GBS markers; (F) in the DH2 population estimated with rAmpSeq markers.

breeding value and the genomic estimated breeding values of
the validation set was defined as genomic prediction accuracy.
In the GBS dataset, TASSEL version 5.0 (Bradbury et al., 2007)
was used to filter the markers across the three populations with
a MAF greater than 0.05 and a missing rate less than 20%. In the

rAmpSeq dataset, markers with an MAF greater than 0.05 were
filtered across the three populations. The genomic prediction
analyses between pairwise populations were performed with
137,593 and 6,005 markers selected from the datasets of GBS and
rAmpSeq, respectively.
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FIGURE 5 | Genomic prediction accuracies of kernel Zn concentration in the DTMA panel, DH1 population, and DH2 population, with number of markers varying
from 10 to all markers: (A) in the GBS marker dataset; (B) in the rAmpSeq dataset.

Genomic Prediction Analysis With the
Significantly Associated Markers
Genomic prediction analyses with significantly associated
markers were performed to simulate marker assisted selection
(MAS). In the previous study of Hindu et al. (2018), 20 GBS
SNPs significantly associated with kernel Zn concentration in
maize were identified in a collection of 923 inbred lines, and
the DTMA panel used in the present study is a subset of these
923 inbred lines. In total, 11 of these 20 significantly associated
SNPs were validated in three DH populations, and the two DH
populations used in the present study are a subset of these three
DH populations. A fivefold cross-validation scheme was used to
assess the prediction accuracy of MAS within each population,

when the 11 validated GBS SNPs were selected to perform
genomic prediction. The comparison between GS and MAS was
only applied in the GBS dataset, which is not applied in the
rAmpSeq dataset, because of the lack of information about the
physical position of the rAmpSeq markers.

RESULTS

Phenotypic Variation
Kernel Zn concentration in the all genotypes across the three
populations ranged from 16.87 to 39.53 mg/kg, with an average
value of 26.11 mg/kg (Table 1). The average value of kernel Zn

Frontiers in Plant Science | www.frontiersin.org 8 May 2020 | Volume 11 | Article 534

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00534 May 7, 2020 Time: 15:17 # 9

Guo et al. Genomic Selection of Zinc Content

concentration was 27.11, 24.59, and 25.59 mg/kg in the DTMA
panel, DH1 population, and DH2 population, respectively. The
DTMA panel had the widest range of variation among the three
populations, although the standard deviation within the two
DH populations was similar to or higher than that within the
DTMA panel. In the two DH populations, the greater standard
deviation values indicated the larger genotype-by-environment
interactions in a mixture of replicated and un-replicated trials,
and the lower correlations between locations. In total, 2.87% of
487 inbred lines (i.e., 14 lines) reached 33.00 mg/kg (Figure 1),
the target level of HarvestPlus, through bio-fortification (Bouis
and Welch, 2010). Among the fourteen lines, nine were from
the DTMA panel, four were from DH2, and only one was
from DH1. The estimated narrow-sense heritabilities of the three
populations were moderate to high, and the highest heritability
(0.84) was observed in the DTMA panel, while the lowest
heritability (0.62) was observed in DH2. In each population,
the Pearson correlation coefficients of kernel Zn concentration
between locations were moderate, ranging from 0.43 to 0.62
(details not shown).

Distribution of MAF and Missing Rate
In the GBS dataset across the three populations, the average MAF
was 0.09, with continuous distribution classes from 0 to 0.50 at
intervals of 0.05. Before filtering, 64.80% of the markers had an
MAF < 0.05. In the other intervals (0.05–0.50), the percentages
of markers in each interval were below 10%, ranging from 2.70
to 9.20%. After filtering, average MAF across three population
had a significant increase to 0.23. In the GBS dataset across

the three populations, the average missing rate across all the
markers was 0.29 before filtering, and it decreased to 0.08 after
filtering (Figure 2).

In the rAmpSeq dataset across the three populations, the
average MAF was 0.19 and 35.40% of the total markers had an
MAF < 0.05. In the other intervals (0.05–0.50), the percentages of
markers in each interval ranged from 11.10 to 22.80% (Figure 2).
After filtering, MAF across three population increased to 0.23.

Genomic Prediction Accuracies
Estimated From the Fivefold
Cross-Validation Schemes Within Each
Population
Genomic prediction accuracies estimated from the fivefold cross-
validation schemes for all three populations are shown in
Figure 3, where the prediction accuracies were moderate and
varied across populations and genotyping platforms. Among
the three populations, the lowest prediction accuracy was
observed in the DTMA panel across both the GBS and rAmpSeq
marker datasets. In the same population, the prediction accuracy
estimated from the GBS marker dataset was higher than that
estimated from the rAmpSeq marker dataset, and the difference
was significantly. The prediction accuracies estimated from the
GBS marker dataset were 0.40, 0.64, and 0.65 for the DTMA
panel, DH1 population, and DH2 population, respectively. The
prediction accuracies estimated from the rAmpSeq marker
dataset were 0.35, 0.61, and 0.50 for the DTMA panel, DH1
population, and DH2 population, respectively (Figure 3). In the

TABLE 2 | Genomic prediction accuracies of kernel Zn concentration in the DTMA panel, DH1 population, and DH2 population, estimated from the GBS marker
datasets with different levels of quality filtered with missing rate and MAF.

Missing rate MAF DTMA DH1 DH2

Number of
markers

Prediction
accuracy

Number of
markers

Prediction
accuracy

Number of
markers

Prediction
accuracy

0% 0.10 9656 0.39 14318 0.66 504 0.66

0.20 5681 0.37 12294 0.65 495 0.66

0.30 3314 0.35 6961 0.65 445 0.66

0.40 1570 0.31 4330 0.44 329 0.51

20% 0.10 201258 0.39 64617 0.65 45440 0.66

0.20 129155 0.42 55241 0.65 44080 0.65

0.30 79223 0.42 31658 0.67 39934 0.65

0.40 37999 0.41 19029 0.43 29699 0.57

40% 0.10 252221 0.43 94925 0.66 65411 0.66

0.20 162792 0.43 80983 0.63 62977 0.66

0.30 100366 0.43 47682 0.66 56738 0.67

0.40 48312 0.42 26995 0.46 40970 0.58

60% 0.10 275811 0.42 120842 0.63 80595 0.65

0.20 178326 0.42 103032 0.65 76640 0.66

0.30 109965 0.43 62590 0.64 68022 0.65

0.40 52972 0.43 35050 0.57 48562 0.58

80% 0.10 285127 0.43 137892 0.64 89870 0.67

0.20 184501 0.42 116838 0.64 84845 0.65

0.30 113833 0.41 71836 0.65 74818 0.65

0.40 54893 0.41 39930 0.57 52811 0.56
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same population, the prediction accuracies estimated from the
GBS marker dataset had less variation than those estimated from
the rAmpSeq marker dataset.

Effect of TPS, MD, and Marker Quality on
the Estimation of Genomic Prediction
Accuracy
In both the GBS and rAmpSeq datasets, the prediction accuracy
increased continuously as the TPS increased across all the
populations (Figure 4). In the GBS datasets, the prediction
accuracy increased slightly in both the DTMA panel and the
two DH populations, when the TPS increased from 50 to 90%.
The smallest standard error was observed in prediction accuracy
when 60% of the total genotypes were assigned as the training
set in the DTMA panel. In the two DH populations, the smallest
standard error was observed when 50% of the total genotypes
were assigned as the training set. In the rAmpSeq datasets, a
similar trend was observed in all the three populations, which
indicated that 50–60% of the total genotypes assigned as the
training set can achieve good prediction accuracy.

The effect of marker density on the estimation of prediction
accuracy is presented in Figure 5. In the DTMA panel, the
prediction accuracy continuously increased as the number of
markers increased across both the GBS and rAmpSeq datasets. In
the DH populations, a slight increase was observed in prediction
accuracy when the number of markers increased from 300, the
prediction accuracies nearly reached a plateau at 500 markers in
both the GBS and rAmpSeq datasets. The results indicated that a
larger number of markers is required to obtain higher prediction
accuracy in populations with greater genetic diversity.

The result of prediction accuracies estimated in all the
populations under the different marker datasets filtered with
combinations of MAF and missing rate, or only with MAF, is
presented in Tables 2, 3. This result showed a slight difference
when compared with the prediction accuracies estimated with
an MAF greater than 0.05 and a missing rate less than 20% in
fivefold cross-validation schemes. In the GBS datasets across all
the populations, MAF had a greater effect than the missing rate on

TABLE 3 | Genomic prediction accuracies of kernel Zn concentration in the DTMA
panel, DH1 population, and DH2 population, estimated from the rAmpSeq marker
datasets with different levels of quality filtered with MAF.

Population MAF Number of markers Prediction accuracy

DTMA 0.10 4847 0.35

0.20 2960 0.35

0.30 1731 0.31

0.40 811 0.27

DH1 0.10 3722 0.61

0.20 3098 0.61

0.30 1723 0.62

0.40 1077 0.48

DH2 0.10 2588 0.5

0.20 2392 0.49

0.30 2096 0.52

0.40 1429 0.45

the estimation of prediction accuracy, especially an MAF interval
of 0.40–0.50 in the DH populations. When the MAF interval
was 0.40–0.50, the average prediction accuracy estimated across
all levels of missing rate was 0.40, 0.49, and 0.56 in the DTMA
panel, DH1 population, and DH2 population, respectively, while
the average prediction accuracy estimated across all missing rate
levels in other MAF intervals ranging from 0.00 to 0.40, was
0.41, 0.65, and 0.66 in the DTMA panel, DH1 population, and
DH2 population, respectively. Similar trends were observed in
the rAmpSeq dataset across all the populations, a decreases in the
prediction accuracy was shown in the MAF interval of 0.40–0.50.

Missing rate had a minor effect on the estimation of prediction
accuracy, and a very slight difference in prediction accuracy
was observed among the different levels of missing rate, except
for the DTMA panel with a missing rate of 0%. Across all the
MAF intervals, the average prediction accuracy estimated at the
missing rate level of 0% was 0.36 in the DTMA panel, while the
average prediction accuracy estimated in the DTMA across the
other levels of missing rate was 0.42, with a range of 0.39 to 0.43.

Training Set Development Based on the
Phenotypic Variation of the Target Trait
For all three populations, the result of prediction accuracies
estimated in the 25 combinations between the five scenarios and
the five training set percentages are presented in Figure 6 for
both the GBS and rAmpSeq datasets. Across all five scenarios
and marker datasets, the prediction accuracy increased in all the
populations as the increase of the percentages of training set. For
example, the prediction accuracy estimated with the GBS dataset
in the “Top” scenario was 0.04, 0.29, 0.58, 0.69, and 0.86, when the
training set percentage in the DTMA panel was 10, 30, 50, 70, and
90%. Across all the training set percentages in all the populations,
the “Two tails” scenario outperformed the other four scenarios in
both the GBS and rAmpSeq datasets. For example, the prediction
accuracy in the DTMA panel estimated with the GBS dataset at a
training set percentage of 50% was 0.91, 0.75, 0.55, 0.30, and 0.44
for the Two tails, Random, Top, Middle, and Bottom scenarios,
respectively. Similar trends were also observed in the two DH
populations. These results indicated that developing a training
set with broad phenotypic variation is possible to improve the
prediction accuracy.

Genomic Prediction Accuracies
Estimated From the Pairwise Populations
Genomic prediction accuracies between pairwise populations are
shown in Table 4, where the prediction accuracies were very low
across all the pairwise populations and genotyping platforms. In
the GBS dataset, the average prediction accuracy across the six
pairwise populations was 0.04. The highest prediction accuracy
value was 0.32, when the DTMA panel was used as training set
to predict the DH1 population as validation set. The prediction
accuracies in other five pairwise populations were close to zero.
In the rAmpSeq dataset, the average prediction accuracy across
the six pairwise populations was 0.08. The highest prediction
accuracy value was 0.24, when the DH2 population was used
as training set to predict the DH1 population as validation set.
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FIGURE 6 | Genomic prediction accuracies of kernel Zn concentration in the DTMA panel, DH1 population, and DH2 population, when the training population was
formed by sampling the same percentage of genotypes with random selection (Random), with selection from the bottom tail (Bottom), with selection from the top tail
(Top), with selection from the middle part (Middle), and with selection from the two tails (Two tails). The training population ranged from 10 to 90% of the total
genotypes, with an interval of 20%. Panel (A) in the DTMA panel estimated with GBS markers; (B) in the DTMA panel estimated with rAmpSeq markers; (C) in the
DH1 population estimated with GBS markers; (D) in the DH1 population estimated with rAmpSeq markers; (E) in the DH2 population estimated with GBS markers;
(F) in the DH2 population estimated with rAmpSeq markers.

The second highest prediction accuracy value was 0.19, when
the DTMA panel was used as training set to predict the DH1
population as validation set.

Prediction Accuracy of MAS Estimated
With the Significantly Associated SNPs
Genomic prediction accuracies estimated with the significantly
associated SNPs are shown in Table 5, where GS outperformed
MAS and showed higher genomic prediction accuracies within
each of the three populations. The average prediction accuracy of
MAS in the populations of DTMA, DH1, and DH2 was 0.22, 0.49,
and 0.42, respectively. The average prediction accuracy of GS in

the populations of DTMA, DH1, and DH2 was 0.40, 0.64, and
0.65, respectively (Table 5 and Figure 3).

DISCUSSION

The main advantage of GS over phenotype-based selection is
that it can accelerate the genetic gain per unit time and unit
cost by reducing the selection cycle time and the phenotyping
cost. However, the prediction accuracy must be high enough for
GS to be effective. In the present study, an association-mapping
panel and two maize DH populations genotyped with GBS and
rAmpSeq markers were used to estimate the genomic prediction
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accuracy of kernel Zn concentration in maize. Results indicated
that the prediction accuracies of kernel Zn concentration in
maize were moderate to high and varied across populations
and genotyping platforms. The prediction accuracy of kernel Zn
concentration in the association panel estimated with GBS and
rAmpSeq markers was 0.40 and 0.34, respectively. In the two DH
populations, the prediction accuracies of kernel Zn concentration
estimated with GBS markers ranged from 0.64 to 0.65, while the
prediction accuracies of kernel Zn concentration estimated with
rAmpSeq markers ranged from 0.50 to 0.61.

In the same population, the prediction accuracy estimated
from the GBS marker dataset was higher than that estimated
from the rAmpSeq marker dataset, and the difference was
significantly. Several genomic prediction studies using GBS
markers were implemented successfully in maize to improve
various traits with different levels of genetic complexity, where
the genotyping cost was at least $35 per sample at the 96-
plex level, or $13 per sample at the 384-plex level (Wu et al.,
2016). However, a high-throughput genotyping platform with
affordable genotyping cost is still required for implementing
GS routinely in the large-scale breeding programs. A low-cost
genotyping platform allows GS to be more cost-effective, and
makes it feasible to replace expensive phenotyping with cheaper
genotyping. The total breeding population size increases under
the same budget by phenotyping a lower number of breeding
lines in the training set and genotyping a greater number of
breeding lines in the prediction set. Therefore, the selection
intensity increases to accelerate the genetic gain per unit cost.
rAmpSeq is specifically tailored to GS approaches, with a cost
of $5 per sample. To the best of our knowledge, this is the first
report of a genomic prediction study in maize using rAmpSeq
markers, and the results of this study showed that GS using
rAmpSeq markers is a cost-effective approach to improve the

TABLE 4 | Genomic prediction accuracies between pairwise populations
estimated from the GBS and rAmpSeq marker datasets.

Training set Validation set Prediction accuracy

GBS rAmpSeq

DTMA DH1 0.30 0.19

DH2 −0.12 −0.13

DH1 DTMA 0.05 0.07

DH2 0.05 0.15

DH2 DTMA −0.06 −0.04

DH1 −0.02 0.24

kernel Zn concentration in maize through bio-fortification. GS
using rAmpSeq markers is also being implemented in CIMMYT
maize breeding programs for improving grain yield and kernel
Zn concentration simultaneously. The preliminary cost-benefit
analysis showed that a breeding strategy that implements
phenotype-based selection and GS stepwise could reduce the
breeding cost up to 50% compared with phenotype-based
selection only, equivalent to double the total breeding population
size under the same budget.

Results of this study showed that the prediction accuracies
continuously increased as the TPS increased in all the
populations. Across the two genotyping platforms, relatively
high prediction accuracies with the smallest standard error
were observed in all populations, when 50 to 60% of the total
genotypes were used as a training set. Results of this study
are consistent with previous reports (Crossa et al., 2014; Cao
et al., 2017), where the results also recommend phenotyping
and genotyping as few as half of the genotypes as the training
set to achieve good prediction accuracy of the target trait. In
addition, prediction accuracy could be further improved by
polling multiple populations as the training set to increase the
population size, which will be assessed in further studies.

The transferability of the GS models across populations
was assessed by estimating the prediction accuracies between
pairwise populations, when one population was used as training
set to predict the other population as validation set. The
prediction accuracies were very low across all the pairwise
populations and genotyping platforms, the prediction accuracies
in a few pairwise populations are above or close to 0.20, which
indicates that the genomic prediction accuracies estimated across
populations could be improved furtherly by increasing the TPS
and strengthening the relationship between the training and
prediction sets. The transferability of the GS models across
populations and across years are being tested with a larger dataset
from a maize breeding program, where the TPS is bigger and the
relationship between the training and prediction sets is closer.
The preliminary results are promising, and more details will be
reported in further studies.

How marker density affects prediction accuracy has been
investigated in several previous studies, and the number of
markers required to achieve good prediction accuracy may vary
depending on the extent of linkage disequilibrium between
markers and QTL, population types, and the genetic complexity
of the target trait. In this study, the results showed that
the prediction accuracy of kernel Zn concentration in maize
continuously increased as the number of markers increased
across populations and genotyping platforms. Across the two

TABLE 5 | Comparison the prediction accuracy between GS and MAS estimated from the fivefold cross-validation scheme within each of the three populations, the
prediction accuracies of GS were estimate from the filtered GBS dataset, and the prediction accuracies of MAS were estimate from the significantly associated SNPs.

Population GS MAS

Maximum Minimum Mean Standard deviation Maximum Minimum Mean Standard deviation

DTMA 0.61 0.15 0.40 0.09 0.53 −0.16 0.22 0.12

DH1 0.88 0.31 0.64 0.12 0.82 −0.02 0.49 0.16

DH2 0.85 0.42 0.65 0.09 0.76 0.01 0.42 0.14
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genotyping platforms, the prediction accuracy reached a plateau
at 3,000 markers in the DTMA panel, and at 500 markers in
the two DH populations, which indicated that a larger number
of markers are required to obtain higher genomic prediction in
populations with greater genetic diversity. In the tropical maize
association-mapping panel, the average linkage disequilibrium
decay distance over all 10 chromosomes was less than 5 kb at
r2 = 0.1, and roughly an estimated 500,000 markers are required
to ensure that at least one marker can be in linkage disequilibrium
with trait-associated loci. The DH population has a clear genetic
structure and finite chromosome recombination events (Smith
et al., 2008). Therefore, less than 500 markers are enough to
ensure that at least one marker can be in linkage with each
gene-related locus.

There is a tradeoff between number of markers and marker
quality, because marker quality becomes lower as the number
of markers increase in a specific marker dataset. The number
of markers affecting prediction accuracy has been investigated
in several previous studies, but very few reports have been
conducted to estimate the effect of marker quality on prediction
accuracy estimation. Results of this study show that the
prediction accuracy reached a plateau at 3,000 markers in the
DTMA panel, and at 500 markers in the two DH populations.
It indicated that more markers with lower quality have little effect
on prediction accuracy improvement, and markers with lower
quality could be the noise on improving prediction accuracy.
Moreover, the computational burden increases when a higher
number of markers are used for prediction. Appropriate levels
of MAF and missing rate should be considered and selected to
improve the prediction accuracy and reduce the computational
burden by balancing the number of markers and marker quality.

Several previous studies estimated the genetic diversity of the
training set with molecular markers, and assessed the genetic
diversity of the training set on prediction accuracy improvement
(Dos Santos et al., 2016; Norman et al., 2018). Results of this
study indicated that the genetic diversity of the training set could
be estimated not only with molecular markers, but also with
phenotypic data. Therefore, prediction accuracy can be improved
by developing a training set with broad phenotypic variation.

In the present study, GS outperformed MAS and showed
higher genomic prediction accuracies within each population on
predicting the kernel Zn concentration. These results showed
that kernel Zn concentration in maize could be improved
by implementing GS individually or by implementing MAS
and GS in a stepwise fashion. As we discussed earlier, a
breeding strategy that implements phenotype-based selection
and GS stepwise could reduce the breeding cost up to 50%
compared with phenotype-based selection only, equivalent to
double the total breeding population size under the same budget,
if the breeding target is to improve grain yield and kernel Zn
concentration simultaneously. The long-term genetic gain of how
much GS could provide to improve grain yield and increase
the Zn concentration will be further assessed in CIMMYT
maize breeding programs. Alternative, kernel Zn concentration
in maize could be improved by implementing MAS and GS
in a stepwise fashion, where MAS is implemented as forward
breeding at an early generation on larger numbers of selection

candidates, followed by GS at advanced stages of breeding on
smaller number of selection candidates for further improvement.
The decision of a breeding strategy to implement MAS and GS
stepwise for improving kernel Zn concentration in maize requires
further research.
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