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Nitration of diverse biomolecules, including proteins, lipids and nucleic acid, by
reactive nitrogen species represents one of the key mechanisms mediating nitric
oxide (NO) biological activity across all types of organisms. 8-nitroguanosine 3′5′-
cyclic monophosphate (8-nitro-cGMP) has been described as a unique electrophilic
intermediate involved in intracellular redox signaling. In animal cells, 8-nitro-cGMP is
formed from guanosine-5′-triphosphate by a combined action of reactive nitrogen
(RNS) and oxygen species (ROS) and guanylate cyclase. As demonstrated originally
in animal models, 8-nitro-cGMP shows certain biological activities closely resembling its
analog cGMP; however, its regulatory functions are mediated mainly by its electrophilic
properties and chemical interactions with protein thiols resulting in a novel protein
post-translational modification termed S-guanylation. In Arabidopsis thaliana, 8-nitro-
cGMP was reported to mediate NO-dependent signaling pathways controlling abscisic
acid (ABA)-induced stomatal closure, however, its derivative 8-mercapto-cGMP (8-SH-
cGMP) was later shown as the active component of hydrogen sulfide (H2S)-mediated
guard cell signaling. Here we present a survey of current knowledge on biosynthesis,
metabolism and biological activities of nitrated nucleotides with special attention
to described and proposed functions of 8-nitro-cGMP and its metabolites in plant
physiology and stress responses.

Keywords: nitration, nitric oxide, plant, persulfidation, reactive nitrogen species, reactive oxygen species,
signaling, S-guanylation

INTRODUCTION

Nitric oxide (NO) is a crucial gaseous signaling molecule which plays vital roles in a broad
spectrum of physiological and developmental processes throughout the plant life, including
germination, development of leaves, roots and reproductive organs, stomata movement and plant
senescence (Yu et al., 2014; Astier et al., 2018). NO also participates in signaling pathways of
plant reactions to biotic and abiotic stresses (Corpas and Barroso, 2015; Farnese et al., 2016).
Signaling functions of NO in plants are mediated namely through three key NO-dependent post-
translational modifications (PTM): metal nitrosylation in metalloproteins, S-nitrosation of cysteine
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thiols, and tyrosine nitration (Begara-Morales et al., 2016;
Umbreen et al., 2018). Nitration of proteins, lipids, nucleic acid
and free nucleotides occurs in plants as a part of NO-dependent
signaling pathways within redox regulations and during plant
responses to diverse environmental stress stimuli (reviewed in
Arasimowicz-Jelonek and Floryszak-Wieczorek, 2019). Here we
present a concise overview of current knowledge on formation,
metabolism and biological activities of nitrated nucleotides with
special attention to described and proposed functions of 8-nitro-
cGMP and its metabolites in plants.

FORMATION OF NITRATED
NUCLEOTIDES

The possibility of covalent modification of nucleotides and
related compounds has been studied since the early years of NO
research in animals. 8-Nitroguanine was reported to originate in
a dose-dependent manner from a rapid reaction of peroxynitrite
with free guanine nucleotide (Yermilov et al., 1995a) as well
with guanine in calf thymus and epidermal keratinocytes DNA
in vitro (Yermilov et al., 1995b; Spencer et al., 1996). In vivo
formation of 8-nitroguanine and related nitrated derivatives was
reported in livers of hamsters after infection with Opisthorchis
viverrini (Pinlaor et al., 2003) and in human gastric mucosa
upon H. pylori infection (Ma et al., 2004). Guanosine can be
also readily nitrated by reactive nitrogen species in vitro (Niles
et al., 2001; Sodum and Fiala, 2001). 8-Nitroguanosine formation
occurred in RNA of peroxynitrite-treated human lung carcinoma
cells (Masuda et al., 2002), whereas its production in mice cells
during viral pneumonia was found to proceed via inducible NO
synthase (iNOS)-dependent NO overproduction (Akaike et al.,
2003). In vitro, 8-nitropurine can be converted by a nucleophilic
action of peroxynitrite to 8-oxopurine and this compound can be
further oxidized by peroxynitrite to uric acid and its oxidation
products (Lee et al., 2002).

As an important breakthrough, the formation of 8-nitro-
cGMP, a nitrated cyclic nucleotide, was discovered in mouse
macrophages with an active expression of iNOS. Importantly,
8-nitro-cGMP was found to possess the strongest redox-active
and electrophilic properties among studied nitrated guanine
derivatives (Sawa et al., 2007). Furthermore, 8-nitro-cGMP shows
unique dual signaling functions, derived from its structural
similarity to cGMP (i.e., activation of cGMP-dependent protein
kinases) and its electrophilic properties due to the reactive
nitro group (i.e., reactivity toward reduced thiols). In vivo, the
formation of 8-nitro-cGMP does not proceed by the nitration
of cGMP. 8-Nitro-cGMP is synthesized via the nitration of
abundant GTP and subsequent action of guanylate cyclase on 8-
nitroGTP to produce 8-nitro-cGMP (Fujii et al., 2010; Kunieda
et al., 2015). Moreover, higher levels of 8-nitro-cGMP (≥40 µM)
compared to cGMP levels (4.6 µM) were detected, uncovering
8-nitro-cGMP as the major intracellular cyclic nucleotide. After
myocardial infarction, the 8-nitro-cGMP formation did not
occur in mouse hearts deficient in iNOS, confirming the
essential role of iNOS-derived NO for 8-nitro-cGMP formation
(Nishida et al., 2012). Superoxide produced in mitochondria

was identified as a determinant of 8-nitro-cGMP synthesis,
whereas peroxynitrite as the molecular species involved in the
reaction mechanism of guanine nitration; however, nitrite with
H2O2 and myeloperoxidase can also nitrate guanine nucleotides
in particular cellular environments (Ahmed et al., 2012). In
LPS-treated rat glioma cells, the direct conversion of cGMP
to 8-nitro-cGMP appeared unlikely, as the intracellular cGMP
concentrations were one order of magnitude lower than 8-nitro-
cGMP and inhibitors of soluble guanylate cyclase suppressed
intracellular 8-nitro-cGMP generation.

METABOLISM OF NITRATED
NUCLEOTIDES

In contrast to cGMP, 8-nitro-cGMP is not degraded by the
hydrolytic activity of phosphodiesterases (Sawa et al., 2013).
The relative stability in the cellular environment presents
a well-documented chemical feature of 8-nitro-cGMP, which
enables to maintain its signaling functions. 8-nitro-cGMP shows
electrophilicity much lower than other cellular electrophiles like
unsaturated aldehydes and fatty acids, or nitroalkenes originating
from lipid nitration. Consequently, the reaction rate of 8-
nitro-cGMP and GSH thiol group is 20–10,000 times slower
compared to these electrophiles (Sawa et al., 2010). Due to
its relative chemical stability, 8-nitro-cGMP is expected to
occur at noticeable concentrations even under high levels of
reduced GSH. Moreover, several tested isoforms of glutathione
transferases did not show any catalytical action to accelerate 8-
nitro-cGMP degradation via its conjugation with GSH (Akaike
et al., 2013). Nevertheless, it should be noted that 8-nitro-
cGMP was unstable in degassed neutral phosphate buffer upon
irradiation with the blue light (400 ± 16 nm) and decomposed
to 8-nitrosoguanine and an open form of ribonolactone, with a
half-life of 67.4 ± 1.8 min (Samanta et al., 2014). However, the
biological relevance of light-driven 8-nitro-cGMP decomposition
has not been so far addressed in vivo.

Metabolic fate of 8-nitro-cGMP in cell culture was assayed
using stable 18O-labeled compound and LC-MS analysis.
A novel nucleotide derivative, 8-amino-cGMP, was identified
together with the S-guanylation products of 8-nitro-cGMP
reaction with glutathione or cysteine (Saito et al., 2012).
Immunochemical study based on prepared 8-amino-cGMP
antibodies corroborated that the catabolism of 8-nitro-cGMP in
LPS-triggered mouse macrophages proceeds to the formation
of 8-amino-cGMP. Surprisingly, isotope-labeled 8-amino-cGMP
was further converted to unmodified cGMP, suggesting oxidative
modifications like guanine nitration and reducing pathways
such as cGMP production would operate simultaneously during
oxidative stress.

Hydrogen sulfide (H2S) belongs to reactive sulfur species with
recognized signaling role across a wide range of organisms. In
animals, H2S biosynthesis is controlled by two crucial enzymes:
cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE).
Knockdown of CBS and CSE resulted in elevated 8-nitro-cGMP
concentrations, indicating that its activity might be regulated
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by sulfur species (Nishida et al., 2012). 8-mercapto-cGMP (8-
SH-cGMP) was discovered by LC-MS analysis as a plausible
product of S-guanylation reaction of 8-nitro-cGMP with H2S
in mammalian cells. Treatment of 8-SH-cGMP in vitro with
H2O2 or RNS provided intact cGMP. Thus inside cells, both 8-
SH-cGMP and 8-amino-cGMP can be transformed into cGMP.
However, the role of H2S in the formation of 8-SH-cGMP was
later put to the question because of the in vitro reaction of
8-nitro-cGMP with the sulfide anion generates mainly 8-amino-
cGMP (Terzič et al., 2014). Thus, endogenous H2S might act
as a reductant in the transformation of 8-nitro-cGMP to 8-
amino-cGMP; however, key roles of reactive hydropersulfides
and related polysulfides in redox signaling and modifications
of protein cysteines have been currently recognized (Akaike
et al., 2017; Fukuto et al., 2018). In mice, hydropersulfides
mitigated chronic heart failure after myocardial infarction, and
this cardioprotective effect was mediated by repression of H-Ras
pathway triggered by electrophilic action of 8-nitro-cGMP as a
redox messenger for NO and ROS signaling. Hydropersulfide was
shown to effectively thiolate cellular electrophiles, represented
by 8-nitro-cGMP, indicating that electrophile thiolation can be
considered a singular mechanism within ROS signaling and
regulation of intracellular redox environment (Akaike et al.,
2013). Later investigations revealed that CBS and CSE produce
persulfide species showing higher nucleophilicity compared to
H2S. Persulfides of cysteine and glutathione are namely produced
and react with 8-nitro-cGMP to substitution products, which are
then converted to 8-SH-cGMP by a thiol-disulfide exchange (Ida
et al., 2014). The biological relevance of 8-SH-cGMP is indicated
by the fact that it was recognized as the most abundant cGMP
derivative in several mouse organs (Ida et al., 2014). Certainly,
elucidation of redox signaling mechanisms of reactive persulfides
counting low-molecular thiols and proteins together with protein
S-guanylation opens a new era of redox biology, physiology,
and pathophysiology (Kasamatsu et al., 2016), which awaits its
investigation and recognition in plant sciences.

BIOLOGICAL ACTIVITIES OF NITRATED
NUCLEOTIDES

In early studies, nitrated derivatives of guanine or guanosine were
considered rather as markers of nitrosative damage occurring in
cells under stress conditions. Important redox-active features of
8-nitroguanosine, including generation of superoxide catalyzed
by NADPH-cytochrome P450 reductase and NOS isoenzymes,
were reported (Sawa et al., 2003). Soon after, 8-nitroguanosine
was demonstrated to induce mutagenesis in animal cell culture
(Yoshitake et al., 2004). Increased production of ROS and RNS
was implicated in the development of lung cancer mediated
by nitrosative and oxidative DNA modifications. Nitrosative
stress associated with 8-nitroguanine generation results in lung
epithelial injury in idiopathic pulmonary fibrosis (Terasaki
et al., 2006). Oxidized and nitrated guanine derivatives were
detected in cell cultures, tissues and organs from humans
with degenerative diseases, cancer, viral pneumonia and other
inflammatory conditions (Ohshima et al., 2006).

Later experiments evidenced biological activities and signaling
functions of 8-nitro-cGMP were in major extent mediated by a
PTM of protein thiols termed S-guanylation (Ihara et al., 2011;
Nishida et al., 2016). Mechanisms of regulation of S-guanylation
as protein PTM are actually not fully understood. It needs
clarification if intracellular levels and distribution of NO and ROS
may explain the observed site- and time-specific modulations
of S-guanylation. S-guanylation, proceeding by a nucleophilic
attack of the nitro group on protein cysteines, is considered
an irreversible thiol modification. It is noteworthy that a
similar replacement of the nitro group with thiol had not been
reported previously. The reactivity of each cysteine residue
varies considerably depending on its surrounding chemical and
steric environment. The values of cysteines pKa in the target
protein are affected by neighboring amino acid residues. Cysteine
residues with lower pKa dissociate to sulfur anions that show
higher reactivity with 8-nitro-cGMP. Basal levels of protein
S-guanylation occurring in physiological conditions are elevated
by inflammatory conditions. Due to the presence of numerous
reactive cysteine residues, guanylation of protein Keap1 (Kelch-
like ECH-associated1) was observed to occur even under a high
excess of reduced glutathione (Sawa et al., 2007).

The discovery of new S-guanylated proteins provided
further hints to biological roles of 8-nitro-cGMP. Protocols
for S-guanylation proteomics have been developed and used
to analyse the regulatory roles of protein S-guanylation in
mitochondrial ROS export in animal cells stimulated with LPS
or cytokines (Rahaman et al., 2014). S-guanylation of two key
cysteine residues, Cys160 and Cys257, in heat-shock protein 60
controls the opening of mitochondrial permeability transition
pore and export of mitochondrial ROS into the cytosol. In
mice, increased levels of 8-nitro-cGMP following myocardial
infarction suggested its role in the pathogenesis of heart failure
(Nishida et al., 2012). In this experimental model, 8-nitro-
cGMP acts as a physiological ligand activating H-Ras protein,
when S-guanylation at Cys184 drives H-Ras translocation to
non-raft membrane domains and activation of its downstream
signaling pathways.

Hepatocyte growth factor ameliorated high glucose-induced
oxidative stress in rat mesangial cells by elevated NO-
dependent 8-nitro-cGMP production (Guoguo et al., 2012). 1-
nitro-2-phenylethane restricted taurocholate-induced cell death
in pancreatic cells by increasing 8-nitro-cGMP production
mediated by the sGC (Cosker et al., 2014). 8-nitro-cGMP
also showed significant cytoprotective capacity in dopaminergic
neurons by S-guanylation leading to induction of hem oxygenase
1 (HO-1) (Kurauchi et al., 2013; Kasamatsu et al., 2014). Similarly,
HO-1 activated by NO-dependent 8-nitro-cGMP production
participates in macrophage defense to Salmonella infection (Zaki
et al., 2009). In studies of the Alzheimer disease, 8-nitro-
cGMP guanylated cysteine residues in two tau proteins, which
eliminated their capacity to form tau aggregates (Yoshitake
et al., 2016). Cell exposure to the exogenous electrophile
methylmercury, which triggers NO and ROS signaling, elevated
intracellular 8-nitro-cGMP, depleted reactive persulfides and
8-SH-cGMP, increased S-guanylation and activation of H-Ras
leading to damaged cerebellar neurons (Ihara et al., 2017).
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8-nitro-cGMP was found to S-guanylate thiol groups of
cGMP-dependent protein kinases (PKG), the primary sensor
proteins of intracellular cGMP known to control an array of
cellular reactions (Ahmed et al., 2017). S-guanylation of PKG
occurs specifically at two susceptible residues Cys42 and Cys195
among 11 cysteine residues of PKG. Notably, S-guanylation
of Cys195, positioned in the cGMP binding domain, results
in an enduring activation of the enzyme activity. In mice,
S-guanylation of PKG was observed without any treatment
and was strongly increased by LPS treatment (Akashi et al.,
2016). It was suggested that degradation of S-guanylated proteins
might proceed by autophagy (Taguchi et al., 2012). Interestingly,
induction of autophagy was revealed as another important
function of 8-nitro-cGMP in animals (Ito et al., 2013; Rawet-
Slobodkin and Elazar, 2013; Abada and Elazar, 2014). Autophagy
can efficiently function as an innate defense to pathogen infection
(Nakagawa et al., 2004; Mizushima and Komatsu, 2011). 8-
nitro-cGMP supported autophagic elimination of infecting group
A Streptococci in mice macrophages, where autophagosome-
encapsulated pathogens showed higher S-guanylation compared
to pathogens in the cytosol, indicating S-guanylation might be
exploited to tag bacteria or disease-related fragments and cellular
debris for autophagic removal (Ito et al., 2013; Takahashi et al.,
2019). Inversely, bacteria are capable to interfere with autophagy-
mediated pathogen clearance via production and release of
reactive persulfides which inhibit autophagy signaling by the
degradation of 8-nitro-cGMP in host cells (Khan et al., 2018).

BIOLOGICAL FUNCTIONS IN PLANTS

The currently accumulated evidence has unraveled roles of cyclic
nucleotides including cGMP in multiple plant physiological
processes, including plant growth and development from
germination to flowering (Lemtiri-Chlieh et al., 2011; Gehring
and Turek, 2017). Compared to animals, the reaction pathways
and signaling function of cGMP are not completely described
and no homologs of animal cGMP-producing enzymes have
been identified in higher plants; however, NO-dependent
cGMP pathway participates in multiple signaling mechanisms
in plants, namely in the regulation of stomata opening and
defense response to pathogenic challenge (Gross and Durner,
2016). However, the molecular mechanisms of cGMP signal
transduction to cellular effectors, including cGMP-dependent
kinases G, are still poorly characterized (Świeżawska et al.,
2018). Recent reports described the identification of cGMP-
dependent protein kinase with a role in mediating gibberellin
responses in rice (Shen et al., 2019) and a plant cGMP-
activated phosphodiesterase involved in the UVA-induced cGMP
degradation in Arabidopsis stomata (Isner et al., 2019). Signaling
pathways involved in the regulation of stomatal movements by
external stimuli and phytohormones comprise, beside cGMP,
diverse components like NO, ROS, cytosolic pH, calcium
ions and phospholipids (Daszkowska-Golec and Szarejko, 2013;
Gayatri et al., 2013; Agurla et al., 2014; Agurla and Raghavendra,
2016). Moreover, protein PTMs by phosphorylation and
redox modifications have key functions in the regulation of

stomatal movement. These modifications control molecular
components of signal perception, second messenger production
and downstream events within guard cell signaling (Balmant
et al., 2016). NO fulfils crucial functions in modulation of
stomatal movement, namely in abscisic acid-induced stomatal
closure. NO is involved in stomatal closure induced by H2S,
polyamines and methyl jasmonate (Sun et al., 2019) as well as
microbe-associate molecular patterns (Ye and Murata, 2016).
Interactions and cross-talk of the signaling pathway of NO
and H2S are quite complex and both gasotransmitters regulate
stomatal movement independently or in united action, in ABA-
dependent signaling cascades or ABA-independent mechanisms
(Scuffi et al., 2016).

Intriguing observations that cGMP was needed but not
sufficient for stomatal closure induced by ABA were in
agreement with experiments using Arabidopsis mutants in
cGMP-dependent calcium channels which were not impaired in
ABA-triggered stomatal closure (Dubovskaya et al., 2011; Wang
et al., 2013). Later, the occurrence and functional implications
of 8-nitro-cGMP in Arabidopsis stomatal guard cells were
discovered (Joudoi et al., 2013). cGMP and 8-nitro-cGMP appear
to show contrasting impact on stomata function: 8-nitro-cGMP
induced stomatal closure in the light, whereas 8-Br-cGMP, an
extensively utilized cGMP analog, did not. On the contrary, 8-
Br-cGMP but not cGMP induced stomata opening in the dark. 8-
nitro-cGMP signaling is mediated by modulation of Ca2+, cyclic
adenosine-5′-diphosphate ribose, and the SLAC1 (SLOW ANION
CHANNEL1) channels. Increased levels of RNS, produced by
ROS and NO reactions, resulted in 8-nitro-cGMP production
triggering increased levels of cytosolic Ca2+ which activated
the SLAC1 anion channels to promote stomata closure. In the
following study, the 8-nitro-cGMP metabolite 8-SH-cGMP was
also observed to induce closure of stomata pores (Honda et al.,
2015). Nevertheless, the participation of protein S-guanylation in
8-SH-cGMP signaling was not evidenced (Figure 1).

It can be expected that similar to animal models (Sawa et al.,
2007), 8-nitro-cGMP retains the capacity to activate plant cGMP-
dependent protein kinases. In animal cells, intracellular 8-nitro-
cGMP levels are supposed to be comparable or higher than
cGMP levels during infection or inflammatory conditions (Fujii
et al., 2010; Kunieda et al., 2015). Therefore, the role of 8-nitro-
cGMP and its metabolites 8-amino-cGMP and 8-SH-cGMP as
PKs activators in plant physiology and stress responses requires
further investigation.

In plants, autophagy mediates selective destruction of viruses
as well limits infection by bacterial and filamentous pathogens.
Emerging evidence indicates that autophagy is a key regulator
of plant innate immunity and contributes with both pro-death
and pro-survival functions to antimicrobial defenses, depending
on the pathogenic lifestyle (Hofius et al., 2017; Leary et al.,
2019). The role of H2S in regulating plant autophagy has
been recently demonstrated (Gotor et al., 2013; Laureano-
Marín et al., 2016). Sulfide, but no other molecules such
as sulfur-containing molecules or ammonium, was able to
inhibit autophagy machinery induced in A. thaliana roots under
nitrogen deprivation via a redox-independent mechanism. H2S-
mediated signaling in autophagy has been suggested to be
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FIGURE 1 | Overview of 8-Nitro-cGMP reaction pathways in stomata signaling. In the light, external stimuli like ABA induce in stomata guard cells increased NO
synthesis as well as activation of ROS production by membrane NADPH oxidase. ROS react with NO to form RNS which can nitrate GTP to 8-nitro-GTP which is
then converted to 8-nitro-cGMP, possibly by action of sGC. 8-Nitro-cGMP, and/or 8-SH-cGMP formed by its reaction with reactive persulfides, trigger elevated
cytoplasmic Ca2+ levels and subsequently activation of slow anion channels leading to stomatal closure. In the dark, other plant hormones, including cytokinins and
auxin, decreases both NO and ROS levels resulting in increased cGMP and stomatal opening. ABA, abscisic acid; cGMP, 3′,5′-cyclic guanosine monophosphate;
GTP, guanosine triphosphate; MeJa, methyl jasmonate; PA, polyamines; RBOH, NADPH oxidase; RNS, reactive nitrogen species; ROS, reactive oxygen species;
RS(S)nH, persulfides; sGC, soluble guanylate cyclase; SLAC, slow anion channels.

mediated by post-translational modifications of the enzymes
involved in the ubiquitinylation process or of other proteins
involved in the initiation and completion of the autophagosome.
The action of H2S may include protein S-persulfidation at the
reactive cysteine residue(s) of the target proteins. Polyamine
spermine was reported to induce autophagy in plants, mediated
by increased generation of ROS and NO required for effective
triggering of autophagy (Dmitrieva et al., 2018). Combined effects
of NO and ROS is required for autophagy and necrotic HR cell
death induced by Alternaria alternata toxin in tobacco BY-2 cells
(Sadhu et al., 2019). In Arabidopsis, glycolate oxidase activity is
induced by avirulent Pst DC3000 AvrRpm1 and this response is
suppressed by a synergic action of NO and cGMP. The enzyme
activity in vitro was inhibited by combined treatment with cGMP
and NO donor, but it is not known if this effect was mediated
by 8-nitro-cGMP (Donaldson et al., 2016). Given the widely
demonstrated role of 8-nitro-cGMP in autophagy processes in
animals, this deserves further investigations on plant cells and
components both in vitro and in vivo.

FUTURE PERSPECTIVES

To date, only two scientific reports investigated the functions
of 8-nitro-cGMP and 8-SH-GMP in plant cell signaling and

regulation. Further progress in this field may be hampered by
several experimental obstacles: the pure chemical standards
of described compounds are not commercially available,
their synthesis requires dubious purification and analytical
techniques requires mass-spectrometry instrumentation.
A reporter system has been developed for specific and sensitive
detection of cyclic nucleotides including cGMP in bacteria
and plants; however, if this system shows response also to
cGMP derivatives has not been tested (Wheeler et al., 2013). It
should be also considered that available commercial antibodies
might lack required specificity, i.e., to show affinity to 8-
nitroguanine and 8-nitroguanosine but also 8-nitroxanthine
(Sawa et al., 2006). Furthermore, very limited information exists
on how and in what extent S-guanylation might function as
protein PTM in plant cells. As discussed above, it requires
further investigations to clarify if cysteine pKa may control
the required specificity of S-guanylation targets in cellular
signaling and autophagy; thus, the nature of putative enzymes
that might catalyze S-guanylation continues an essential
point for the advances in this research area both in plants
and animals. Moreover, a combined application of available
transcriptomic, proteomic and metabolomics tools to plant
cells treated with 8-nitro-cGMO and its metabolites can
provide new insights in their role in NO- and ROS-dependent
plant signaling.
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