
fpls-11-00617 June 8, 2020 Time: 20:20 # 1

ORIGINAL RESEARCH
published: 10 June 2020

doi: 10.3389/fpls.2020.00617

Edited by:
Tony Pridmore,

University of Nottingham,
United Kingdom

Reviewed by:
Dong Xu,

University of Missouri, United States
Alexei E. Solovchenko,

Lomonosov Moscow State University,
Russia

*Correspondence:
Chenglong Huang

hcl@mail.hzau.edu.cn
Jing Xie

xiejing625@mail.hzau.edu.cn

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Technical Advances in Plant Science,
a section of the journal

Frontiers in Plant Science

Received: 07 August 2019
Accepted: 22 April 2020

Published: 10 June 2020

Citation:
Zhang J, Zhao B, Yang C, Shi Y,
Liao Q, Zhou G, Wang C, Xie T,

Jiang Z, Zhang D, Yang W, Huang C
and Xie J (2020) Rapeseed Stand

Count Estimation at Leaf
Development Stages With UAV

Imagery and Convolutional Neural
Networks. Front. Plant Sci. 11:617.

doi: 10.3389/fpls.2020.00617

Rapeseed Stand Count Estimation at
Leaf Development Stages With UAV
Imagery and Convolutional Neural
Networks
Jian Zhang1,2†, Biquan Zhao1,2†, Chenghai Yang3, Yeyin Shi4, Qingxi Liao5,
Guangsheng Zhou6, Chufeng Wang1,2, Tianjin Xie1,2, Zhao Jiang1,2, Dongyan Zhang7,
Wanneng Yang6, Chenglong Huang5* and Jing Xie8*

1 Macro Agriculture Research Institute, College of Resource and Environment, Huazhong Agricultural University, Wuhan,
China, 2 Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture,
Wuhan, China, 3 Aerial Application Technology Research Unit, USDA-Agricultural Research Service, College Station, TX,
United States, 4 Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, NE, United States,
5 College of Engineering, Huazhong Agricultural University, Wuhan, China, 6 College of Plant Science and Technology,
Huazhong Agricultural University, Wuhan, China, 7 Anhui Engineering Laboratory of Agro-Ecological Big Data, Anhui
University, Hefei, China, 8 College of Science, Huazhong Agricultural University, Wuhan, China

Rapeseed is an important oil crop in China. Timely estimation of rapeseed stand count
at early growth stages provides useful information for precision fertilization, irrigation,
and yield prediction. Based on the nature of rapeseed, the number of tillering leaves
is strongly related to its growth stages. However, no field study has been reported on
estimating rapeseed stand count by the number of leaves recognized with convolutional
neural networks (CNNs) in unmanned aerial vehicle (UAV) imagery. The objectives of
this study were to provide a case for rapeseed stand counting with reference to the
existing knowledge of the number of leaves per plant and to determine the optimal
timing for counting after rapeseed emergence at leaf development stages with one to
seven leaves. A CNN model was developed to recognize leaves in UAV-based imagery,
and rapeseed stand count was estimated with the number of recognized leaves. The
performance of leaf detection was compared using sample sizes of 16, 24, 32, 40, and
48 pixels. Leaf overcounting occurred when a leaf was much bigger than others as
this bigger leaf was recognized as several smaller leaves. Results showed CNN-based
leaf count achieved the best performance at the four- to six-leaf stage with F-scores
greater than 90% after calibration with overcounting rate. On average, 806 out of 812
plants were correctly estimated on 53 days after planting (DAP) at the four- to six-
leaf stage, which was considered as the optimal observation timing. For the 32-pixel
patch size, root mean square error (RMSE) was 9 plants with relative RMSE (rRMSE)
of 2.22% on 53 DAP, while the mean RMSE was 12 with mean rRMSE of 2.89% for
all patch sizes. A sample size of 32 pixels was suggested to be optimal accounting for
balancing performance and efficiency. The results of this study confirmed that it was
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feasible to estimate rapeseed stand count in field automatically, rapidly, and accurately.
This study provided a special perspective in phenotyping and cultivation management
for estimating seedling count for crops that have recognizable leaves at their early growth
stage, such as soybean and potato.

Keywords: stand counting, field-based phenotyping, optimal observation timing, convolutional neural network,
precision agriculture

INTRODUCTION

Next to soybean and oil palm, rapeseed (Brassica napus L.) is the
third largest oil crop worldwide (Wang et al., 2010; Berrocoso
et al., 2015; Bouchet et al., 2016). Statistical data from the Food
and Agriculture Organization of the United Nations have shown
that the world production of rapeseed in 2016 was more than
68 million tons, mainly from Canada (19.5 million tons), China
(13.1 million tons), and India (6.8 million tons)1. Increasing
rapeseed yield is a major focus for rapeseed researchers and
cultivators (Godfray et al., 2010). The crop stand count at early
growth stages is one of the most important parameters for the
prediction of yield, density, and growth status (Jin et al., 2017;
Liu S. et al., 2017; Zhao et al., 2018). Rapeseed leaf development
in early growth stages includes cotyledons completely unfolded,
first leaf unfolded, two leaves unfolded, three leaves unfolded,
until nine, or more leaves unfolded (Weber and Bleiholder, 1990;
Lancashire et al., 1991). Overlapping is intense throughout the
entire leaf development stage. Moreover, small and irregular
spacing makes rapeseed seedlings clustered. As a result, it is
hard to detect and count each individual rapeseed seedling (Zhao
et al., 2018). The traditional way of counting rapeseed seedlings at
early growth stages is based on ground-level investigation which
is labor-intensive and time-consuming (Jin et al., 2017; Liu T.
et al., 2017; Naito et al., 2017). Since rapeseed seedlings are in
small plant size, irregular spacing and complex overlapping at
their early growth stages, timing of rapeseed seedling counting
by field investigation depends on empiricism. Accordingly, the
obtained records and data are subjective (Bucksch et al., 2014;
Deng et al., 2018). The most serious problem is that ground-
level investigation is destructive to the field crops (Jin et al.,
2017; Liu S. et al., 2017; Deng et al., 2018). In addition,
manual investigation brings more external factors into the plant
growth environment, resulting in artificial error (Zhao et al.,
2018). Therefore, an objective, precise, and automated rapeseed
stand counting method will benefit researchers and producers
(Araus and Cairns, 2014).

In recent years, plant scientists worldwide have shown great
interest in phenotyping since this technology will bring a
brand new perspective for agricultural planting and breeding
(Furbank and Tester, 2011; Yang et al., 2014; Naito et al.,
2017). Phenotyping provides a new tool to reveal phenotype

Abbreviations: CNN, convolutional neural network; DAP, day after planting;
GCP, ground control point; GPS, global positioning system; LOOCV, leave-one-
out crossing validation; MAE, mean absolute error; RF, random forest; RMSE, root
mean square error; rRMSE, relative root mean square error; SVM, support vector
machine; UAV, unmanned aerial vehicle; UGV, unmanned ground vehicle.
1www.fao.org/home/en/

traits determined by environmental and genetic factors (White
et al., 2012; McCouch et al., 2013; Ghanem et al., 2015) and to
estimate the growth status of plants and crops (Sadras et al., 2013;
Maimaitijiang et al., 2017; Yang et al., 2017). Remote sensing
technology provides an efficient means for crop phenotype data
collection (Verger et al., 2014; Shi et al., 2016; Yu et al., 2016;
Wendel and Underwood, 2017), which can record phenotyping
traits, such as plant height, canopy temperature, architecture,
stress, and color (Walter et al., 2012; Rahaman et al., 2015;
Mir et al., 2019). In particular, UAVs draw much attention due
to their unique advantages, such as noninvasive observation
at low altitude, high resolution, frequent data collection, and
deployment flexibility (Zhang and Kovacs, 2012; Ballesteros
et al., 2014; Huang et al., 2016). Accordingly, UAVs are used
as a platform to collect data and estimate vegetation growth
parameters including biomass (Bendig et al., 2014), leaf area
index (Córcoles et al., 2013), height (Van Iersel et al., 2018),
yield (Geipel et al., 2014), canopy cover, and structure (Cunliffe
et al., 2016). Overall, as a powerful and reliable platform, UAVs
have shown their advantages to be used to collect crop data
for phenotyping.

In studies of crop stand counting, Gnädinger and
Schmidhalter (2017) found maize plant numbers had a strong
correlation (R2 = 0.89) with the enhanced color digital counts
using UAV imagery. Jin et al. (2017) extracted 13 object features
containing color and texture from UAV images and further
employed SVM for wheat classification, counting, and density
estimation. Their results indicated that wheat density can be
estimated when wheat plants had one to two leaves (Jin et al.,
2017). Besides, field imagery for crop stand counting has been
applied in some other crops such as corn (Shi et al., 2013; Varela
et al., 2018), potato (Zheng et al., 2016; Sankaran et al., 2017), and
cotton (Chen et al., 2018) with various remote sensing platforms.
However, in most previous studies of crop stand counting, data
were derived only from one observation at a certain day during
the growth stages, and to our knowledge, there has been little
research with data from multiple observations for rapeseed.

Object identification, classification, and counting are major
tasks in image analysis (Davies, 2009; Blaschke, 2010; Ma
et al., 2017; Zanotta et al., 2018). Several approaches have
been developed for fast image processing and classification
(Schowengerdt, 2012), including SVM, RF. These approaches
are developed from using individual spectral, spatial, or textural
information to integrating all the information (Linker et al.,
2012). Gnädinger and Schmidhalter (2017) used regression
analysis to find the correlation between maize plant number
and green digital pixel counts based on spectral information.
Jin et al. (2017) employed SVM model to classify wheat and to
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estimate seedling count and density by using spectral and textural
features. These approaches can be used for counting trees (Gomes
et al., 2018), fruits (Qureshi et al., 2017), and flowers based on
satellite remote sensing imagery or UGV/UAV remote sensing
imagery. Nevertheless, these regular non-automatic approaches
required manual extraction of distinct features, which was time-
consuming for a multi-observation study.

Convolutional neural networks have drawn wide attention
due to their automated processing and good performance in
image analysis (Lee et al., 2017; Pound et al., 2017; Sindagi
and Patel, 2017). The CNN application for object detection
and counting has been reported in previous studies, such as
crowd detection and counting in public events (Sheng et al.,
2016; Zhang et al., 2015, 2016) and animal detection and
counting in the wild (Arteta et al., 2016). CNN approach
is also reported to be applied for classification, detection,
and counting for seeds, fruits, flowers, crops, and leaves in
agriculture (Grinblat et al., 2016; Ramos et al., 2017). Pound
et al. (2017) showed that CNNs were effective to distinguish,
identify, and count wheat plants and their ears in glasshouse
condition. Madec et al. (2019) used faster region-based CNN
(Faster-RCNN) to detect and count wheat ears in a field
and estimated the density of ears via high-resolution RGB
imagery captured by a camera fixed on a boom. Besides,
there are some studies using CNN for tree detection and
counting. Li et al. (2016) employed a CNN algorithm to
detect and estimate oil palm trees from four-band satellite
images with 0.6 m spatial resolution, and they reported
that more than 96% of trees were correctly detected. Csillik
et al. (2018) used a customized CNN model for citrus tree
detection and counting with overall accuracy greater than
95%. These studies demonstrated that CNN could be applied
to remote sensing imagery captured from both satellites and
UAVs. Crop stand counting using CNN has not been widely
reported, especially for rapeseed stand counting. Ribera et al.
(2017) reported a CNN model to estimate the number of
sorghum plants by UAV imagery with a best mean absolute
percentage error of 6.7%, which provided a solution for
large field plant counting research using CNN. Using CNN
in a field or in the wild is of more practical significance
(Simonyan and Zisserman, 2014).

However, the situation of crops grown in the field was
complex. Specifically, rapeseed seedlings grown in the field were
in irregular spacing, complex overlapping, and different plant
sizes, which made its counting difficult. Nevertheless, one of
rapeseed phenotyping traits that UAV imagery collected was its
leaf canopy. During the early growth stages of leaf development,
rapeseed leaves play an important role reflecting their growth
status (Weber and Bleiholder, 1990; Lancashire et al., 1991).
Therefore, it is feasible to recognize individual rapeseed leaves
with CNN and perform stand counting with reference to the
existing knowledge of the number of rapeseed leaves per plant.
The objectives of this study were to (1) recognize and count
the individual rapeseed canopy leaves through UAV imagery
with CNN, (2) establish and examine the models identifying
the number of leaves per rapeseed seedling, and (3) propose an
optimal timing to estimate rapeseed stand count.

MATERIALS AND METHODS

Study Area and Experimental Design
Figure 1 shows the study area and GCPs. The study area with
center coordinates (30◦28′57.11′′N, 114◦18′39.45′′E) located near
Huazhong Agricultural University in Wuhan, China. It covered
an area about 50 m × 30 m with an average elevation of
27 m. In the field, a rapeseed cultivar named Huayouza 62
(B. napus L.) was sown with two planters including a valve-
branch distributor-based centrifugal precision metering device
and a rotating disk-type seeding device on November 4, 2017
(Figure 1). According to the experimental design, rapeseed
was seeded by the two devices in eight rows simultaneously
with 20 cm row spacing at a seeding rate of 5.5 kg/ha. No
weed control management was implemented after sowing. There
were 12 GCPs permanently arranged surrounding the study
area. Reach RS+ (Emlid, United States) was used to collect
GPS information.

Image Acquisition System
The image acquisition system was composed of a DJI rotocopter
Matrice 600 UAV (DJI, Shenzhen, China) and a Nikon D800
camera (Nikon, Japan) in this study. The UAV could hover for
35 min without a payload. In this study, each mission took about
13 min with a payload of 2 kg. A GPS module was integrated
into the UAV, which was tested with a horizontal accuracy of
0.5 m and a vertical accuracy of 1.5 m. The Nikon D800 camera
fitted with a Nikon 50.0 mm f/1.4D lens was mounted on the
UAV to collect nadir RGB images of the rapeseed field during
flights. The complementary metal oxide semiconductor (CMOS)
sensor of the camera had a size of 35.9 mm× 24.0 mm, capturing
images with 7,360× 4,912 pixels. The camera was also integrated
with a GPS device to geotag the images and a wireless control to
trigger the camera capturing imagery every 1.0 s automatically.
An SD memory card was used to store JPEG images with a 24-
bit format.

Each flight mission followed the same camera configuration
during the whole rapeseed leaf growth stage. The frontal and side
overlaps of the flight path were 80.0 and 70.0%, respectively. Two
perpendicular flight paths were conducted to cover and image the
rapeseed canopy. In this study, the UAV was flown at a ground
speed of 3 m/s and at a height of approximately 30 m above
ground level, and spatial resolution of image was about 0.18 cm.

Unmanned Aerial Vehicle Data Collection
and Preprocessing
Image collection was scheduled from November 17, 2017, the
14th DAP, to January 12, 2018, with an interval of 7 days.
This period covered the whole rapeseed leaf development stage
(Weber and Bleiholder, 1990; Lancashire et al., 1991). Some
adjustments were made because of rainy or heavy windy weather.
As a result, data collection started on November 17, 2017, and
ended on January 10, 2018, with specific dates on 14, 23, 32, 39,
46, 53, 58, and 68 DAP from 12:30 p.m. to 2:00 p.m. The one-
to three-leaf stage was before 40 DAP and the three- to four-
leaf stage lasted from 40 to 50 DAP. The four- to six-leaf stage
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FIGURE 1 | Study area and ground control point (GCP) distribution.

ranged from 50 to 60 DAP, and the seven-leaf stage and beyond
was after 60 DAP.

Free software Capture NX-D 1.2.1 from Nikon (Nikon, Japan)
was utilized to correct geometric distortion for the UAV captured
individual images. Secondly, an ortho-mosaic image for each
collection was generated using Pix4Dmapper software (Pix4D,
Switzerland). In this step, the 12 GCPs were added for image
mosaicking. This study used eight sample plots (four plots per
seeding device) for analysis, which were subsets from each ortho-
mosaic image by ArcMap 10.3 (ESRI, United States). Each plot
was in the size of 9.5 m× 2 m (Figure 2B).

These eight sample plots were divided into an image training
dataset containing six sample plots and a test dataset consisting
of two sample plots during the whole processing and analysis.
Since manual counting in the field could possibly change the
real field condition, making the data unreliable for multiple
observations, this study manually interpreted and annotated the
rapeseed leaves over the eight sample plots for each observation
date using ArcMap 10.3 (an illustration in Figure 2), which
was mainly described in the next section. This study also used
image-based manual rapeseed seedling count as the ground truth
reference. Data of 14 and 23 DAP were not used because rapeseed
seedlings were too small to distinguish in imagery. Therefore,
there were six remaining observation dates over the eight study
plots (six for training and two for testing) in this study.

All the processing and analysis were executed on a computer
with an Intel (R) Core (TM) i7-6800K CPU and one NVIDIA
GeForce GTX 1060 6GB GPU, and the memory of the
computer was 32 GB.

Image Processing and Data Analysis
Rapeseed Leaf Recognition Based on a
Convolutional Neural Network
Convolutional neural networks are the most popular machine
learning algorithms applied to various computer vision tasks,
such as numeral recognition, face recognition, and handwriting
recognition. Some software packages such as Python and Matlab
provide a convenient environment for CNN modeling, and there
are some open-source CNN codes online. However, it is still hard
for a nonprofessional machine learning researcher to implement
the entire flowchart of CNN modeling, including CNN software
operation environment configuration, codes modification, as
well as parameter adjustment. In addition, such CNN software
is not suitable for processing geospatial information and
geoinformation analysis. Thus, this study employed the easy-to-
use image analysis software eCognition Developer 9.3 (Trimble,
United States), which contains a CNN module (Trimble, 2018).
The module can be used to recognize objects in images based
on the Google TensorFlowTM library-create (Csillik et al., 2018;
Trimble, 2018).

This approach was a patch-based CNN algorithm according
to the categorization reviewed by Sindagi and Patel (2017). It
was convenient and interactive when researchers use CNN for
image analysis in this software. The operation in this software
was mainly composed of four steps: (1) to generate labeled sample
patches; (2) to create a CNN; (3) to train a CNN; and (4) to apply
a CNN (Trimble, 2018). In this study, the labeled sample patches
were cropped from the training sample plot images according to
three classes including rapeseed leaves, weeds, and bare soil.
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FIGURE 2 | Ortho-mosaic RGB image of a sample plot with a size of 9.5 m × 2 m: (A) manual interpreted and annotated rapeseed leaves, (B) ortho-mosaic RGB
plot image, (C) RGB image overlapping with annotated rapeseed leaves.

To label the three classes, the rapeseed leaves from the eight
sample plots for each observation date were manually interpreted
and annotated using ArcMap 10.3, as shown in Figure 2A.
The labeled leaves were used as a reference, representing the
ground truth leaves. The overlapping of rapeseed leaves was
unavoidable, and each recognized canopy rapeseed leaf was
outlined. Furthermore, the weeds increased with time since there
was no weed control management in the field to maintain the
original ecological scene. As DAP increased, the rapeseed leaves

and weeds were much distinguishable by size, color, texture,
and pattern in high-resolution UAV images. Therefore, after
interpreting and annotating the rapeseed leaves, we used ExG-
ExR, a color vegetation index whose ability for green pixel
identification was confirmed (Meyer and Neto, 2008; Zhao et al.,
2018) to label the remaining green pixels as weeds by eCognition
Developer. The pixels that were not in green were labeled as
bare soil through normalized green minus red difference index
(NGRDI). The pixels whose values of NGRDI less than 0 were
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classified as bare soil. In this study, the input data of eCognition
Developer include RGB imagery in TIFF format exported from
ArcMap, the manual-annotated rapeseed leaf polygon shapefile
exported from ArcMap.

The parameters during the operation included sample patch
size, number of hidden layers, kernel size, number of feature
maps, max pooling, and learning rate. According to the rapeseed
leaf development stages from one leaf to more than seven leaves
during the investigation period, this study generated five sizes
of sampling patches for CNN training, which included 16 × 16,
24 × 24, 32 × 32, 40 × 40, and 48 × 48. In addition, the default
number of feature maps was 12, while the learning rate was at
0.0005 in the software. Based on the five patch sizes, the optimal
kernel size was 5 × 5 after trial-and-error processing. Therefore,
this study structured an initial CNN model as shown in Figure 3,
containing two hidden layers, two max pooling layers, and one
fully connected layer. A previous study using a similar CNN
model showed great performance for oil palm tree detection and
counting with satellite images (Li et al., 2016). We generated
20,000 sample patches of rapeseed leaves, 10,000 weed patches,
and 10,000 bare soil patches from the training dataset in each
observation date for five sample patches totally.

The number of recognized rapeseed leaves was counted after
the dilate operation in the outputted heat map, according to
the number of local maximal points. A heat map with each
pixel value ranging from 0 to 1 was output by the CNN model,
representing the possibility of the target class for rapeseed leaves.
High pixel values close to 1 in the heat map indicated a high
possibility of rapeseed leaves, while values close to 0 indicated
a low possibility (Csillik et al., 2018; Trimble, 2018). Based on
the pixel values, local maximal pixels whose threshold ranged
from 0.5 to 1 (step on 0.01) were iteratively searched to locate
a rapeseed leaf through the dilate operation in eCognition as the
locations of rapeseed leaves were expected to coincide with local
maximal and high values in the heat map (Figure 4).

In this study, the size of the dilation filter was defined as 5× 5,
which was the same as the kernel size in CNN. Afterward, a

maximal layer was generated, reflecting the maximum value in
the matrix of 25 pixels in the heat map (Figure 4C). Accordingly,
when a pixel in the maximal layer has the same value with the
pixel in the same location of the heat map, this pixel inherited
the value. Otherwise, the pixel was valued 0 (Figure 4D).
Each located point was considered to represent a CNN-detected
rapeseed leaf. Thus, the number of local maximal points was
considered as the number of recognized rapeseed leaves.

Overcounting occurred when the number of CNN-detected
rapeseed leaves sometimes was larger than the actual number
of rapeseed leaves, as a big leaf might correspond to several
located maximum points (Figure 5). In Figure 4, if a pixel
far away from the pixel of 0.98 also had a value of 0.98, two
targets might be located in Figure 4D. Merging the adjacent
points with a tolerance was a useful means for tree canopy
recognition and counting (Li et al., 2016), but this method
cannot be applied to rapeseed leaf counting in this study
since the boundary of rapeseed leaves was less distinct than
that of a tree canopy. Moreover, the sizes of rapeseed leaves
were also different. Therefore, it was difficult to determine
a precise distance for merging rapeseed leaf located points.
Inspired by the method of using ground truth masks for
assessing the accuracy of the estimated plant centers (Chen
et al., 2017), we used the manual interpreted ground truth
rapeseed leaf outlines as masks to record and analyze the
overcounting rate (Roc) of the local maximum points for each
investigation (Figure 5).

The illustration in Figure 5 was a subset of CNN recognition
results on 53 DAP with the 32-pixel patch size and a local max
value of 0.65. The blue lines showed rapeseed leaf outline masks,
and each mask represented a ground truth rapeseed leaf. The
green points illustrated the CNN-detected rapeseed leaves.

As mentioned, the sizes of leaves influenced the number
of located maximum points representing the CNN-detected
rapeseed leaves, and DAP was a significant factor of the leaf size.
Thus, it could be assumed that in our study duration, the Roc
might be related to DAP. For CNN detection and counting, Roc

FIGURE 3 | Structure and parameters of the convolutional neural network (CNN) model used in this study. RGB, red-green-blue.
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FIGURE 4 | An illustration of local maximal possibility detection with 3 × 3 filter (actual 5 × 5 in the study): (A) possibility heat map; (B) a 3 × 3 dilation filter; (C) the
maximal layer after dilating; (D) locating target.

was calculated by:

Roc =

∑M
i=1(Ci − 1)

N
× 100%,

(
when, Ci > 1

)
(1)

where N is the number of CNN-detected rapeseed leaves, M is the
number of ground truth rapeseed leaf masks, Ci is the number
of located maximum points inside a ground truth rapeseed leaf
mask for mask i, when mask i has more than one point.

Precision, Recall, and F-score were used in this study to
evaluate leaf detection results (Xiong et al., 2017; Zhao et al.,
2018). Precision and Recall are defined by true positive (TP), false
positive (FP), and false negative (FN):

Precision =
TP

TP+ FP
(2)

Recall =
TP

TP+ FN
(3)

Combined with the situation of overcounting, the following
equations can be inferred by Eqs. (1), (2), and (3) in this study:

N = TP+ FP+
M∑

i=1

(Ci − 1) (4)

M = TP+ FN (5)

The unique recognized local maximum point that is inside a
ground truth mask is considered as a TP. Accordingly, TP here
is the accurate number of CNN-detected rapeseed leaves. If a
local maximum point is outside a mask, then this maximum
point is considered as a FP. A mask is identified as a FN if there
is no point recognized inside (Figure 5). F-score was used as
the final exponent to evaluate the CNN-detected rapeseed leaf
recognition accuracy. Precision, Recall, and F-score in this study
can be expressed as follows:

Precision =
TP

(1− Roc)× N
(6)

Recall =
TP
M

(7)

F − score =
2× Precision× Recall(

Precision+ Recall
) (8)
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FIGURE 5 | Illustration of overcounting statistics. CNN, convolutional neural network; FN, false negative; FP, false positive; TP, true positive. A was calculated without
overcounting rate, B was calculated with overcounting rate.

Leave-One-Out Crossing Validation Regression
Modeling for Rapeseed Seedling Counting
A strong relationship between the rapeseed seedling counting
and the number of unfold leaves was expected because the
identification of rapeseed at early growth stages was based on
the number of unfolded leaves (for example, the one- to three-
leaf stage and four- to six-leaf stage). In this study, the models
that counting rapeseed seedlings through the number of manual-
interpreted rapeseed leaves were first established and verified,
which were considered as the reference describing the number
of leaves per rapeseed seedling plant. Then the number of
CNN-recognized rapeseed leaves was applied to these models
to evaluate the accuracy of rapeseed stand count estimation at
different growth stages.

The LOOCV regression modeling method was used to
establish the models of seedling stand counting. LOOCV was
effective in the case of small sample size. It was a special case
of K-fold crossing validation, when K was equal to the number
of samples. One sample was excluded for validation, and the rest
samples were used for training. The same operation was repeated
for K times so that each sample could be used for validation
so that the results were unbiased. The LOOCV regression
modeling was conducted by Python Spyder in Anaconda3 (64-
bit) (Anaconda Software Distribution, 2016. Computer software).

In this study, there were six training sample plots for each
investigation. Thus, K was 6, and LOOCV regression modeling
was repeated for six iterations. The optimal rapeseed seedling
model parameters of the corresponding DAP were further
obtained by calculating an average value of the iteration results.
Mean absolute error, RMSE, and coefficient of determination
(R2

LOOC) were used to verify these models. They were calculated
as follows:

RMSE =

√∑n
i=1(yi − ŷi)2

n
(9)

MAE =
1
n

n∑
i=1

∣∣yi − ŷi
∣∣ (10)

R2
LOOC = 1−

∑n
i=1
(
yi − ŷi

)2∑n
i=1
(
yi − ȳ

)2 (11)

where n is the number of sample plots, yi is the investigated
ground truth rapeseed seedling stand count for sample i, ŷi is
the model-predicted rapeseed seedling stand count for sample i,
ȳ is the average value of the investigated ground truth rapeseed
seedling stand count for all samples in each observation date.

Performance Evaluation of Counting Seedlings
The number of CNN-recognized rapeseed leaves was used to
evaluate the eventual performance of counting seedlings in
this study. The number of CNN-recognized rapeseed leaves
corresponding to the best value of F-score was applied to the
models. Relative RMSE (rRMSE) was calculated as follows:

rRMSE =
RMSE

ȳ
× 100% (12)

where ȳ is the average value of the investigated ground
truth rapeseed seedling stand count for all samples in each
observation date.

RESULTS

Counting Rapeseed Leaves Recognized
by Convolutional Neural Networks
The strong correlation (R2 = 0.831) between Roc and DAP
conformed the impact of DAP on Roc that Roc increased as DAP
advanced during the observed rapeseed leaf development stages
(Figure 6). The bigger leaves caused the more detected local
maximal points for a leaf, thus resulting in the overcounting
situation. As shown in Figure 6, Roc ranged from 7% on
39 DAP for the 32-pixel patch to 40% on 68 DAP for the
16-pixel patch. According to the correlation in Figure 6, Roc
was estimated to be 6.86% for 32 DAP, 12.25% for 39 DAP,
17.64% for 46 DAP, 23.03% for 53 DAP, 26.88% for 58 DAP,
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FIGURE 6 | Correlation between overcounting rate and days after planting
(DAP).

and 34.58% for 68 DAP. In Figure 6, Roc for the 32-pixel patch
(blue legend) was lower than that for the other four patch
sizes in most DAPs.

F-scores used for CNN-based recognition accuracy evaluation
were calculated by equations (9), (10), and (11). The mean
F-scores based on local maximal values ranging from 0.5 to
1 were calculated (Figure 7). For most of the patch sizes,
F-scores increased from 32 to 53 DAP and decreased after
53 DAP. However, F-scores decreased from 32 to 39 DAP
for the 16-pixel patch and increased from 58 to 68 DAP
for the 40-pixel patch. For all patch sizes, F-scores had the
highest values on 53 DAP. On 53 DAP, the ranking of F-score
values from highest to lowest was 92.83% for the 32-pixel
patch, 92.26% for the 24-pixel patch, 89.84% for the 40-pixel
patch, 89.21% for the 48-pixel patch, and 88.26% for the 16-
pixel patch.

Figure 8 shows the mean local max values achieving best
F-score among the testing data during the whole observed leaf
development stage. DAP also influenced the variation of local
max values. The local max values increased with DAP and
leveled off after 58 DAP. With these local max values, the
number of rapeseed leaves recognized by CNN was counted for
each observation.

Revealing the Number of Rapeseed
Leaves per Seedling
A strong correlation between the seedling counting and the
number of canopy rapeseed leaves was established by using
the LOOCV method over data of training sample plots for
each observation (Table 1). All sub-models were significant
(p-value < 0.05) except for the sub-model of the first iteration on
32 DAP exhibiting a p-value of 0.058. Afterward, the relationship
defining the number of rapeseed leaves per seedling was revealed
by the formulas in Table 1 for each observation.

FIGURE 7 | Results of F-score for convolutional neural network
(CNN)-detected rapeseed leaf recognition and counting.

FIGURE 8 | Mean local max values for the best F-score according to days
after planting (DAP).

These formulas were verified by the testing data. The ordering
of R2

LOOC from highest to lowest was 0.984 on 46 DAP, 0.926
on 53 DAP, 0.897 on 39 DAP, 0.886 on 58 DAP, 0.806 on
68 DAP, and 0.775 on 32 DAP. RMSE ranged from 14 plants
to 54 plants, and MAE ranged from 13 plants to 47 plants.
Results showed that the relationship revealing the number of
rapeseed leaves per seedling obtained the best performance
on 46 DAP and satisfactory performance on 53 DAP. As
a result of the strong correlation revealing the number of
rapeseed leaves per seedling, the approach using precise CNN-
recognized leaves counting to estimate the seedling stand count
was feasible and expected.
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TABLE 1 | Results of optimal rapeseed seedling counting models for six
observation periods.

Period Formula R2
LOOC MAE RMSE

32 DAP y = 0.354x + 14.340 0.775 47 54

39 DAP y = 0.297x + 65.037 0.897 29 30

46 DAP y = 0.322x + 19.490 0.984 13 14

53 DAP y = 0.277x + 41.540 0.926 25 31

58 DAP y = 0.220x + 72.334 0.886 31 35

68 DAP y = 0.214x + 46.388 0.806 31 42

x represents the number of rapeseed canopy leaves. y stands for rapeseed seedling
count. MAE and RMSE were rounded to integer. DAP, days after planting; MAE,
mean absolute error; RMSE, root mean square error.

Performance of Estimating Seedling
Stand Count With Convolutional Neural
Network-Recognized Leaf Counting
Convolutional neural networks-recognized leaf counting
(see section “Counting Rapeseed Leaves Recognized By
Convolutional Neural Networks”) was used to estimate seedling
stand count according to the revealed relationship of the
number of rapeseed leaves per seedling (Table 1 in section
“Revealing the Number of Rapeseed Leaves Per Seedling”).
Table 2 gives the results of estimating rapeseed seedling
stand count. For all patch sizes, the best mean accuracy
was achieved on 53 DAP with 99.26%. On average, 806 out
of 812 plants were correctly estimated on 53 DAP at the
four- to six-leaf stage. With the 32-pixel patch size, almost
all the seedling stand counts were correctly estimated on
53 DAP. Some errors were counteracted mutually as a result of
summing up the estimated seedling stand counts from two test
sample plots. RMSE and rRMSE are presented in Table 3 and
Figure 9, respectively.

On 32 DAP, a maximum mean RMSE of 107 plants was
observed, while on 53 DAP, a minimum mean RMSE of 12 plants
showing the best performance was obtained. On 53 DAP, the
rRMSE was 1.99% for the 40-pixel patch size (Figure 9). For the
32-pixel patch size, its RMSE was nine plants with an rRMSE of
2.22%. The ordering of mean RMSE from lowest to highest was
12 on 53 DAP, 48 on 46 DAP, 49 on 68 DAP, 57 on 58 DAP, 76
on 39 DAP, and 107 on 32 DAP, with the best performance on
53 DAP. Similarly, the ordering of rRMSE was 2.89% on 53 DAP,
11.71% on 68 DAP, 11.97% on 46 DAP, 11.97% on 58 DAP, 19.36%
on 39 DAP, and 25.59% on 32 DAP.

DISCUSSION

Influence of Days After Planting
Corresponding to Leaf Development
Periods
Huayouza 62 (B. napus L.) used in the study is a member of
the family Brassicaceae (Weber and Bleiholder, 1990; Lancashire
et al., 1991). Based on the characteristics that its leaf development
periods were highly related to DAP, the number of canopy leaves
was used for seedling stand count modeling and estimation in
this study. Chen et al. (2018) found that DAP had a strong
correlation with the number of germinated seeds (R2 = 0.938)
and with average plant size (R2 = 0.936). In our study, results
also strongly illustrated that DAP played an important role on
the leaf recognition and counting, revealing the relationship
between seedling stand count and the number of leaves per
seedling, and the eventual estimation of seedling stand count with
CNN-recognized leaf counting. Finally, the best performance
was achieved on 53 DAP for leaf recognition and counting as
well as estimating seedling stand count with the number of
CNN-recognized leaf counting (Figures 7, 9 and Tables 2, 3).

This study not only used DAP but also tried to associate it with
the leaf development period and to determine the influence of
DAP corresponding to the leaf development periods on rapeseed
leaf counting (Figures 7, 8). DAP is an essential dimension unit to
describe the growth process of crops, and it is easy to comprehend
and quantify. Nevertheless, the growth situation based on DAP
varies with different regions where crops and plants are cultivated
with different treatments, even for the same cultivated variety.
Sankaran et al. (2017) reported that it was hard to estimate the
number of potato plants after 43 DAP because of the within-
row canopy closure, even though the best correlation coefficient
(r = 0.83) between manual plant counts and image-based counts
was achieved on 32 DAP. This study presented a novel approach
to understand the growth status of rapeseed seedlings and to
count the seedlings in terms of leaf development periods.

In Figure 6, overcounting rate increased with DAP. From
another perspective, the increasing overcounting rate was mainly
caused by the development of leaves or the increasing size and
number of rapeseed seedling canopy leaves. Rapeseed seedlings
experience a process from new leaf unfolding to leaves gradually
growing with DAP. In this study, rapeseed had more than
seven leaves in the last observation period, which caused a
serious overlapping. Moreover, the bigger leaf size influenced

TABLE 2 | Sum of rapeseed stand count estimation from two testing sample plots (unit: plants).

Size 16 Size 24 Size 32 Size 40 Size 48 Average Mean accuracy (%) Ground-truth plants

32 DAP 593 672 657 640 590 630 75.05 840

39 DAP 567 734 668 640 657 653 83.42 783

46 DAP 686 723 727 712 714 712 89.05 800

53 DAP 801 806 812 804 807 806 99.26 812

58 DAP 835 833 823 854 823 834 88.12 946

68 DAP 803 802 805 805 800 803 96.51 832

Estimated results were rounded to integer. DAP, days after planting.
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TABLE 3 | Results of RMSE for rapeseed stand count estimation (unit: plants).

Size 16 Size 24 Size 32 Size 40 Size 48 Average

32 DAP 124 90 96 103 125 107

39 DAP 118 62 59 74 66 76

46 DAP 63 44 40 45 47 48

53 DAP 17 14 9 8 10 12

58 DAP 56 57 62 47 62 57

68 DAP 50 45 48 50 51 49

Means the optimal value in the column. Results were rounded to integer. DAP, days
after planting; RMSE, root mean square error.

FIGURE 9 | Results of relative root mean square error (rRMSE) for rapeseed
stand count estimation.

the recognition. According to the trend and strong correlation
between overcounting rate and DAP (R2 = 0.831), when the
number of leaves developed from one to more than seven leaves,
overcounting rate might keep increasing.

As mentioned, as the number of leaves increased, leaf
overlapping and saturation became more intensified. In Figure 7,
F-score increased from the one- to six-leaf stage, and then
decreased after that. This peak of F-score was mainly related
to the leaf development. When rapeseed seedlings were in the
one- to six-leaf stage, the number of unfolded leaves increased
dramatically, and the characteristics of leaves became more and
more obvious so that the recognition performance improved.
After the six-leaf stage, leaf overlapping and saturation resulted
in the decreasing recognition accuracy. On the other hand, in
Figure 8, the local maximal value for CNN recognition did not
increase after the six-leaf stage. Moreover, a strong correlation
(R2 = 0.835) between the coefficient of the seedling counting
models (Table 1) and DAP was found (Figure 10).

When a DAP was replaced by its corresponding leaf
development stage, the coefficients were approximately the
inverse of the number of leaves at the given stage. For example,
at the one- to three-leaf stage, the coefficients on 32 and 39 DAP
were 0.354 and 0.297, which were approximately the inverse
of 3 (1/3 or 0.333). Similarly, at the four- to six-leaf stage, the
coefficients on 53 and 58 DAP were 0.277 and 0.220, which were

FIGURE 10 | Correlation between coefficient of the seedling counting models
and days after planting (DAP).

approximately the inverse of 5 (1/5 or 0.200). To some extent, this
correlation demonstrated another perspective to understand the
counting models through the leaf development stage, but more
data are needed to verify the result more scientifically.

Another interesting finding related to the leaf development
stage of rapeseed seedlings was that the timing of 53 DAP
corresponding to the four- to six-leaf stage was near winter
solstice in the Chinese calendar. Winter solstice, a meaningful
solar term, is known as a significant time for winter rapeseed
planting as well as for other agricultural activities. Many
Chinese agronomic researchers and cultivating specialists regard
winter solstice as a critical timing for rapeseed characteristic
measurement. It is also considered as a mid-growth phase of
rapeseed leaf development with about five leaves. In fact, the day
of winter solstice was 4 days before 53 DAP. Therefore, the DAP
corresponding to the leaf development stage was confirmed to be
reliable in this study. Our findings offered a scientific explanation
for the agricultural practice in China and should be referential for
relevant studies and practices.

Influence of Parameters in Convolutional
Neural Network
Influence of Patch Size
It is necessary to define patch sizes according to the specific
purposes and the image target for the application of CNN. In
this study, sample patches were cropped from the entire labeled
UAV image. Moreover, the trained CNN model was applied to
a large-scale field image. This study employed five sample patch
sizes with 16, 24, 32, 40, and 48 pixels.

These sizes were determined mainly by the image resolution
and the growth situation of rapeseed. Madec et al. (2019)
assumed that resolution around 0.3 mm could allow to detect
and count wheat ears for high-throughput phenotyping based on
UAV-captured RGB images using Faster-RCNN. However, their
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research used imagery captured by a camera fixed on a boom, and
their assumption was not verified with UAV images in their work.
The imagery used in this study was captured by UAV in the field
30 m above ground level. If the altitude was more than 30 m, the
resolution was not enough for recognition. If the UAV imagery
was captured below 30 m, it would reduce the efficiency of field
plot data collection. Furthermore, the turbulence generated by
the UAV made the rapeseed leaves shake, leading to the unfocused
targets in the imagery.

Meanwhile, the leaf size of rapeseed was another factor
determining the patch size. In this study, an overlarge patch size
such as a 128-pixel patch could contain redundant and useless
information. On the contrary, an undersized patch would cause
underfitting recognition results because the patch would be so
small that the features between rapeseed leaves and weeds could
not be distinguished. Employing a patch-based CNN algorithm
(Sindagi and Patel, 2017) brought about a problem that the
patch could not cover an oversized rapeseed leaf, resulting in a
larger number of detected objects than the actual number called
overcounting in this study (Figure 5). Therefore, the patch size
of UAV imagery was limited by its imaging mode and resolution,
field status, and the characteristics of objects.

In this study, the areas of the five patches were calculated and
matched with the leaf size of rapeseed for each observation. The
area of the 48-pixel patch was calculated to be 74.6 cm2, and
the maximum area of rapeseed leaf obtained on 68 DAP was
almost 63 cm2. Based on this, a sampling patch cropped with
48 pixels could meet the minimum requirement for covering an
entire rapeseed leaf. However, each patch size was used for all the
observations, thus the same patch size had a dynamic influence
on the counting results as DAP changed. In Figure 7, the 16-
pixel patch exhibited the optimal performance on 32 DAP, which
was attributed to the fact that the 16-pixel patch could match
the leaf size better on 32 DAP than on the other DAPs. On the
other DAPs, the 24-pixel patch and the 32-pixel patch matched
the leaf size better than the other patch sizes achieving better
F-score in Figure 7.

In addition, patch size significantly affected training time.
Figure 11 shows that training time increased exponentially with
patch size. Training time was more than 5,200 s (about 90 min)
when using the 48-pixel patch. Although using the 16-pixel
patch could save time, its results were not desirable in this
study. According to Figure 11 and based on the results of
leaf recognition and seedling estimation, the 32-pixel patch was
selected as the optimal sampling size balancing the performance
and efficiency in this study.

Influence of Learning Rate
Learning rates ranging from 0.0001 to 0.0014 (step on 0.0001)
were used to analyze the learning rate function with the 32-pixel
patch on 53 DAP based on the local max value of 0.65 (Figure 12).
F-scores were higher than 90.00% for most of the results. However,
it was difficult to determine the relationship between learning rate
and F-score since there was an irregular fluctuation. In terms of
the ranking of F-scores, the top four learning rates were 0.0002,
0.0006, 0.0005, and 0.0007 with all their corresponding F-scores
higher than 92.00%.

FIGURE 11 | Convolutional neural network training time consumed for five
sampling patch sizes.

Learning rate plays an important role in CNN models
(Trimble, 2018). It defines the weights used to adjust the gradient
descent optimization. If learning rate is too small, the learning
process will be slowed down and may not be close to the optimal
settings. If learning rate is too large, the model may not reach the
minimum boundary and produce results of null values (Trimble,
2017). Learning rate is considered as a hyper-parameter in
machine learning and deep learning, which is mostly set up based
on practices and empiricism (Senior et al., 2013). Finally, learning
rates ranging from 0.0004 to 0.0006 were suggested in this study.

Influence of Overcounting Rate
Overcounting is common in object identification and counting
tasks, especially in large-scale scenes (Li et al., 2016). It is
challenging to use CNN algorithms for object detection and
counting in a large-scale scene. Most studies detected flowers,
leaves, and crops in the lab because the scenes were well
controlled and the results were less influenced by external
factors. This study detected rapeseed leaves in a field-based
scene. The existing leaf overlapping was one of the main reasons
for overcounting. With leaf size increasing, the overlapping
became more complex, which caused serious overcounting and
inaccurate counting results.

This study selected and employed different patch sizes,
attempting to match the size of leaves and improve model
performance. However, the overcounting was still difficult
to avoid. Comparison was made between the F-scores with
overcounting and those without overcounting based on the
suggested learning rate of 0.0004 on 53 DAP (Figure 13). Even
though two curves of F-scores exhibited a similar tendency,
F-scores without overcounting calibration were higher than those
with overcounting calibration. The former almost reached 100%,
which was inaccurate.

A graphic example of F-score with and without overcounting
calibration is shown in Figure 5. As shown in the figure,
precision without overcounting calibration was greater
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FIGURE 12 | Test of learning rate for the convolutional neural network-based rapeseed leaf recognition on 53 days after planting (32-pixel patch, local max value of
0.65).

FIGURE 13 | Comparison of F-scores with and without overcounting rate at a
learning rate of 0.0004 on 53 days after planting.

than that with overcounting calibration, resulting in an
illusory high F-score. F-scores with overcounting calibration
more accurately and objectively described the CNN-
based leaf recognition performance. When the number
of referencing masks was 29, the accurate number of
detected rapeseed leaves was 28 using overcounting

calibration. Without overcounting calibration, the number
of detected rapeseed leaves was 38 (Figure 5). These
results demonstrated that overcounting calibration was
important to obtain precise rapeseed leaf counting. When
overcounting calibration was considered, more reliable and
objective rapeseed leaf counting results were achieved as
demonstrated by the study.

Future Work
This study was a specific application of machine learning
in agriculture for quantitative analysis of rapeseed seedling
stand counting at a field level from UAV images. We aimed
to estimate the rapeseed seedling count precisely and to
offer a comprehensive study of field-based rapeseed seedling
estimation throughout its early growth stages. Moreover,
we tried to present a study showing general and user-
friendly workflow for executing CNN methods. We also
expected that our research offered another perspective in
phenotyping and cultivation management for estimating seedling
count for crops that have obvious tillering leaves at early
growth stages such as soybean and potato. The results
based on the particular case were desirable and promising.
More detailed data and relevant technical information of
our study were deposited to GitHub repository in “LARSC-
Lab/Rapeseed_seedling_counting”.
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In the future, we will focus on the data accumulation including
data from multiple growing seasons and multiple fields in
different locations. Moreover, multiple approaches are expected
to be employed, and their performances will be compared
to identify optimal methods and improve accuracy. A more
comprehensive dataset of rapeseed from UAV imagery is expected
to be completed and published in the future based on our work,
which will promote the research in phenotyping for rapeseed and
other crops.

CONCLUSION

Utilizing a consumer-grade camera mounted on a UAV for
crop phenotyping and vegetation investigation in the field
is feasible and efficient. This study attempted to estimate
rapeseed stand count in UAV-captured RGB imagery with
machine learning. CNN algorithm was used for rapeseed
leaf identification and counting. Regression modeling
coupled with LOOCV method was used to establish and
optimize the relationship between the seedling counting
and the number of rapeseed leaves. When the number of
CNN-detected rapeseed leaves was brought into seedling
counting models, the results demonstrated that our proposed
framework performed well and achieved great accuracy. In
summary, the following conclusions can be drawn from
this study:

(1) The effectiveness of our proposed CNN framework on
rapeseed leaf recognition and counting was verified in
this study. Overcounting is a common problem during
leaf recognition and counting. The overcounting rate was
related to the DAP reflecting of the rapeseed growth
conditions during leaf development. CNN-recognized
rapeseed leaf counting incorporated with overcounting
calibration was reliable with an overall F-score of more
than 90%. On average, 806 out of 812 plants were correctly
estimated on 53 DAP at the four- to six- leaf stage. RMSE
was nine plants with rRMSE of 2.22% on 53 DAP for the
32-pixel patch size, while the mean RMSE was 12 with mean
rRMSE of 2.89% for all patch sizes.

(2) This study demonstrated that DAP influenced the
overcounting rate, CNN-recognized leaf results, and
seedling counting models. On 46 and 53 DAP, the counting
models presented desirable performance. Moreover, a
strong correlation (R2 = 0.835) was also found between
coefficients of counting models and DAP. The optimal

observation period was on 53 DAP corresponding to the
four- to six-leaf stage of rapeseed development.

(3) Based on machine learning approaches, this study proposed
a framework for rapeseed stand counting in the field by
high-resolution UAV imagery. Our future studies will focus
on the collection and evaluation of multiple-year datasets
to improve the robustness and reliability of the stand
counting models.
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