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Lignin is a heterogeneous polymer of aromatic subunits derived from phenylalanine. It is
polymerized in intimate proximity to the polysaccharide components in plant cell walls
and provides additional rigidity and compressive strength for plants. Understanding
the regulatory mechanisms of lignin biosynthesis is important for genetic modification
of the plant cell wall for agricultural and industrial applications. Over the past 10
years the transcriptional regulatory model of lignin biosynthesis has been established
in plants. However, the role of post-transcriptional regulation is still largely unknown.
Increasing evidence suggests that lignin biosynthesis pathway genes are also regulated
by alternative splicing, microRNA, and long non-coding RNA. In this review, we briefly
summarize recent progress on the transcriptional regulation, then we focus on reviewing
progress on the post-transcriptional regulation of lignin biosynthesis pathway genes in
the woody model plant Populus.

Keywords: lignin biosynthesis, plant cell wall, transcriptional regulation, post-transcriptional regulation,
transcription factor

INTRODUCTION

Lignin is one of the most abundant biopolymers, accounting for ∼30% of the organic carbon
in the biosphere. As a principal component of secondary cell walls, lignin provides plants with
structural integrity and a response mechanism to environmental stimuli, e.g., pathogen attack.
In addition, lignin supports transport of water and solutes through the vascular system. The
lignin structure varies between plant species, between cell types within a single plant, and between
different parts of the wall of a single cell. The lignin polymer is primarily comprised of three major
monomers: p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) monolignols that are synthesized
via the phenylpropanoid pathway (Raes et al., 2003). From Arabidopsis genome-wide analysis and
mutant/transformation studies, at least 14 structural genes have been characterized and shown to
be involved in the monolignol biosynthesis pathway (Goujon et al., 2003a).
Although the regulatory mechanism of lignin biosynthesis has been studied in several plant
species (Zhong et al., 2006; Zhong and Ye, 2011; Xie et al., 2018b; Zhang et al., 2018a), many
aspects of its regulation remain unresolved. Identification of cis-acting elements in monolignol
biosynthetic genes provides an understanding of the transcriptional regulation of lignin
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biosynthesis. Promoter analysis and electrophoretic mobility shift
assay have revealed that the SNBE (Zhong et al., 2010a) and
AC elements (Zhong and Ye, 2011) (corresponding to the NAC
and MYB transcription factor-binding motif, respectively) are
necessary for coordinated monolignol pathway gene activation.
However, a comprehensive understanding of the transcriptional
and post-transcriptional regulation of lignin biosynthesis in
woody species is still lacking. In this review, we summarize the
current understanding of the regulation of lignin biosynthesis
pathway genes at the transcriptional level, then focus on the
emerging area of post-transcriptional regulation.

TRANSCRIPTIONAL REGULATION OF
LIGNIN BIOSYNTHESIS PATHWAY
GENES

Structural Genes of Monolignol
Biosynthesis
The monolignol biosynthesis pathway has been well
studied in several model plant species, such as the model
herbaceous species Arabidopsis and the model woody species
Populus. Monolignols are synthesized from phenylalanine
via the phenylpropanoid pathway, which includes a series
of enzymes controlling alternate linear steps, ultimately
providing precursors for numerous secondary metabolites

(Fraser and Chapple, 2011). Wang et al. (2018) demonstrated
the importance of phenylpropanoid biosynthetic enzymes
for lignin biosynthesis in Populus using 221 independent
transgenic lines derived from 21 lignin biosynthetic genes.
These enzymes belong to an assembly of genes and gene
families, including phenylalanine ammonia lyase (PAL),
cinnamate 4-hydroxylase (C4H), 4-coumarate:CoA ligase
(4CL), p-coumaroyl-shikimate/quinate 3-hydroxylase (C3H),
hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl
transferase (HCT), caffeoyl-CoA O-methyltransferase
(CCoAOMT), 5-hydroxyconiferyl aldehyde O-methyltransferase
(AldOMT), coniferyl aldehyde/ferulate 5-hydroxylase
(CAld5H/F5H), cinnamoyl-CoA reductase (CCR), cinnamyl
alcohol dehydrogenase (CAD), caffeoyl shikimate esterase (CSE),
and caffeic acid O-methyltransferase (COMT) (Figure 1). PAL,
C4H and 4CL play important roles to provide precursors for
various downstream metabolites (Figure 1). Down-regulation
of PAL, C4H or 4CL can significantly decrease lignin content
in both Arabidopsis and Populus (Rohde et al., 2004; Chen
and Dixon, 2007; Vanholme et al., 2008; Wang et al., 2018).
Recently, a C3H enzyme is identified as a bifunctional peroxidase
that oxidizes both ascorbate and 4-coumarate in the model
plants Brachypodium distachyon and Arabidopsis by directly
catalyzing the 3-hydroxylation of 4-coumarate to caffeate in
lignin biosynthesis pathway (Barros et al., 2019).

Populus is a promising feedstock for biofuels and other
value-added products due to its fast growth and high efficiency

FIGURE 1 | The monolignol biosynthetic pathway in Populus. PAL, L-phenylalanine ammonia-lyase; PTAL, bifunctional L-phenylalanine/L-tyrosine ammonia-lyase;
C4H, cinnamate 4-hydroxylase; C3H, p-coumarate 3-hydroxylase; COMT, caffeate/5-hydroxyferulate 3-O-methyltransferase; F5H, ferulate
5-hydroxylase/coniferaldehyde 5-hydroxylase; 4CL, 4-hydroxycinnamate:CoA ligase; HCT, p-hydroxycinnamoyl CoA:shikimate/quinate
hydroxycinnamoyltransferase; C3′H, p-coumaroyl shikimate/quinate 3′-hydroxylase; CSE, caffeoyl shikimate esterase; CCoAOMT, caffeoyl CoA
3-O-methyltransferase; CCR, cinnamoyl CoA reductase; CAD, cinnamyl alcohol dehydrogenase.
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of biofuel conversion. In addition, abundant public genomics,
and transcriptomics resources of Populus provide the basis
for functional study. Here we focus on Populus to explore
the transcriptional and post-transcriptional regulation of lignin
biosynthetic genes. On the basis of findings reported in literature,
we build a conceptual network of the enzymes that control
monolignol biosynthesis in Populus. As shown in Table 1, the
21 enzymes reported by Wang et al. (2018), and three other
enzymes [CSE1, CSE2 (Vanholme et al., 2013) and COMT2
(Marita et al., 2001)], play important roles in monolignol
biosynthesis in Populus and Arabidopsis. We analyzed the
expression profiles of the structural genes in monolignol
biosynthesis pathway across various tissues and during wood
formation in Populus based on the PopulusGene Expression Atlas
database (different tissues of buds, male catkins, female catkins,
leaf, root and stem of P. trichocarpa, 72 RNA-Seq libraries)1

and AspWood database (micro meter-scale profile of P. tremula
cambial growth and wood formation, 137 RNA-Seq libraries)
(Sundell et al., 2017).

Broad expression evidence from key enzymes in the lignin
biosynthetic pathway provides a hypothetical foundation for
their functions in various tissues. For example, Kim et al.
(2019) performed a series of wood-forming tissue-specific
transcriptome analyses from a hybrid poplar and identified
critical pathway genes for secondary wall biosynthesis in mature
developing xylem. Wood formation is a process of plant
secondary growth, which originates from the cambium meristem
cells, eventually forming a tree’s main stem or truck. Most
of the genes involved in this process are highly expressed in
the developing xylem. In contrast, CAD2 and AldOMT2 are
highly expressed in maturing xylem and cambium, respectively
(Figure 2). In a promoter-GUS histochemistry analysis, the GUS
driven by promoter of Eucalyptus gunnii CAD2 is expressed
in all lignifying cells including vessel elements, xylem fibers
and paratracheal parenchyma cells of the xylem tissues in
the transgenic Arabidopsis floral stem and root (Baghdady
et al., 2006). The expression pattern and function of AldOMT2
homologs remains unclear.

Transcription Factors Involved in the
Lignin Biosynthesis Pathway
A hierarchical transcriptional regulatory network for lignin
biosynthetic genes has been established over the past 10 years
(Zhao et al., 2010; Zhong and Ye, 2011; Lin et al., 2017;
Zhang et al., 2018a; Chen et al., 2019). This network involves
members of several transcription factor (TF) families including
MYBs and NACs. A recent study identified a novel TF (i.e.,
PtrEPSP-TF) encoding a homolog of 5-enolpyruvylshikimate 3-
phosphate (EPSP) synthase in the shikimate pathway, which
possesses a helix-turn-helix motif in the N terminus and
can function as a transcriptional repressor to regulate gene
expression in the phenylpropanoid pathway in Populus (Xie et al.,
2018a). Correspondingly, the expression of lignin-related TFs
is affected by several other genes. For example, overexpression
of a serine hydroxymethyltransferase (PtSHMT2) decreases the

1https://phytozome.jgi.doe.gov/phytomine/aspect.do?name=Expression

TABLE 1 | Monolignol biosynthetic genes in Populus.

Gene ID Gene family Enzyme Substrate

Potri.006G126800 PAL PAL1 Phe

Potri.008G038200 PAL PAL2 Phe

Potri.016G091100 PAL PAL3 Phe

Potri.010G224100 PAL PAL4 Phe

Potri.010G224200 PAL PAL5 Phe

Potri.013G157900 C4H C4H1 Cinnamic acid

Potri.019G130700 C4H C4H2 Cinnamic acid

Potri.001G036900 4CL 4CL3 4-coumaric acid, caffeic
acid, ferulic acid,
5-hydroxyferulic acid

Potri.003G188500 4CL 4CL5 Caffeic acid, 4-coumaric
acid, ferulic acid,
5-hydroxyferulic acid,
sinapic acid

Potri.006G033300 C3H C3H3 4-coumaroyl shikimic acid,
4-coumaric acid

Potri.003G183900 HCT HCT1 4-coumaroyl-CoA,
4-coumaroyl shikimic acid,
caffeoyl-CoA, caffeoyl
shikimic acid

Potri.001G042900 HCT HCT6 4-coumaroyl-CoA,
4-coumaroyl shikimic acid,
caffeoyl-CoA, caffeoyl
shikimic acid

Potri.009G099800 CCoAOMT CCoAOMT1 Caffeoyl-CoA

Potri.001G304800 CCoAOMT CCoAOMT2 Caffeoyl-CoA

Potri.008G136600 CCoAOMT CCoAOMT3 Caffeoyl-CoA

Potri.015G119600 AldOMT AldOMT2 Caffealdehyde,
5-hydroxyconiferaldehyde,
caffeyl alcohol,
5-hydroxyconiferyl alcohol,
5-hydroxyferulic acid,
caffeic acid

Potri.005G117500 CAld5H/F5H CAld5H1,
F5H1

Coniferyl alcohol,
coniferaldehyde, ferulic acid

Potri.007G016400 CAld5H/F5H CAld5H2,
F5H2

Coniferyl alcohol,
coniferaldehyde, ferulic acid

Potri.003G181400 CCR CCR2 Feruloyl-CoA,
4c-oumaroyl-CoA,
caffeoyl-CoA

Potri.009G095800 CAD CAD1 Coniferaldehyde,
4-coumaraldehyde,
sinapaldehyde

Potri.016G078300 CAD CAD2 Sinapaldehyde,
coniferaldehyde

Potri.003G059200 CSE CSE1 Caffeoyl shikimate

Potri.001G175000 CSE CSE2 Caffeoyl shikimate

Potri.012G006400 COMT COMT2 Caffeic acid, caffeoyl-CoA,
caffeoyl aldehyde, caffeoyl
alcohol

lignin content in transgenic poplar (Zhang et al., 2019a).
Overexpression of a prefoldin chaperonin β subunit gene
PdPFD2.2 increases lignin S/G ration in poplar (Zhang et al.,
2019b). This suggests that the molecular regulation of lignin
biosynthesis is not unidirectional and is more complex than that
was previously reported.
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FIGURE 2 | Hierarchical clustering of the expression profiles of monolignol biosynthetic genes across various tissues (left) and during wood formation (right) in
Populus. The expression data of different tissues and wood formation were obtained from Populus Gene Expression Atlas
(https://phytozome.jgi.doe.gov/phytomine/aspect.do?name=Expression) and AspWood (http://aspwood.popgenie.org/aspwood-v3.0/), respectively. The tissue
atlas dataset includes tissues collected from buds, male catkins, female catkins, leaf, root and stem. The AspWood dataset includes samples collected from phloem,
cambium, expanding xylem and maturing xylem. Gene expression was normalized by Z-score. Red and blue represent high and low expression, respectively.

Recently, Gunasekara et al. (2018) developed a novel
algorithm called triple-gene mutual interaction (TGMI) for
identifying the pathway regulators using high-throughput gene
expression data, which calculates the mutual interaction measure
for each triple gene grouping (two pathway genes and one TF)
and then examines its statistical significance using bootstrap.
Implementing this algorithm, Gunasekara et al. (2018) analyzed
pathway regulators of lignin biosynthesis using a compendium
dataset that comprised 128 microarray samples from Arabidopsis
stem tissues under short-day conditions. In this review, we also
applied the TGMI algorithm to identify regulators of lignin
biosynthesis in Populus based on the tissue-specific Populus Gene
Expression Atlas and AspWood datasets (209 RNA-Seq samples
in total). As anticipated, a series of known lignin biosynthesis-
related TFs (87 TFs from 10 families), such as members in NAC
and MYB families, were correlated with the lignin biosynthetic
genes (Figures 3, 4). In addition, we identified several novel

TFs that were highly correlated with the monolignol biosynthetic
genes, expanding our view of the transcriptional regulatory
network affecting lignin biosynthesis. Individual classes of these
TFs are presented in Figures 3, 4.

Transcriptional Regulation of Lignin
Biosynthetic Genes
PAL
To further understand the transcriptional regulation between
TFs and lignin biosynthetic genes, we generated a heatmap
to reveal the correlation between lignin biosynthetic genes
and known lignin-related TFs (Figure 4). PAL genes showed
strong correlation with MYB TFs. During secondary cell wall
formation, MYB46 and MYB83 and their orthologs in several
plant species, including Arabidopsis, Populus, and Eucalyptus,
have been identified as the direct targets of SNDs (SECONDARY
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FIGURE 3 | Regulatory network generated by triple-gene mutual interaction (TGMI) algorithm for the Populus lignin biosynthesis pathway using the RNA-Seq data
from Populus Gene Expression Atlas and AspWood datasets. Green nodes represent monolignol biosynthetic genes. Red nodes are transcription factors (TF) and
node size represent frequency of TF. Edges represent regulatory relationships from TGMI algorithm.

WALL-ASSOCIATED NAC DOMAIN PROTEINS) and VNDs
(VASCULAR-RELATED NAC DOMAINS) and function as the
second-layer master switches (McCarthy et al., 2010; Zhong
and Ye, 2011; Kim et al., 2013; Ko et al., 2014; Zhang et al.,
2018a). Overexpression of MYB46 and MYB83 caused ectopic
deposition of secondary cell walls through activation of the
lignin, cellulose and xylan biosynthetic genes (Zhong and
Ye, 2011). Electrophoretic mobility shift assay and chromatin
immunoprecipitation analysis showed that MYB46 directly
binds to the promoters of PAL (Kim et al., 2014). Similarly,
their orthologs in Populus, PtrMYB3 (Potri.001G267300)
and PtrMYB20 (Potri.009G061500), activate the biosynthesis
pathways of lignin, cellulose and xylan in both Arabidopsis and
Populus, including PAL genes (McCarthy et al., 2010). In Populus
tomentosa, PtoMYB216 (GenBank: JQ801749, ortholog of

Potri.013G001000), a homolog of Arabidopsis AtMYB61 and
AtMYB85, was specifically expressed during secondary wall
formation in wood. The expression of PAL4 was induced
in the transgenic plants overexpressing PtoMYB216 (Tian
et al., 2013). PtoMYB156 (GenBank: KT990214, ortholog
of Potri.009G134000) is a homolog of AtMYB4, which
functions as phenylpropanoid/lignin biosynthesis repressor.
Overexpression of PtoMYB156 in poplar also resulted in
downregulation of PtoPAL1 (Yang et al., 2017). Four additional
MYB TFs (MYB20, MYB42, MYB43 and MYB85) were recently
reported as transcriptional regulators that directly activate
lignin biosynthetic genes during secondary wall formation in
Arabidopsis. Quadruple mutant myb20/42/43/85 plants exhibited
reduced transcript levels of PAL (Geng et al., 2020). From
these results, MYB TFs appear to be regulated by a series
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FIGURE 4 | Regulatory relationship of transcription factor (TF) and monolignol biosynthetic genes generated by triple-gene mutual interaction (TGMI) algorithm.
Green blocks represent statistically significant interactions.
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of master switches during secondary cell wall biosynthesis.
The transcriptional regulation of PAL is likely regulated by a
hierarchical or more complex pattern, in addition to the direct
regulation by these MYB TFs.

C4H
As shown in Figure 4, C4H1 was correlated with the TGMI-based
expression of 32 MYB TFs. Recently, a transcriptional regulatory
network (TRN) of wood formation based on a P. trichocarpa
wood-forming cell system with quantitative transcriptomics
and chromatin binding assays was constructed (Chen et al.,
2019). In the TRN, PtrC4H1 was regulated by PtrWBLH2 (a
wood Bel-like homeodomain protein), which is a direct target
of PtrMYB021 and PtrMYB074. Comparably, in P. tomentosa,
C4H2 is directly activated by PtoMYB216 through AC elements
(Tian et al., 2013). In addition, the expression of C4H was
repressed by MYB transcriptional repressors. In Arabidopsis,
AtMYB4 downregulates the expression of C4H (Jin et al., 2000).
Ectopic expression of E. gunnii EgMYB1 in Populus repressed
the expression of PtaC4H2 in wood tissue (Legay et al., 2010).
Moreover, Arabidopsis WRKY12 is a transcriptional repressor
that can directly bind to the promoter of NST2, a master
regulator of lignin biosynthesis. Loss-of-function mutants of
WRKY12 in Arabidopsis, and its ortholog in Medicago, result
in ectopic deposition of lignin, xylan, and cellulose in pith
cells (Wang et al., 2010). Its homolog in Populus, PtrWKRY19
(Potri.014G050000), is highly expressed in stems, especially in
pith. Finally, PtrWRKY19 can repress the expression of PtoC4H2
through W-box elements (Yang et al., 2016).

4CL
4CL is the third step in the phenylpropanoid pathway and
it is important for not only monolignol biosynthesis but also
the generation of other secondary metabolites (Tsai et al.,
2006). Based on the regulatory network, the two 4CL genes
(4CL3 and 4CL5) were correlated with multiple NAC and
MYB TFs (Figure 4). In Populus, the expression of 4CL5 was
upregulated in transgenic plants overexpressing PtrMYB152
(GenBank: XM_002302907, ortholog of Potri.017G130300), a
homolog of AtMYB58/63/85 (Li et al., 2014). Similarly, 4CL5
could be activated by another MYB member PtoMYB216 (Tian
et al., 2013). The promoters of 4CL genes include AC elements
that provide binding sites for secondary cell-wall-related MYB
genes. In several plant species, NAC TFs have been reported
to regulate the expression of 4CL genes. In support of these
observations, EjNAC1 had trans-activation activities on promoter
of Ej4CL1 (Xu et al., 2015) and the expression of 4CL was
repressed in Medicago nst mutant (Zhao et al., 2010). However,
whether 4CL genes are direct targets of NAC TFs in Populus
remains unknown.

C3H
The regulatory network pattern in Figure 4 reveals that C3H has
a similar pattern to the 4CL genes, indicating the transcriptional
regulation of C3H might be similar with 4CL genes. As expected,
the expression of C3H3 was also activated by PtoMYB216 and
PtrMYB152 (Tian et al., 2013; Li et al., 2014). Still, studies of

other species revealed that C3H could be regulated by other TF
families. Switchgrass PvMYB4 is a transcriptional repressor and
binds to the AC elements. The expression of C3H was activated
by overexpressing PvMYB4 in transgenic tobacco and switchgrass
(Shen et al., 2012). In Medicago nst mutant, the expression
of C3H was repressed due to loss-of-function of NST (Zhao
et al., 2010). In addition, the expression of C3H was induced by
overexpressing GbERF1-like, a Gossypium barbadense ethylene
response-related factor, in transgenic cotton and Arabidopsis
(Guo et al., 2016). The AC elements provide the binding sites for
the direct TF regulation.

HCT
HCT is involved in the production of methoxylated monolignols
that are precursors to G- and S-unit lignin. HCT-downregulated
plants are strikingly enriched in H lignin units, a minor
component of lignin (Wagner et al., 2007). In P. trichocarpa,
HCT1 and HCT6 display xylem-specific expression, which
is regulated by PtrWBLH2 and PtrWBLH1, respectively
(Chen et al., 2019). A recent study using genome-wide
association studies (GWAS) and expression quantitative
trait loci (eQTL)/expression quantitative trait nucleotide
(eQTN) studies identified a defense-related HCT2 that was
regulated by WRKY TFs (Zhang et al., 2018b), implying that
other TF families might be also involved in the transcriptional
regulation of HCT gene family under alternate developmental
circumstances. Heterologous expressing SbbHLH1, a Sorghum
bicolor basic helix-loop-helix gene, reduced the lignin content
through repress the expression of HCT in transgenic Arabidopsis
(Yan et al., 2013).

CCoAOMT
As shown in Figure 4, three CCoAOMT genes were highly
positively correlated with seven TFs in NAC family. It has
been reported that NAC TFs function as master regulators
in the lignin biosynthesis pathway. The SECONDARY WALL
NACs (SWNs) consists of two types NACs: SECONDARY
WALL-ASSOCIATED NAC DOMAIN PROTEIN (SND)/NAC
SECONDARY WALL THICKENING PROMOTING FACTOR
(NST) and VASCULAR-RELATED NAC DOMAINS (VNDs)
(Zhang et al., 2018a). In Arabidopsis, ectopic overexpression
of SND1 significantly induced the expression of CCoAOMT
(Zhong et al., 2006). In Populus, six SND1 homologs, named
PtrWND1-6 (WOOD ASSOCIATED NAC DOMAIN), are
highly expressed in the developing xylem. Overexpression
of PtrWND2B and PtrWND6B in Arabidopsis causes ectopic
deposition of secondary cell wall through activation of the
lignin, cellulose and xylan biosynthetic genes (Zhong et al.,
2010b). In Populus, the transcript of CCoAOMT1 was induced
by overexpressing WND3A (Yang et al., 2019). Zhou et al.
(2014) demonstrated that the promoter of CCoAOMT1 is directly
activated by Arabidopsis VND1-5. Similar results were also
found in Arabidopsis transgenic lines expressing PtrWND6B.
A transactivation assay indicates CCoAOMT is direct target
of PtrWND6B (Zhong et al., 2010b). In addition, MYB TFs
were also involved in transcriptional regulation of CCoAOMT.
As direct target of PtrWND2, PtrMYB3 and PtrMYB20
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(homologous of Arabidopsis MYB46/83) were able to activate
the promoters of PtrCCoAOMT1 through Arabidopsis protoplast
transactivation analysis (McCarthy et al., 2010).

CAld5H/F5H
F5H is a cytochrome P450 (CYP)-dependent monooxygenase,
it is specifically required for S-unit lignin biosynthesis and
diverts G-unit into the S-unit pathway (Humphreys et al.,
1999). Using P. trichocarpa wood-forming cell system, three
TFs (PtrMYB090, PtrMYB161 and PtrWBLH2) were identified
as upstream regulator of F5H genes in Populus (Chen et al.,
2019). In Medicago, the expression of F5H is directly regulated
by the secondary cell wall master switch NST1/SND1 (Zhao
et al., 2010). In addition, MYB103 is required for the expression
of F5H and S-lignin biosynthesis in Arabidopsis. The S-lignin
content, as well as transcript level of F5H, are strongly decreased
in the myb103 mutants, whereas the G-lignin content was
concomitantly increased (Öhman et al., 2013).

CCR and CAD
CCR and CAD catalyze the final steps of monolignol biosynthesis
(Figure 1). In many species, CCR and CAD exhibit similar
expression patterns in vascular tissues. The expression of
PtrCAD1 was repressed by PtrMYB174 in Populus (Chen et al.,
2019). Other studies indicated thatCCR2 andCADwere activated
by PtoMYB216 and PtrMYB152 (Tian et al., 2013; Li et al., 2014).
Using promoter deletion analysis, Rahantamalala et al. (2010)
identified an 80-bp region and a 50-bp region in the promoters
of E. gunnii EgCAD2 and EgCCR that contains MYB elements,
respectively. In addition, heterologous expressing Vitis vinifera
VvWRKY2 activate the expression of CCR and CAD in transgenic
tobacco (Guillaumie et al., 2010).

CSE
CSE is a recently identified novel enzymatic step in the lignin
biosynthetic pathway (Vanholme et al., 2013). Similar to other
MYB46/83 regulated genes, CSE has M46RE motifs in the
promoter region, and its expression is induced by MYB46 (Kim
et al., 2014). In Populus, it is directly regulated by PtrWBLH1,
a downstream regulator of PtrMYB021 (homolog of Arabidopsis
MYB46) (Chen et al., 2019). In addition, the regulatory network
indicated that CSE1 is negatively correlated with a WRKY TF in
Populus (Figure 4), but whether WRKY directly regulates CSE
needs to be confirmed.

COMT
COMT is critical for the S-unit lignin biosynthesis (Goujon et al.,
2003b). In Arabidopsis, COMT is directly regulated by a lignin-
specific MYB AtMYB58 through binding to the AC elements
(Zhou et al., 2009). A similar regulatory pattern is also observed in
Populus. That is, COMT2 is activated by PtoMYB170, PtrMYB090
and PtrMYB152, but not PtoMYB216 (Tian et al., 2013; Li et al.,
2014; Xu et al., 2017; Chen et al., 2019). In addition, the promoter
of Arabidopsis COMT could be bound by BP, a knotted1-like
homeobox (KNOX) gene (Mele et al., 2003). The TGMI analysis
indicated that COMT2 is highly associated with TFs in HD-ZIP
and LBD families, in addition to NAC and MYB TFs (Figure 4).
However, experimental evidence will be required to verify this
regulatory relationship.

POST-TRANSCRIPTIONAL REGULATION
OF LIGNIN BIOSYNTHESIS PATHWAY
GENES

Post-transcriptional regulation of lignin biosynthesis pathway
genes plays important roles in molecular regulation at the RNA
level, including controlling alternative splicing, RNA capping,
poly-A tail addition, and mRNA stability (Sullivan and Green,
1993). To date, studies of the post-transcriptional regulation of
lignin pathway have been focused on transcriptional regulatory
genes. In this section, we summarize recent progress on the post-
transcriptional regulation of regulatory genes in lignin pathway.

Alternative Splicing
Alternative splicing, as a post-transcriptional regulation
mechanism, allows organisms to increase their proteomic
diversity and regulate gene expression. It has been reported
that alternative splicing of key regulators and enzymes play a
critical role in the lignin biosynthesis pathway. A previous study
analyzed the transcriptome of 20 P. trichocarpa individuals and
found that ∼40% xylem genes are alternatively spliced, which
include cell wall-related genes C2H2 TF and glycosyl transferases
(Bao et al., 2013). Xu et al. (2014) compared the inter-species
conservation of alternative splicing events in the developing
xylem of Populus and Eucalyptus and found that ∼28% of
alternative splicing genes were putative orthologs in these two
species. Alternative splicing can also affect the expression of
downstream genes. For example, retention of intron 2 of Populus
PtrWND1B/PtrSND1, by alternative splicing, resulted in loss
of DNA binding and transactivation activities (Li et al., 2012).
This alternative splicing event appears to regulate secondary
cell wall thickening and the expression of the lignin-related
gene 4CL1. Similar alternative splicing was also observed in its
orthologs in Eucalyptus, but not in Arabidopsis (Zhao et al.,
2014). In addition, other members in the VND- and SND-type
NAC family are regulated by alternative splicing. For example,
retained introns of PtrSND1-A2 and PtrVND6-C1 play reciprocal
cross-regulation of the two families during wood formation
(Lin et al., 2017).

microRNA
microRNAs (miRNAs) are a class of small non-coding RNAs
with a 21-23 ribonucleotide RNA sequence that play central roles
in gene expression regulation through directing mRNA cleavage
or translational inhibition. Several miRNAs, such as miRNA397,
miRNA408, miRNA857, and miRNA528, have been reported
to target laccase (LAC) genes, encoding a class of blue copper
oxidase proteins involved in lignin polymerization (Sunkar and
Zhu, 2004; Lu et al., 2013). In Populus, the expression of 17
PtrLACs are down-regulated and lignin content is decreased by
overexpression of Ptr-miRNA397a (Lu et al., 2013). Arabidopsis
LAC4 controls both lignin biosynthesis and seed yield, and its
expression is controlled by miRNA397 member At-miRNA397b.
Overexpression of At-miRNA397b reduced lignin deposition
through repression of the biosynthesis of both S- and G-lignin
subunits (Wang et al., 2014). In addition, overexpression a
wounding-responsive miRNA828 can enhance lignin deposition
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and H2O2 accumulation through repressed expression of IbMYB
and IbTLD in sweet potato (Lin et al., 2012). Acacia mangium
miRNA166 is differentially expressed between phloem and xylem,
where it targets HD-ZIP III type TFs to regulate the expression
of C4H, CAD, and CCoAOMT (Ong and Wickneswari, 2012). In
maize, Zm-miRNA528, induced by excess nitrogen and repressed
by nitrogen deficiency, targets LAC3 and LAC5 and regulates the
biosynthesis of S-, G-, and H-subunits (Sun et al., 2018). Finally,
in Arabidopsis, miRNA858a directly regulates the expression of
several MYBs during flavonoid biosynthesis. Overexpression of
miRNA858a results in ectopic deposition of lignin in transgenic
plants (Sharma et al., 2016). Collectively, these results indicate
that miRNAs play important regulatory roles during multiple
levels of lignin biosynthesis.

Long Non-coding RNA
Long non-coding RNAs (lncRNAs) refer to transcripts that
lack coding potential and are greater than 200 nucleotides
(Kapranov et al., 2007). Chen et al. (2015) performed a
genome-wide identification of lncRNA in tension wood, opposite
wood and normal wood xylem of P. tomentosa and identified
16 genes targeted by lncRNAs that are involved in wood
formation processes, including lignin biosynthesis (Chen et al.,
2015). In a similar study, the interaction of NEEDED FOR
RDR2-INDEPENDENT DNA METHYLATION (NERD) and its
regulatory lncRNA NERDL, which is partially located within the
promoter region of NERD, is involved in the wood formation
processes in Populus (Shi et al., 2017). In cotton, Dt subgenome-
specific lncRNAs are enriched in lignin catabolic processes.
Wang et al. (2015) suggests that these lncRNAs may regulate
lignin biosynthesis by regulating the expression of LAC4 (Wang
et al., 2015). Although these studies imply the potential roles
of lncRNAs in lignin biosynthesis, the underlying regulatory
mechanism remain unverified.

CONCLUDING REMARKS

In this review, we provide a comprehensive summary of
the current knowledge of the transcriptional regulation of
lignin biosynthetic genes and post-transcriptional regulation of
regulatory genes in lignin biosynthesis in Populus. Lignin content
has been reported as important factor in biomass recalcitrance
for bioethanol conversion and production. Although many genes
that play a regulatory role in the lignin biosynthesis pathway

were captured in TGMI analysis, some previously reported lignin
pathway regulators were missing, possibly due to limited data
in our analysis. To overcome this issue and to capture other
regulatory genes, multiple datasets, pooled from various tissues
types during specific rapid developmental processes, should
be investigated. In addition, GWAS and eQTL/eQTN analyses
may provide further supportive lucidity in discovering novel
regulators and regulatory mechanisms in lignin biosynthesis.
Revealing the transcriptional and post-transcriptional regulatory
mechanisms in lignin biosynthesis will help clarify the parameters
of the lignin biosynthesis, ultimately improving the application
of lignocellulose in biofuels and bioenergy. Understanding the
increasingly complex lignin regulatory network will provide an
important theoretical basis for basic plant biology and utilization
of plant biomass.
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