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Liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS)
represents the most powerful metabolomics platform to investigate biological systems.
Reproducible and standardized workflows allow obtaining a meaningful biological
interpretation. The purpose of this study was to set up and apply an open-source
workflow for LC-HRMS plant metabolomics studies. Key steps of the proposed
workflow were as follows: (1) experimental design, (2) sample preparation, (3) LC-
HRMS analysis, (4) data processing, (5) custom database search, (6) statistical analysis,
(7) compound identification, and (8) biochemical interpretation. Its applicability was
evaluated through the study of metabolomics changes of two maize recombinant
inbred lines with contrasting phenotypes with respect to disease severity after Fusarium
verticillioides infection of seedlings. Analysis of data from the case-control study revealed
abundance change in metabolites belonging to different metabolic pathways, including
two amino acids (L-tryptophan and tyrosine), five flavonoids, and three N-hydroxynnamic
acid amides.

Keywords: metabolomics, Fusarium verticillioides, maize, high-resolution mass spectrometry (HRMS), open-
source workflow

INTRODUCTION

Metabolomics is a powerful approach for comprehensive investigation of metabolite variations in
biological systems (Blaženovic et al., 2018). Currently, liquid chromatography coupled with high-
resolution mass spectrometry (LC-HRMS) represents the most powerful metabolomics platform.
Untargeted metabolite mass profiles can be used for biological interpretations; however, approaches
that do not require the identification of the metabolic features should be used with extreme
caution, because they may lead to false interpretations. The identification of metabolites with a
high level of confidence is required in order to improve the meaning of metabolomics in biological
systems, such as plant–pathogen interaction and possible applications. Within this context, having
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available well-established computational tools and workflows is
essential for highly reproducible and repeatable metabolomics
studies. In addition, knowledge-based workflows for metabolite
annotations are highly desirable to complement information
relevant to mass spectrometry (MS) peaks relationships (adducts
and neutral losses), MS/MS data, and retention time modeling
with biochemical knowledge. Sharing workflows (research data
and processing tools) help to validate the findings reported in
publications and, more importantly, let researchers freely reuse
the data as they are, or as a reliable basis to move forward.
Therefore, a priority issue in the metabolomics field is the
validation and harmonization of untargeted approaches. In this
regard, a possible approach for validation of untargeted MS
methods to be used for food fraud detection has been proposed
by Cavanna et al. (2018). The proposed approach is based on tools
such as quality control samples to check analytical performances,
cross-validation, and receiver operating characteristic curves to
assess the goodness of the model, which is its ability to correctly
classify one condition and/or outcome from another. Moreover,
criteria to validate identified markers are proposed such as
survey of blind real samples, analysis of reference samples, and
integration of multiplatform data.

Fusarium verticillioides (Sacc.) Nirenberg is a predominant
endophyte and pathogen of maize causing substantial yield losses
and reduction of grain quality. Maize can be infected by the
fungus at all growth stages, from the early vegetative phases
to maturity. The fungus can be transmitted through infected
kernels and causes systemic infection that eventually contribute
to the development of seedling diseases (Bacon and Hinton,
1996), including seedling rot, root rot, and stalk rot (Yates et al.,
2003; Baldwin et al., 2014). The interest in this fungus has
also arisen from mycotoxin accumulation in preharvest infected
plants or in stored grains. Fusarium verticillioides mycotoxins,
including fumonisins, have been associated with chronic or acute
mycotoxicoses in livestock (Gelderblom et al., 1988).

Maize defends itself against F. verticillioides infection by
activating a multicomponent defense response (Lanubile et al.,
2017). The molecular basis of resistance to this fungus in
maize has been investigated through next-generation sequencing
approaches. These tools helped in the dissection of complex
traits as resistance to Fusarium infection of seedlings (FIS) and
mature kernels, and several markers and candidate genes were
proposed through the analysis of the transcriptional profiles of
resistant and susceptible maize kernels (Campos-Bermudez et al.,
2013; Lanubile et al., 2014; Maschietto et al., 2016; Wang et al.,
2016) and different maize panels and populations (Ju et al., 2017;
Maschietto et al., 2017; Septiani et al., 2019; Stagnati et al., 2019).
Additional potential biomarkers for F. verticillioides resistance
were proposed through the analysis of the proteomic profile
of susceptible maize embryos after F. verticillioides inoculation
(Campo et al., 2004). However, the strong influence of the
environment on this trait makes the identification of markers
in response to fungal infection difficult, and new approaches
are required to fill the gap between the genotype and the
observed phenotype.

To complement molecular studies, metabolomics-based
technologies provide a powerful tool to identify candidate

metabolites involved in resistance mechanisms. The metabolites
involved in cereal resistance to Fusarium infection derive from
primary and secondary plant metabolism and can be roughly
classified in six major groups: fatty acids, amino acids and
derivatives, carbohydrates, amines and polyamines, terpenoids,
and phenylpropanoids (Gauthier et al., 2015; Atanasova-
Penichon et al., 2016).

Most of the available metabolomics studies are based on
platforms such as GC-MS, nuclear magnetic resonance (NMR),
or LC-MS and are focused on resistance-related metabolites
in wheat and barley after Fusarium graminearum infection
(Hamzehzarghani et al., 2005, 2008; Browne and Brindle, 2007;
Paranidharan et al., 2008; Bollina et al., 2010; Cajka et al.,
2014; Gunnaiah and Kushalappa, 2014; Kage et al., 2017).
Few studies have been carried out to investigate the metabolic
defense induced by F. verticillioides in maize. Targeted analytical
approaches have been developed to study oxylipins produced by
F. verticillioides in maize seedling roots (Ludovici et al., 2014),
phenylpropanoids in maize pericarp (Sampietro et al., 2013), and
the effect of antioxidants, namely, ferulic acid, tocopherols, and
carotenoids, in resistance to Fusarium ear rot and fumonisin
accumulation in maize (Picot et al., 2013). To the best of
our knowledge, the only available studies based on untargeted
metabolite profiling have been reported by Campos-Bermudez
et al. (2013) and Righetti et al. (2019) aiming at detecting
metabolic changes associated to infection of F. verticillioides in
maize. The first study was based on gas chromatography/MS,
which can detect only volatile metabolites (Campos-Bermudez
et al., 2013). The second one used LC-HRMS to investigate
differences in metabolic profiles among maize commercial
hybrids in relation to fumonisin accumulation in naturally
contaminated samples under open-field conditions. This study
pointed out a significant influence from the hybrid genotype,
the environmental growing conditions, and lipid composition on
fumonisin accumulation.

The purpose of this work was to set up a workflow for LC-
HRMS plant metabolomics studies based on open-source data
processing tools, to provide a shareable approach that could be
the basis for future validation.

The developed workflow enables processing of data from
targeted and untargeted LC-HRMS analysis (profiling and
compound annotation). It is based on free and user-friendly
software facilitating data reuse and replication, interrogation,
and verification of obtained results. The applicability of the
developed approach is here demonstrated through a preliminary
investigation of the metabolic response of maize induced by
F. verticillioides infection. Evaluation studies were performed on
a case-control study, whereas further validation experiments will
be carried out in a future work.

MATERIALS AND METHODS

Materials and Reagents
Acetonitrile, methanol (both HPLC grade), and glacial acetic
acid were purchased from VWR International (Milan, Italy),
whereas ammonium acetate for MS was purchased from
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FIGURE 1 | Experimental design applied to study the metabolic responses in the two maize RILs (5_3 and 14_84) with contrasting phenotypes with respect to
disease severity after F. verticillioides infection of seedlings (FIS). The RILs are labeled as “high” and “low infection” on the basis of phenotypic value of FIS as
reported in Figure 3.

Sigma-Aldrich (Milan, Italy). Ultrapure water (18 M�) was
produced by a Millipore Milli-Q system (Millipore; Bedford, MA,
United States). (13C34)−FB1 internal standard was purchased
from BiopureReferenzsubstanzen (Tulln, Austria) as liquid
calibrant (25 mg/L) in acetonitrile.

Plant Material and in vitro Assay
The maize recombinant inbred lines (RILs) 5_3, 14_84,
and 18_27 with contrasting phenotypes with respect to the
disease severity after FIS were obtained from Scuola Superiore
Sant’Anna, Pisa, Italy (Dell’Acqua et al., 2015; Septiani et al.,
2019).

Forty seeds with similar size and without visible damages were
selected for each RIL, 20 to be used as a treated sample (Fusarium
inoculation) and 20 to be used as a control (mock inoculation)
(Figure 1). Seeds were surface-sterilized in a solution of 70%
ethanol shaken for 5 min at 50 rpm to reduce seed-borne
contaminations. Ethanol was removed, and seeds were washed by
sterilized bidistilled water for 1 min, then by a commercial bleach
solution for 10 min, and finally rinsed three times (5 min each)
with sterilized bidistilled water.

Six rolled towel assays (RTAs), for control and treated
conditions, were prepared for each RIL. Three towels of
germination paper (Anchor Paper, St. Paul, MN, United States)
for each RTA were moistened with sterilized bidistilled water; 20
seeds were placed evenly spaced on two base towels and were
covered with the third towel. In the treated RTA, the 20 seeds
were each inoculated by pipetting 100 µL of a 3.5 × 106 mL−1

spore suspension of F. verticillioides ITEM10027 (MPVP 294).
The strain was isolated from maize in South Tuscany, Italy, by
the Department of Sustainable Crop Production, Piacenza, Italy,
and deposited in their fungal collection and also in the Institute
of Sciences and Food Production, National Research Council of
Italy, Bari1. The towels were then rolled up, placed vertically in a

1http://server.ispa.cnr.it/ITEM/Collection

bucket and kept in transparent plastic bags separately for treated
and control to avoid cross-contamination. Rolled towel assays
were incubated at 25◦C in the dark for 7 days.

After incubation, RTAs were laid on a work bench and opened
to phenotype seedlings for FIS, seedling length (SL), and seedling
weight (SW). All traits were measured on each seedling in the
control RTAs, named as FISC, SLC, and SWC, and in the treated
RTAs, named as FIST, SLT, and SWT. The FIS was assessed
on each seedling by a visual evaluation of seedling size and
visible colonization of F. verticillioides in a scale from 1 to 5 as
previously described (Lanubile et al., 2015; Bernardi et al., 2018;
Stagnati et al., 2019). On this scale, 1 corresponds to complete
absence of disease symptoms, and five corresponds to complete
presence of disease symptoms. Seedling length was determined by
measuring the length of the seed from the tip of the shoot to the
tip of the root, in centimeters. Seedling weight was determined
by measuring the weight of the whole germinated seed using a
laboratory scale, in grams.

For FIS, SL, and SW trait analyses, standard deviations of the
means were calculated on 20 seedlings of three RTAs. Two-factor
analysis of variance (P < 0.05) was performed on the observed
means of FIS, SL, and SW traits of control and treated seedlings
of 5_3 and 14_84 lines. Genotypes and treatment were considered
as fixed factors to test their significances and the significance of
their interaction.

Kernel tissues were dissected from maize seedling samples of
the RILs for the further metabolomics analysis at 7 days after
inoculation with F. verticillioides and their respective controls
(mock inoculation), cryogenically milled, and stored at −80◦C
until the analysis.

Step 1: Experimental Design
The experimental design used in this study is shown in Figure 1.
It entailed four treatments (two RILs, 5_3 and 14_84; two
inoculations with water (mock) or pathogen, respectively). For
each treatment, three replicates were performed.
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The treatment combinations tested were as follows: control
(mock)– versus Fusarium-inoculated kernels for both RILs 5_3
and 14_84 to have information on metabolites generated after the
fungal infection (responsive metabolites) and then control (mock
line 5_3) versus control (mock line 14_84) to obtain information
on differences in constitutive metabolites potentially related to
the susceptibility. Three biological replicates were included in
each group to be statistically confident in the obtained results.

Step 2: Sample Preparation
Inoculated and control maize kernels were ground in liquid
nitrogen with a mortar and pestle and lyophilized. The
lyophilized sample (0.5 g) was extracted first with 2 mL methanol,
by 30-min shaking (extract A). After centrifugation (15 min,
4,000 × g), the extract A was removed, and the residue was
extracted again with 2 mL of a mixture acetonitrile/water (84:16)
with 1% acetic acid, by 30-min shaking (extract B). The extract
B was recovered by centrifugation (15 min, 4,000 × g). Extracts
A and B were unified and then diluted fourfold with water. An
aliquot of 200 µL (6.25 mg of matrix) was fortified by adding
20 µL of isotope-labeled internal standard ([13C34]–fumonisin B1
at 5 ng/µL). Samples were filtered through a 0.22-µm RC syringe
filter prior injection into the LC-HRMS apparatus.

Step 3: LC-HRMS Analysis
Liquid chromatography–HMRS analysis was performed on a
Q-ExactiveTM Plus mass spectrometer, equipped with a heated
electrospray ion source (HESI II) coupled to an Ultimate 3000
UHPLC system (all from Thermo Fisher Scientific, San Jose,
CA, United States).

The LC column was a Gemini R© C18 column (150 × 2 mm,
5-µm particles) (Phenomenex, Torrance, CA, United States),
preceded by a Gemini R© C18 guard column (4 × 2 mm). The
column oven was set at 40◦C. The flow rate of the mobile phase
was 200 µL/min, whereas the injection volume was 20 µL. Eluent
A was water, and eluent B was methanol, both containing 0.5%
acetic acid and 1 mM ammonium acetate. The following gradient
was used: the proportion of eluent B was kept constant at 10% for
5 min and then linearly increased to 80% in 36 min. Finally, it was
raised to 100% and kept constant for 5 min. The column was re-
equilibrated with 10% eluent B for 9 min. The HESI II ion source
was operated in positive ion mode and in negative mode, with the
following settings: sheath gas: 30 arbitrary units, auxiliary gas: 15
arbitrary units, spray voltage: 3 kV, S-lens RF level: 50 (arbitrary
units), capillary temperature: 320◦C, heater temperature: 300◦C.
A divert valve was used, and the eluent was directed to waste from
0 to 4 min and from 41 min until the end of the re-equilibration
step. Samples were injected in random order.

High-resolution mass spectrometry chromatograms were
acquired in positive and negative ionization mode, respectively
(a distinct run for each modality). A total of six scan events
were combined: one full scan event (mass range, 100–1,000 m/z);
resolving power 70,000 full width at half maximum (FWHM),
defined at m/z 400 and five MS2 scan events (with a resolving
power of 35,000 FWHM, defined at m/z 200). In the MS2 events,
the precursor ion ranges, m/z 95 to 205, 195 to 305, 295 to
405, 395 to 505, and 495 to 1,005 were selected consecutively,

by setting an inclusion list containing the following precursor
ions: m/z 150, 250, 350, and 450 (with an isolation window of
110 m/z) and m/z 750 (with an isolation window of 550 m/z).
The range of precursors with higher masses was set larger than
the other ones because fewer resistance related (RR) metabolites
were expected to fall within in this range. A stepped collision
energy at 30 and 80 normalized collision energy, automatic gain
control target 1 × 106, and maximum injection time of 200 ms
were applied in all MS2 events. The system was controlled by the
Xcalibur (version 3.1), Chromeleon MS Link 6.8, and Q-Exactive
Tune 2.8 software package.

Step 4: Data Processing (MZmine)
The obtained raw LC-HRMS data files were processed using
the MZmine 2.5 software (Pluskal et al., 2010). The software
can be downloaded for free at the following link: http://
mzmine.github.io/. Continuous data, acquired in positive mode
and negative mode, were processed separately. Data processing
(feature extraction) with MZmine comprised the following
steps: import data, MS peak detection, chromatogram building,
chromatogram deconvolution, isotope grouping, first alignment
(samples belonging to the same sample group were merged into
a single peak list, so four peak lists were obtained for each sample
group), MS row filtering, gap filling, second alignment (previous
peak lists were aligned in one peak list), manual inspection,
and principal component analysis (PCA). In these steps, the
retention time tolerance was set after checking the maximum
retention time of the internal standard ([13C34]–fumonisin B1)
between all samples.

MZmine modules involved in data processing and relevant
settings are summarized in Table 1.

Step 5: Custom Database Search
(MZmine)
The module “custom database search” is included in MZmine.
This module allows identifying peaks by consulting a database
created by the user. In this study, a Fusarium-specific database
was drafted in an Excel spreadsheet containing the following
information for each compound, arranged in columns: ID, m/z
(exact mass of [M+H]+ for ESI positive mode and [M-H]− for
ESI negative mode), molecular formula, chemical name, and
retention time (this parameter was set equal to 0 if retention
time was unknown). The database was saved into .csv format.
After database matching (Table 2), an adduct search and a
complex search were performed. Finally, the peak list was directly
exported from MZmine in .csv (comma separated values) format
compatible with MetaboAnalyst 4.0 web server2 (Xia et al., 2015).

Step 6: Statistical Analysis
(MetaboAnalyst)
The overall data set (.csv format) was opened in Excel, and
it was split into three matrices (data sets) containing features
related to the following sample groups: (a) Fusarium-inoculated
RIL 14_84 versus mock-inoculated RIL 14_84, (b) Fusarium-
inoculated RIL 5_3 versus mock-inoculated RIL 5_3, and (c)

2http://www.metaboanalyst.ca

Frontiers in Plant Science | www.frontiersin.org 4 June 2020 | Volume 11 | Article 664

http://mzmine.github.io/
http://mzmine.github.io/
http://www.metaboanalyst.ca
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00664 June 4, 2020 Time: 17:53 # 5

Ciasca et al. Workflow for LC-HRMS Metabolomics

TABLE 1 | MZmine modules involved in data processing and relevant settings.

Menu Module Item and settings

Raw data methods Raw data import

Filtering Crop-filtered (retention time: 4–41 min, polarity: positive, spectrum type: profile, m/z: autorange)

Peak detection (mass detection) Mass detector: “exact mass”, noise: 1 × 105, MS level:1

Peak detection (FTMS shoulder peak filter) Mass resolution: 70,000, peak module function: Lorentzian extended

Peak detection (chromatogram building) Minimum time span: 0.3 min, minimum height: 1 × 105, m/z tolerance: 0.001 m/z or 5 ppm

Peak list methods Peak detection (chromatogram deconvolution) Algorithm: local minimum search (chromatographic threshold: 40%, search minimum in retention
time range: 0.3 min, minimum relative height: 5%, minimum absolute height: 1.0 × 105, minimum
ratio of peak top/edge: 3 and peak duration range: 0.3–1.5 min

Isotopes (isotopic peak grouper) (m/z tolerance: 0.001 m/z or 5.0 ppm, retention time tolerance: 0.3 min absolute, maximum charge:
2, and representative isotope: most intense).

Alignment Join alignment: m/z tolerance: 0.001 m/z or 5.0 ppm, weight for m/z: 50, retention time tolerance
0.3 absolute, weight for RT: 50

Gap filling Same retention time and m/z range gap filler, m/z tolerance:0.001 m/z or 5.0 ppm

Filtering Peak list row filter (minimum peaks in a row: three, keep rows that match all criteria)

Alignment Join alignment: m/z tolerance: 0.001 m/z or 5.0 ppm, weight for m/z: 50, retention time tolerance
0.3 absolute, weight for retention time: 50

Project Set sample parameters Add experimental parameter (name: type sample, set of value, values “C_5_3,” “I_5_3,” “C_1484,”
“I_1484”)

Peak list methods Data analysis Principal component analysis, data files: select all, peaks: select all, coloring style: coloring by
parameter type

TABLE 2 | Custom database search (MzMine) module and settings.

Menu Module Setting

Peak list methods Identification—custom database search Database file: Fusarium DB, field separator:, filed order: ID, identity, formula, m/z, retention time
(min), m/z tolerance:0.001 m/z or 5 ppm, retention time tolerance: 0.3 absolute

Peak list methods Identification—adduct search Adduct: Na-H, NH4, RT tolerance: 0.3 absolute (min), m/z tolerance: 0.001 m/z or 5.0 ppm, max
relative adduct peak height: 30%

Peak list methods Identification—complex search Ionization method: [M + H]+ for ESI positive mode, [M - H]− for ESI negative mode, retention time
tolerance: 0.3 absolute (min), m/z tolerance: 0.001 m/z or 5.0 ppm, and with maximum complex
peak height of 50%

TABLE 3 | MetaboAnalyst statistical analysis module: items and settings.

Item Settings

Data type Peak intensity table, format: sample in column (unpaired),

Missing value Estimate the remaining missing values replace by a small
value (half of the minimum positive value in the original data)

Data filtering Interquartile range

Normalization Sample normalization: none, data transformation: none,
data scaling: Pareto scaling

Univariate analysis:
volcano plot

x axis—fold change threshold: 2.0 y axis—P value
threshold: 0.01 FDR-adjusted

mock-inoculated RIL 5_3 versus mock-inoculated RIL 14_84.
Each data set was saved into .csv format and subjected to
univariate analysis in the MetaboAnalyst 4.0 web server (see text
footnote 2) (Xia et al., 2015) by selecting the “statistical analysis”
module (Table 3).

Volcano plot analysis displays the fold change (FC) differences
and the statistical significance for each variable (p value). For each
feature, the FC is computed as the ratio between peak areas (mean
value of the replicates) of the two compared sample groups. The
log of the FC is plotted on the x axis so that changes in both
directions (up and down) appear equidistant from the center.

The y axis displays the negative log of the p value from the two-
sample t test. In this study, metabolite features with a p value
[corrected by false discovery rate (FDR)] less than 0.01 and FC
greater than two were considered both statistically significant
and biologically important. False discovery rate (Yoav and Yosef,
1995) was used for controlling the multiple testing problem, that
is, the accumulation of false-positive results (type I error) when a
confidence-based statistical test (the t test in the present case) is
applied in parallel across multiple features.

Once statistical analysis was performed, results for each
comparison were exported as graph (volcano plot) and .csv
file. The latter contained for each significant feature values of
“FC” “log2(FC)” “p.adjusted,” “-log10(p),” where adjusted is p
value FDR corrected.

Step 7: Identity Confirmation/Compound
Identification
Identity of putative metabolites was confirmed on the basis
of MS/MS fragment ions (measured in so-called DIA mode)
followed by database search on Mass Bank3, METLIN4, and

3http://www.massbank.jp/?lang=en
4http://metlin.scripps.edu
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MzCloud5. In METLIN, the Advanced Search tool was selected
to search for MS/MS fragments of metabolites based on different
parameters such as name, simplified molecular-input line-entry
system (SMILES), Kyoto Encyclopedia of Genes and Genomes
(KEGG) number. Accurate masses of the fragments obtained in
the same ionization mode were matched with the database by
setting a tolerance of 5 ppm. Compound names were also inserted
in the search tool of MzCloud to look for MS/MS fragments.

Step 8: Biochemical Interpretation
A pathway analysis was performed to better elucidate the
function of the altered metabolites by using MetaboAnalyst 4.0,
via KEGG pathway database6, compared with Oryza sativa ssp.
japonica (Rice Annotation Project Data Base7) pathway library
(Chong et al., 2019).

RESULTS AND DISCUSSION

The proposed workflow included the following steps (Figure 2):
(1) experimental design; (2) sample preparation; (3) LC-HRMS
analysis; (4) data processing (MZmine 2.358); (5) custom database
search against a Fusarium specific database (MZmine2.35,
see text footnote 8); (6) statistical analysis (Metaboanalyst
4.0, see text footnote 2); (7) compound identification; (8)
biochemical interpretation.

Compounds were classified according to confidence levels
as defined by the Compound Identification Workgroup of
the Metabolomic Society (Sumner et al., 2007; Blaženovic
et al., 2018), which are summarized in Table 4 together
with relevant minimum data requirements. It is worth
mentioning that open-source database and tools used in
the workflow are frequently updated; this could slightly affect
data reproducibility.

Experimental Design, Sample
Preparation, and LC-HRMS Analysis
Workflow application started by planning a suitable
experimental design to investigate the metabolic response

5https://www.mzcloud.org/
6http://www.genome.ad.jp/kegg/pathway.html
7http://rapdb.dna.affrc.go.jp
8http://mzmine.github.io/

of maize induced by F. verticillioides infection (Step 1).
To verify the suitability of the maize RILs selected for the
case-control study, their phenotypes were characterized with
respect to disease severity after F. verticillioides infection
of seedlings (FIS) by RTA screening. Rolled towel assay
methodology was chosen instead of field experiments to
minimize noncontrolled biological variations and environmental
effects to be confident that the observations were due only
to the investigated biological variation (i.e., infection by
Fusarium). The RTAs resulted in minor symptoms of
FIS for RIL 5_3 with respect to 14_84 at 7 days after
inoculation (Figure 3). Furthermore, higher SL and weight
values were measured for the RIL 5_3, supporting the better
performance of this line.

For metabolite extraction and characterization, the
experimental design has foreseen the comparison of the
following sample groups (Figure 1): control (mock inoculation)
versus Fusarium-inoculated kernels for both RILs 5_3 and
14_84 to have information on metabolites generated after
the fungal infection (responsive metabolites) and then
control (mock RIL 5_3) versus control (mock RIL14_84) to
obtain information on differences in constitutive metabolites
potentially related to defense mechanism. It is worth to
point out that, for a more complex study design (e.g.,
multiple time point and treatment group), sample size
calculation and power analysis should be considered for
inclusion in the workflow. This step can be performed
by MetaboAnalyst.

The need for an unselective sample extraction procedure
is dictated by the need to analyze as wide a range of
metabolites as possible (Vuckovic, 2012). Therefore, to maximize
the extractable metabolic information (Step 2), a protocol
involving two sequential extractions with methanol and acidified
aqueous acetonitrile 84:16 (vol/vol) was applied. The two-step
extraction procedure was preferred to a single extraction to
further increase recoveries of less polar compounds (Ciasca
et al., 2018). The addition of acetic acid was used to improve
recoveries of FBs, which were key fungal metabolites in this study
(Sulyok et al., 2006).

To ensure the reliability of the data generated by LC-
HRMS (Step 3), three issues were considered: (i) use of
internal standard, (ii) setting a broad scope acquisition mode
for untargeted analysis, and (iii) use of an appropriate
analysis sequence.

TABLE 4 | Description and minimum data requirements for confidence levels of compound identification (redrafted from Blaženovic et al., 2018).

Confidence levelDescription Minimum data requirements

Level 0 Unambiguous 3D structure: isolated pure compound, including full
stereochemistry

Following natural product guidelines, determination of 3D structure

Level 1 Confident 2D structure: uses reference standard match or full 2D structure
elucidation

At least two orthogonal techniques defining 2D structure confidently,
such as MS/MS and RT or CCS

Level 2 Probable structure: matched to literature data or databases by diagnostic
evidence

At least two orthogonal pieces of information, including evidence that
excludes all other candidates

Level 3 Possible structure or class: most likely structure, isomers possible, substance
class or substructure match

One or several candidates possible, requires at least one piece of
information supporting the proposed candidate

Level 4 Unknown feature of interest Presence in sample
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FIGURE 2 | Proposed workflow for LC-HRMS metabolomics studies.

In this study, isotopically labeled fumonisin B1 was added
as internal standard to the final test sample prior to LC-
HRMS analysis. Only one substance was used as internal
standard to not introduce further complexity in mass spectra,
as recommended by De Vos et al. (2007). Although the
internal standard was not representative for each class of
samples analyzed, it could be considered a guarantee of system
stability. To check for system stability, the sample set was
injected twice, and the coefficient of variation of internal
standard area over the whole injection sequence (CVa) was
calculated. The system was considered stable if CVa was less

than 20%. In this study, CVa resulted less than 15%. In
addition, the maximum variation of internal standard retention
time ([13C34]–fumonisin B1) was applied as filter criterion
(tolerance value) during retention time alignment in data
processing (Section “Step 4: Data Processing (MZmine)”). An
alternative approach to check and correct signal drift based
on the use of pooled QC samples (mix of all samples)
has been proposed (Dunn et al., 2012; Broadhurst et al.,
2018). This approach, together with multiple internal standard,
is recommended particularly for studies considering a large
number of samples.
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FIGURE 3 | Phenotypic values of Fusarium infection of seedlings (A), seedling
length (B), and seedling weight (C) in the control rolled towel assays (RTAs),
named as FISC, SLC, and SWC, and treated RTAs, named as FIST, SLT, and
SWT, in the recombinant inbred lines 5_3 (dark gray) and 14_84 (light gray).
Asterisks (*) indicate significant differences between 5_3 and 14_84 control
(mock inoculation) and means treated (Fusarium inoculated) within the same
trait, according to two-way analysis of variance (**P ≤ 0.01; ***P ≤ 0.001; ns,
not significant).

To set up a broad-scope acquisition method, the full-
scan/vDia acquisition modes were used (see section “Step 3:
LC-HRMS Analysis”). The alternation of two scan events with
and without fragmentation allowed obtaining product ions for
identity confirmation of the detected metabolites. Moreover,
two separate runs were acquired in positive and negative ion
modes, respectively.

The last issue to be considered was the analysis sequence.
Samples were injected in random order to avoid any possible
artificial sample aggregation due to the analytical drift. A blank
injection of 100% methanol was run at the beginning and at the
end of the sample set to check for carryover effects. The described

approach was developed on an HRMS instrument based on
OrbitrapTM analyzer. However, full scan and vDIA acquisition
modes can be also implemented on quadrupole time-of-flight
mass spectrometers, and similar information on the metabolite
structure can be expected, provided that same experimental
conditions are applied.

m/z Data Processing: MZmine
Step 4 of the workflow foresees features extraction (monoisotopic
m/z, charge, retention time, peak width, and peak area) from
full scan chromatograms acquired in positive and negative
ion mode. Liquid chromatography–HRMS raw data processing
was performed using MZmine version 2.35. The optimized
MZmine parameters for features extraction are reported in
Tables 1, 2. Parameters for filtering, peak detection, and gap
filling were set on the basis of the applied LC-HRMS conditions
(f.i. gradient elution, mass resolution, observed peak width,
and relative intensity). A peak list of 6,363 features from
positive ionization acquisitions and 3,736 features from negative
ionization acquisitions was obtained. Before proceeding to next
steps (custom database search and statistical analysis, Figure 2),
PCA was performed to check the overall quality of the analytical
system and method performance and to visually inspect for
samples out of clusters. Figure 4 depicts the score plot of
PCA relevant to the peak list from LC-HRMS chromatograms
acquired in positive ionization mode. The different colors
indicate data from samples from the different thesis (i.e.,
the RIL5_3 Fusarium inoculated, RIL 5_3 control, RIL14_84
Fusarium inoculated, RIL 14_84 control) for a better visualization
in the score plot.

The score scatter plot (Figure 4) shows a very clear separation
between the two RILs (5_3 and 14_84) and the treatments (mock
and Fusarium inoculation). The first principal component (1st
PC) explains differences between line 5_3 (negatively correlated)
and line 14_84 (positively correlated), whereas the second
principal component (2nd PC), explains differences between
control samples (negative correlated) and inoculated samples
(positive correlated). Because visual inspection of PCA showed a
sample clustering matching with the four thesis as defined in the
experimental design (Figure 1) and given the absence of samples
out of clusters, indicating the suitability of the experimental
design as well as of the feature extraction settings, it was possible
to proceed to the next step. When PCA shows undefined clusters,
this is an objective indication that improvements of LC-HMRS
conditions and/or sample preparation and/or the experimental
design are needed (Figure 2).

Custom Database Search (MZmine)
In Step 5, all the extracted features (peak list) were matched
against a Fusarium-specific database using the “custom database
search” tool of MZmine (section “Materials and Methods”).
The database used in this study included a total of 764
metabolites known to be involved in Fusarium infection of
cereals. In particular, the database included metabolites identified
in previously published studies dealing with Fusarium infection
in grains and all metabolites listed in the “Wheat Fusarium
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FIGURE 4 | Score scatter plot of principal component analysis relative to peak list from LC-HRMS chromatograms (positive ionization) of the sample set: RIL5_3
Fusarium inoculated (pink dots), RIL5_3 control (blue dots), RIL14_84 Fusarium inoculated (green dots), RIL14_84 control (red dots).

Head Blight Disease” (MWFD) database9. The whole database
is provided in Supplementary Table S1. Where available, the
use of a specific database offers advantages in terms of saving
time and biological meaning of the annotation, because it returns
only compounds related to the studied event. As additional
information, the “adduct search” tool of MZmine was used to
identify for each ion feature the main adducts that could be
formed in electrospray ion source.

Finally, the peak list returned by the custom database search
was exported into a .csv file suitable to be directly uploaded
into the Statistical Analysis module of the MetaboAnalyst
service (Step 6).

Statistical Analysis (MetaboAnalyst)
Because of the costs and efforts required to identify unknown
metabolites, a preliminary selection of the features (Step 6)
was applied prior to further identification and confirmation
steps. The applied criterion was to select only features showing
statistically significant differences after comparison between the
sample groups (thesis) as defined in the experimental design
(Figure 1). For this purpose the volcano plot was used to
identify the largest and most significantly changing features in
(a) Fusarium-inoculated RIL 14_84 versus mock-inoculated RIL
14_84, (b) Fusarium-inoculated RIL_5_3 versus mock-inoculated
RIL 5_3, (c) mock-inoculated RIL 5_3 versus mock-inoculated
RIL 14_84. Volcano plot analysis reveals metabolite features that
are up-regulated and down-regulated by p value and FC analysis
(Figure 5). Black lines in the plots indicate the p value threshold
(0.01, horizontal line) and the FC threshold (2, vertical line). The
upper quadrants contain the significant features (up-regulated
features on the left, down-regulated ones on the right, Figure 5).
The comparisons of features detected in F. verticillioides–infected

9https://bioinfo.nrc.ca/mwfd/index.php

and mock-inoculated maize kernels (controls) revealed that
after inoculation there was a major number of up-regulated
features with respect to down-regulated ones in both inbred
lines (70 and 74% for the 5_3 and 14_84 genotype, respectively).
Moreover, when comparing mock samples, RIL 5_3 exhibited a
higher percentage of up regulated features with respect to RIL
14_84.

For each profile comparison (volcano plot), MetaboAnalyst
also provides a .csv file containing the list of significant features
characterized by monoisotopic mass m/z, retention time, and
compound name, with the respective values of p and FC.
Unidentified features are termed as unknown compounds.
Significant features listed in the .csv file were then subjected to
inspection of mass fragmentation pattern and comparison with
reference standards (Step 7) to achieve a confidence level in
identification between 2 and 4 (Table 4).

Identify Confirmation/Compound
Identification
In Step 7, identity confirmation of putative metabolites (features
listed in the .csv file from Step 6) was performed by matching
the detected fragments, molecular ion and retention time
with molecular ion, fragmentation pattern in METLIN (see
text footnote 4), and Mass Bank10 databases. Table 5 lists
compounds showing an MS/MS fragmentation pattern matching
fully (identification level 2) or partially (identification level 3)
with consulted MS/MS databases. Reproducibility of MS/MS
spectra is an issue of utmost importance for compound
identification. Whereas the type of generated fragments is more
related to the chemical structure of metabolite itself and is
expected to be reproducible in different mass analyzer, some
complication in interpreting MS/MS spectra could be caused

10www.massbank.jp
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FIGURE 5 | Volcano plots relevant to the comparison of the extracted
features of (A) Fusarium-inoculated RIL 14_84 versus mock-inoculated RIL
14_84, (B) Fusarium-inoculated RIL_5_3 versus mock-inoculated RIL 5_3, (C)
mock-inoculated RIL 5_3 versus mock-inoculated RIL 14_84. Gray dots
indicate features not significantly different between the compared sample
groups. Pink dots indicate features significantly different between the
compared sample groups (absolute value of FC > 2, P < 0.01).

by changes in product ions ratios. Therefore, it is important
to compare MS/MS spectra obtained in double stage mass
analyzers, that is, able to isolate the precursor ion and to fragment
it in controlled collision conditions (collision energy and gas

flow), rather than using fragmentation products generated
in the ion source.

Biochemical Interpretation
For Step 8 (biochemical interpretation), the Pathway Analysis
was performed on significantly altered metabolites by using
O. sativa japonica to associate the biological functions of
identified metabolites to different pathways (Table 5 and
Supplementary Table S2). Five of 14 metabolites listed in
Table 5 were assigned to 10 different metabolic pathways, and
the pathways flavonoid biosynthesis; phenylalanine, tyrosine,
and tryptophan biosynthesis; and aminoacyl-tRNA biosynthesis
showed a higher number of metabolites (Supplementary
Table S2). The latter ones included the two amino acids L-
tryptophan and tyrosine, whereas the three compounds apigenin,
naringenin, and naringenin chalchone belonged to the flavonoid
biosynthesis pathway (Supplementary Table S2).

The detected L-tryptophan and tyrosine, together with
phenylalanine, are key amino acids for the synthesis of
compounds of the secondary metabolism, and their biosynthesis
is issued from the shikimate pathway. L-Tryptophan was
observed at constitutive level in line 14_84 with high level of
infection (log2FC = 27.8 for ratio mock-inoculated RIL 5_3
versus mock-inoculated RIL 14_84). On the other hand, tyrosine
was found at higher levels in the 5_3 mock-treated samples
(log2FC = 2.4) and induced after F. verticillioides inoculation in
both genotypes (log2FC = 14.5 vs. 21.1 for the 5_3 and 14_84
genotypes, respectively).

Several flavonoids accumulated after mock and fungal
treatment. Notably, the metabolite kaempferol-3-O-glucoside 7-
O-rhamnoside displayed elevated levels only in the mock 5_3
samples with log2FC values of approximately 22. Additionally,
the flavone apigenin and the flavanone naringenin were
significantly modulated after F. verticillioides inoculation. In
previous works, naringenin was described as a potential
biomarker for resistance to Fusarium head blight in some wheat
and barley cultivars (Kumaraswamy et al., 2011; Gunnaiah et al.,
2012) and was reported as an efficient inhibitor of in vitro
growth of F. graminearum (Bollina et al., 2010). The flavonoid
tetrahydroxy-(methylsuccinoyl)flavone was detected in both lines
and showed a common enhancement after fungal infection
(log2FC = 6.11 vs. 5.2 for 14_84 and 5_3 genotypes, respectively).
This compound was found affecting fumonisin accumulation in
maize, because it was abundant in highly contaminated maize
samples (Righetti et al., 2019). The identification of almost 100
putative flavonoids playing a part in the chemical repository
of wheat and barley against F. graminearum was described by
Gauthier et al. (2015). Furthermore, findings from Venturini
et al. (2015) corroborated the involvement of flavonoids in
the resistance of maize to Fusarium ear rot and fumonisin
accumulation contributing to hardening of kernel pericarp,
supporting the central role of this class of metabolites in maize
defense responses.

In addition to the importance of flavonoids in the fight against
fungal pathogens, metabolic profiling of 5_3 and 14_84 genotypes
following fungal treatment also revealed the N-hydroxynnamic
acid amides (HCAAs) coumaroylserotonin, feruloylserotonin,
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TABLE 5 | List of significant metabolites (P ≤ 0.01 and relative changes FC > | 2|) classified as Fusarium verticillioides (Fv)–responsive maize metabolites specific to RIL
14_84 (derived from volcano plots Fusarium-inoculated RIL 14_84 vs. mock-inoculated RIL 14_84), specific to RIL5_3 (Fusarium-inoculated RIL_5_3 vs.
mock-inoculated RIL 5_3), common to both genotypes, and constitutive (mock-inoculated RIL 5_3 vs. mock-inoculated RIL 14_84).

Putative name IUPAC name Rt (min) Adduct
M+H/M+H-H2O*

Fragment ions
(m/z)

Class Assigned status

L-Tryptophan 5,7-Dihydroxy-2-(4hydroxyphenyl)-4H-
chromen-4-one

7.2 205.09715 188.0704,
146.0599,
144.0807,
159.0916,
118.06541

AA Constitutive 14_84

Tyrosine (2S)-2-amino-3-(4-hydroxyphenyl)propanoic
acid

14.4 182.08117 136.0757,
165.0547,
123.0440

AA Constitutive 5_3;
Common

Apigenin 5,7-Dihydroxy-2-(4-hydroxyphenyl)-4H-
chromen-4-one

25.7 271.0601 153.0182,
119.0491

PP FL: flavone Fv responsive
14_84

N-coumaroylserotonin 2E)-N-[2-(5-Hydroxy-1H-indol-3-yl)ethyl]-3-(4-
hydroxyphenyl)
acrylamide

24.1 323.1390 nd PP not FL Fv responsive
14_84

N-feruloylserotonin (2E)-N-[2-(5-Hydroxy-1H-indol-3-yl)ethyl]-3-(4-
hydroxy-3-methoxyphenyl)
acrylamide

24.8 353.1496 nd PP not FL Common

Feruloyltryptamine (E)-3-(4-hydroxy-3-methoxyphenyl)-N-[2-(1H-
indol-3-yl)ethyl]prop-2-enamide

30.7 307.1441 119.0943 PP not FL Common

Fumonisin B1 2-[2-[19-Amino-6-(3,4-dicarboxybutanoyloxy)-
11,16,18-trihydroxy-5,9-dimethylicosan-7-
yl]oxy-2-oxoethyl]butanedioic
acid

31.1 722.3939 370.3316,
352.3210,
334.3104,
316.2998

Mycotoxins Common

Fumonisin B2 (2R)-2-[2-[(5R,6R,7S,9S,16R,18S,19S)-19-
amino-6-[(3R)-3,4-dicarboxybutanoyl]oxy-
16,18-dihydroxy-5,9-dimethylicosan-7-yl]oxy-
2-oxoethyl]butanedioic
acid

36.0 706.3995 688.3903,
530.3687,
512.3582,
354.3366,
336.3261

Mycotoxins Common

Fumonisin B3 2-[2-[(5R,6R,7S,9S,11R,18R,19S)-19-amino-6-
(3,4-dicarboxybutanoyloxy)-11,18-dihydroxy-
5,9-dimethylicosan-7-yl]oxy-2-
oxoethyl]butanedioic
acid

33.9 706.3995 688.3903,
30.3687,

512.3582,
354.3366,336.3261

Mycotoxins Common

Fusarin C Methyl
(2E,3E,5E,7E,9E)-2-ethylidene-11-[(1R,4S,5R)-
4-hydroxy-4-(2-hydroxyethyl)-2-oxo-6-oxa-3-
azabicyclo[3.1.0]hexan-1-yl]-4,6,10-trimethyl-
11-oxoundeca-3,5,7,9-tetraenoate

35.8 432.2017 273.14851,
213.1271,
111.0446

Mycotoxins Common

Kaempferol-3-O-
glucoside-7-O-
rhamnosideisomer

5-Hydroxy-2-(4-hydroxyphenyl)-3-[(2S,5S)-
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-
yl]oxy-7-[(2S,4S,5R)-3,4,5-trihydroxy-6-
methyloxan-2-yl]oxychromen-4-one

18.7 595.1657 449.1078,
287.0550,
121.0284

PP FL: flavanols Constitutive 5_3

Kaempferol-3-O-
glucoside7-O-
rhamnosideisomer

21.7 595.1657 nd PP FL: flavanols Constitutive 5_3

Kaempferol-3-O-
glucoside7-O-
rhamnosideisomer

20.9 595.1657 nd PP FL: flavanols Constitutive 5_3

Narigenin 5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-
one

29.2 273.0753 153.0186,119.0491 PP FL: flavanone Fv responsive
14_84

Narigeninchalchone (E)-3-(4-hydroxyphenyl)-1-(2,4,6-
trihydroxyphenyl)prop-2-en-1-one

30.6 273.0753 153.0186,
147.0441,119.0491

PP FL: flavanone Common

Tetrahydroxy-
(methylsuccinoyl)flavon

2-Methyl-4-oxo-4-[3,5,7-trihydroxy-2-(4-
hydroxyphenyl)-4-oxochromen-8-yl]butanoic
acid

40.5 383.0755* nd flavonoids Common

AA, amino acids; PP FL, phenylpropanoids flavonoids; PP not FL, phenylpropanoids not flavonoids; FA, fatty acids; ns, not significant (FC > 2, P > 0.01); nd, fragments
not detected. MS/MS fragments in bold characters indicate the actual match of the fragments in the database.
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and feruloyltryptamine. N-hydroxynnamic acid amides are the
results of the condensation of hydroxycinnamoyl-coA thioesters
and aromatic amines, as tryptamine and serotonin both derive
from the identified tryptophan. N-hydroxynnamic acid amides
can be regarded as metabolic intermediates and accumulate
in the cell wall acting as physical barrier against pathogens.
Moreover, they reduce the plant digestibility, inhibit fungal
hyphae growth, and are induced by physical injury, pathogen
infection, and elicitor treatment (Balmer et al., 2013; Macoy
et al., 2015). Serotonin and its HCAAs, p-coumaroylserotonin
and feruloylserotonin, were also accumulated in Bipolaris oryzae
infected leaves of rice (Ishihara et al., 2008) and in resistant
wheat cultivars after F. graminearum infection (Gunnaiah et al.,
2012). Interestingly, in this study, the feruloylserotonin and
feruloyltryptamine metabolites were observed in both genotypes
after F. verticillioides infection, whereas the coumaroylserotonin
showed enhanced levels specifically in the 14_84 genotype
(log2FC = 23.8).

The seeds of the two maize selected lines were also
analyzed for fumonisin and fusarin content (Table 5). After
F. verticillioides inoculation, both genotypes exhibited the
presence of mycotoxins, with slightly higher levels of fumonisin
B1 in the 5_3 treated samples (log2FC = 15.7 vs. 6.1 for the 5_3
and 14_84 genotypes, respectively). Despite the line 5_3 displayed
lower severity of the disease compared to the 14_84 genotype,
the fungus was able to synthesize toxic metabolites inside kernel
tissues. A low relation between disease intensity and levels of
fumonisins could be an inherent factor of this pathosystem,
a hypothesis also reinforced by other studies. Afolabi et al.
(2007) suggested that genetic factors that affect grain infection
may act independently of those affecting fumonisin production.
Moreover, the quantitative genetic nature of these two traits
could partly explain the presence of mycotoxins even in case of
such asymptomatic infection (Munkvold and Desjardins, 1997;
Saunders et al., 2001; Sánchez-Rangel and SanJuan-Badillo, 2005;
Picot et al., 2010; Rosa Junior et al., 2019).

In this regard, much effort should be addressed at selecting
genetic material resistant to both characteristics, because there
is not always a relationship between fungal infection and
fumonisin production.

Verification
To obtain preliminary information on the reproducibility of the
developed workflow, the procedure was applied to a further
sample set. Mock (control)– and F. verticillioides–inoculated
samples were prepared for a maize RIL (18_27) characterized by a
high level of infection (severity value approximately 3.9). Samples
were processed according to the workflow in Figure 2.

After extraction and LC-HRMS analysis, data processing by
MZmine returned a score plot of PCA with two sample clusters
relating to Fusarium-inoculated samples and mock-inoculated
samples. In agreement with the first case study, mock-inoculated
samples were negatively correlated, whereas Fusarium-inoculated
ones showed a positive correlation along 1st PC.

Volcano plot analysis revealed a slightly higher number of up-
regulated features (57%) with respect to down-regulated (43%)
ones. Results were quite similar to those obtained from the

comparison Fusarium-inoculated versus control for RIL14_84
showing very close disease severity values (3.7 vs. 3.9 for RIL
14_84 and RIL 18_27, respectively).

Identity confirmation of putative metabolites among features
listed in the .csv file after profile comparison (volcano plot)
analysis led to the identification of mycotoxins B1 (log2FC:15.7),
fumonisin B2 (log2FC:13.6), fumonisin B3 (log2FC:13.7), and
fusarin C (log2FC:14.8). Moreover, there was an increase
of apigenin (log2FC:2.6), feruloylserotonin (log2FC:4.5),
and p-coumaroylserotonin (log2FC: 4.7) after inoculation
with F. verticillioides. Fold change values were higher than
those obtained for RIL14_84 (apigenin, log2FC:2.6 vs. 24.2,
feruloylserotonin, log2FC: 4.5 vs. 22.8, p-coumaroylserotonin,
log2FC: 4.7 vs. 23.8 for RIL 1,827 and 1,484, respectively).

Amino acids such as L-tryptophan (log2FC:-17.3) and L-
phenilalanine (log2FC:-21.35) were more abundant in mock-
inoculated compared with Fusarium-inoculated in RIL 18_27.
L-Tryptophan was also found such as constitutive metabolite of
line 14_84.

Therefore, coumaroylserotonin and apigenin were confirmed
to be a F. verticillioides–responsive metabolite, whereas L-
tryptophan was a putative constitutive metabolite being detected
in two RILs showing high disease severity.

CONCLUSION

In the present work, a workflow based on open-source and
user-friendly tools for LC-HRMS plant metabolomics studies
was presented. The workflow, covering all key steps from
the experimental design to biochemical interpretation, allows
identifying candidate metabolites in a single LC-MS analysis
sequence.

Its applicability was evaluated through the study of
metabolomics changes of two maize RILs with contrasting
phenotypes with respect to disease severity after to
F. verticillioides infection of seedlings. Constitutive metabolites
and responsive metabolites belonging to different metabolic
pathways were identified. In particular, kaempferol-3-
O-glucoside7-O-rhamnoside and tyrosine were classified
as constitutive metabolites of RIL 5_3 showing minor
disease symptoms, whereas tryptophan was more abundant
at constitutive level in RIL 14_84 with higher disease
severity. Moreover, after fungal infection in RIL 14_84 was
observed, an increment of apigenin, coumaroylserotonin,
and naringenin. Finally, feruloyl-tryptamine, tryptophan, and
several mycotoxins were detected such as responsive metabolites
common to both lines.

These findings were confirmed in a verification study
suggesting the suitability of the proposed workflow for future
validation studies (a possible approach has been reported by Naz
et al., 2014) including interlaboratory comparison. These data
will enable to evaluate the applicability of the proposed workflow
to larger studies.

The proposed workflow has been designed for the study of
the metabolic profiles of plants. It describes and discusses each
step, from sample preparation to data analysis and biochemical
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interpretation. Indeed, other tools have been described in the
literature (Dunn et al., 2011, XCMS Online11, Galaxy12). However,
the proposed work describes the process of adapting available
tools to a specific control-case study, such as investigating
on changes in plant metabolite profile after fungal infection.
MetaboAnalyst was chosen among the available tools, because
it offers the most complete support for statistical analysis,
functional interpretation, and integration with other -omic
data. Even though the MetaboAnalyst modules have not been
fully exploited in this study, the perspective of integrating
them in further steps of the workflow for future developments
remains open. MZmine was used prior to MetaboAnalyst
given its better performances in feature extraction from raw
data.
11 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3703953/
12 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5192046/
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