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To develop a stable estimation model and identify effective wavelengths that could
explain the variations in leaf nitrogen (N) concentration with different N supplies,
growing seasons, ecological locations, growth stages, and wheat cultivars. Four field
experiments were performed during two consecutive years (2017–2019) at three sites
(Yuanyang, Hebi, and Wenxian) in Henan, China. In situ canopy spectral reflectance
data under the aforementioned N supply conditions were obtained over a range of
400–950 nm (visible and near-infrared region). On the basis of the canopy raw spectral
reflectance data and their subsequent transformation by two different techniques, first-
derivative reflectance (FDR) and continuum removal (CR), four multivariate regression
methods were comparatively analyzed and used to develop predictive models for
estimating leaf N concentration: multiple linear regression (MLR), principal component
regression (PCR), partial least square (PLS), and support vector machine (SVM). Results
showed that leaf N concentration and canopy reflectance significantly varied with
the levels of N fertilization, and a good correlation was observed for all the spectral
techniques. Seven wavelengths with relatively higher r values than the bands of the raw
spectra centered at 508, 525, 572, 709, 780, 876, and 925 nm were specified using
the FDR technique. Based on the full wavelengths, the FDR-SVM model exhibited a
good performance for leaf N concentration estimation, with coefficients of determination
(r2

val) for the validation datasets and corresponding relative percent deviations (RPDval)
values of 0.842 and 2.383, respectively. However, the FDR-PLS yielded a more
accurate assessment of the leaf N concentration than did the other methods, with
r2

val and RPDval values of 0.857 and 2.535, respectively. The variable importance in
projection (VIP) scores from the FDR-PLS with the all canopy spectral region were
used to screen the effective wavelengths of the spectral data. Therefore, six effective
wavelengths centered at 525, 573, 710, 780, 875, and 924 nm were identified for leaf
N concentration estimation. The SVM regression method with the effective wavelengths

Frontiers in Plant Science | www.frontiersin.org 1 June 2020 | Volume 11 | Article 755

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2020.00755
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpls.2020.00755
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2020.00755&domain=pdf&date_stamp=2020-06-26
https://www.frontiersin.org/articles/10.3389/fpls.2020.00755/full
http://loop.frontiersin.org/people/936900/overview
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-11-00755 June 25, 2020 Time: 14:38 # 2

Li et al. Nitrogen Estimation With Canopy Spectroscopy

showed excellent performance for leaf N concentration estimation with r2
val = 0.823 and

RPDval = 2.280. These results demonstrated that the in situ canopy spectral technique
is promising for the estimation of leaf N concentration in winter wheat based on the
FDR-PLS regression model and the effective wavelengths identified.

Keywords: precision nitrogen management, spectral analysis, estimation model, first derivative reflectance,
partial least square regression

INTRODUCTION

Nitrogen (N) is an essential element of pigments as well as
proteins associated with crop N status, and N is important in
terms of plant vigor, yield formation, and grain quality (Din
et al., 2018). Precise N management and accurate estimation
of crop N status are the most common problems in modern
agricultural systems not only for economic reasons but also for
minimizing the atmospheric, soil, and water pollution associated
with excessive N supply (Zhao et al., 2016; Din et al., 2018).
Currently, several techniques for the non-destructive estimation
of crop N have been proposed, including leaf color charts, SPAD-
502, Dualex 4, and CCM-2000 (Schächtl et al., 2005; Din et al.,
2018; Zhao et al., 2018). However, all these instruments center on
the local test of the leaves and are not practical for application
across large fields. Moreover, the techniques actually rely on
the absorption of crop chlorophyll and carotenoid instead of N.
Several elements, such as leaf thickness, leaf specific mass, the leaf
position, the areas from which leaves are measured (Daughtry
et al., 2000; Muñoz-Huerta et al., 2013), crop growth, cultivar,
and solar radiation (Tahir Ata-Ul-Karim et al., 2016; Din et al.,
2018), can influence the results. To overcome these problems,
canopy spectral remote sensing (CSRS) has emerged and is
recommended as an alternative effective and non-destructive
technique for rapidly estimating crop N status (Yao et al., 2015;
Prey and Schmidhalter, 2019).

Canopy spectral remote sensing is a promising approach
for the accurate and real-time estimation of crop N status
and other growth variables over large areas (Ecarnot et al.,
2013; Feng et al., 2015). CSRS analyses may be performed
with field-based spectral radiometers such as the ASD FieldSpec
Handheld 2, which can generate a high resolution (<5 nm)
and continuous spectrum at each pixel that is influenced
by N compounds, chlorophyll status, and crop structures;
therefore, it provides an effective method for assessing leaf N
concentration at whole canopy scales (Gómez-Casero et al., 2010;
Yao et al., 2010; Feng et al., 2015). However, the canopy raw
spectra are, however, influenced by the solar radiant flux, crop
structure characteristics (e.g., biomass, leaf area index, blade
incidence, and plant height), and soil background conditions
(Feng et al., 2014; Mahajan et al., 2014). Thus, identifying effective
wavelengths for rapidly estimating crop leaf N concentration
has become an extremely important topic in canopy spectral
studies. Several canopy spectral transformation techniques, such
as first-derivative reflectance (FDR) (Ihuoma and Madramootoo,
2019; Wen et al., 2019) and continuum removal (CR) (Tian
et al., 2017; Tan et al., 2019), have been used to improve the

signal-to-noise ratio, minimize the impact of atmospheric noise,
and enhance weak spectral information of remote monitoring
of leaf N concentration in crops. Experimental investigations
have shown that the FDR technique can resolve overlapping
absorption phenomena and can minimize the influences of soil
or atmospheric background noise (Hruschka, 1987; Miphokasap
et al., 2012). Moreover, the CR technique can smooth the spectra,
eliminate signal errors caused by the instruments themselves, and
suppress the noise within spectral data (Mutanga et al., 2005;
Summers et al., 2009; Tan et al., 2019).

On the basis of nearly contiguous spectral wavelengths,
overfitting, redundancy, and multicollinearity problems might
occur during the modeling of the canopy raw spectra and their
subsequent transformation (e.g., via FDR or CR). Multivariable
statistical regression methods such as multiple linear regression
(MLR), principal component regression (PCR), and partial least
square (PLS) analysis were used to reduce multicollinearity
and establish a quantitative monitoring model for estimating
leaf N concentration (Hansen and Schjoerring, 2003; Wang
et al., 2011; Thorp et al., 2017). Rather than using individual
wavelengths for the construction of vegetation indices, the
aforementioned approaches incorporate all wavelength data into
models for the estimation of plant physiological and biochemical
properties (Thorp et al., 2017). For example, MLR is the linear
combination of the full-range spectral reflectance and is also
the most widely used method for rapidly estimating crop leaf
N concentration using spectral measurements (Huang et al.,
2004; Wang et al., 2011). The PCR is a linear regression that
first decomposes the spectra into a suite of PCs that offers the
maximum variation of the spectra with the aim of optimizing
the estimative capacity of the model; it then regresses the PCs
against the response variable (Cho et al., 2007; Foster et al.,
2016). PLS is closely related to PCR. The difference between
PCR and PLS is that while the former uses only the independent
variables (e.g., spectral wavelengths) to construct new PCs, the
PLS uses both the independent and dependent variables (e.g., leaf
N concentration) that will play the role of explanatory variables
to construct PCs. Moreover, the PLS method can reduce the high
dimensional and collinear spectral reflectance data to a small
quantity of latent variables and effectively eliminate or minimize
the overfitting problem (Foster et al., 2016). However, MLR, PCR,
and PLS were initially selected for laboratory spectroscopy but
are now increasingly used for analyzing CSRS data of maize
(Weber et al., 2012; Kawamura et al., 2018), rice (Inoue et al.,
2012; Li F. et al., 2014; Li X. C. et al., 2014), and grasslands
(Kawamura et al., 2010). Previous studies showed that the
selection of effective wavelengths can refine the predictive ability
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of the standard full spectrum by optimizing important effective
wavelengths; therefore, several effective wavelength selection
methods such as MLR, PCR, and PLS have been developed
(Bolster et al., 1996; Yao et al., 2015; Kawamura et al., 2018).
Nonetheless, only a limited number of studies made an attempt
to evaluate the aforementioned effective wavelength selection
methods in combination with spectral transformation techniques
(CR and FDR) for a comparative and comprehensive estimation
of leaf N concentration of winter wheat. Moreover, limited
previous research, along with its recommended algorithms and
spectral indices, has been conducted to estimate the leaf N
concentration in the same ecological locations (Montes et al.,
2011; Cao et al., 2017; Zhao et al., 2018; Bruning et al., 2019),
neglecting the problem of unsynchronized winter wheat growth
stages under different conditions. Therefore, further work is
needed to systematically analyze the performance of multiple
methods for predicting leaf N concentration in winter wheat
under different ecological areas, unsynchronized growth stages,
cultivars, and N supply.

The specific objectives of this study were to (1) study
the relationship between winter wheat leaf N concentration
and the in situ canopy raw spectra and the transformation
techniques from field spectral data; (2) compare the reliability
and performance of the applied multivariate regression methods
based on the raw and the transformed (FDR, CR) spectra
for the estimation of leaf N concentration; (3) determine
the optimal method with highest robustness and accuracy
and lowest complexity that can rapidly estimate the leaf N
concentration of winter wheat; and (4) determine the sensitivity
of the effective wavelengths by using the identified monitoring
method and construction of an estimation model of wheat leaf
N concentration.

MATERIALS AND METHODS

Experimental Design
Four experiments on wheat were carried out across two growing
seasons, with one field located in Yuanyang County (35◦6′ N,
113◦56′ E), two in Hebi city (35◦40′ N, 114◦17′ E), and one
in Wenxian County (34◦57′ N, 112◦59′ E) in Henan Province,
North China (Figure 1A). The following variables were included
in the study of hexaploid winter wheat: year, ecosystem, cultivar,
N application rate, and sampling date. A randomized complete
block design including all treatments in the field experiments
was applied, with three replications (Supplementary Table S1
and Figures 1B,C). For all the treatments, phosphorus (P) and
potassium (K) nutrition were applied. The recommended P
and K fertilizer rates were 120 kg ha−1 (as superphosphate,
12% P2O5) and 90 kg ha−1 K2O (as potassium chloride, 60%
K2O). Moreover, the detailed information of N supply (as
controlled-release urea, 44% N) is shown in Supplementary
Table S1. All nutrient resources were applied as a basal
fertilizer prior to sowing. Other winter wheat management
practices, such as the use of herbicides and disease and pest
control followed the local standard practices during the two
growing seasons.

Sampling and Measurement
Spectral Measurements
In this study, all the in situ canopy reflectance spectra
were obtained with an ASD FieldSpec Handheld 2 passive
spectroradiometer (ASD Inc., Boulder, CO, United States) at
nadir from a height of approximately 1.0 m above the winter
wheat canopy under sunny conditions between 11:00 and 14:00
(Figure 1D). To reduce the influence of atmospheric and field
conditions, the winter wheat canopy spectral reflectance was
measured at six sites in each plot, and 60 scans served as the mean
canopy spectrum for each plot. A 30 × 30-cm BaSO4 calibration
Spectralon R© panel (Spectralon R©, Labsphere, Inc., North Sutton,
NH, United States) was applied to calibrate the reflectance and
radiance before and after taking a measurement. Wavelengths
below 400 and above 900 nm were excluded due to the low signal.
Therefore, the canopy reflectance data were resampled within the
range of 400–900 nm.

Leaf Nitrogen Concentration
After each measurement of in situ canopy spectral reflectance,
four areas of 0.30 m2 (60 cm long × 50 cm wide; the spacing
interval between the two rows was 20 cm) of winter wheat
plants from each plot were immediately selected to determine
the leaf N concentration (%) values by the H2SO4-H2O2 method
(Thomas et al., 1967). The leaf N concentration was measured
via a flow injection auto-analyzer (AA3, Bran and Luebbe,
Norderstedt, Germany).

Transformation Techniques of Winter
Wheat in situ Canopy Spectra
To smooth the spectra, the frequently used Savitzky-Golay filter
was applied, and a second-order polynomial with a window size
of five spectral wavelengths was added to eliminate signal noise
(Gholizadeh et al., 2015). Afterward, two spectral transformation
techniques, FDR and CR, were compared to identify the best
techniques for the rapid estimation of the leaf N concentration
from the raw reflectance spectra (Curran et al., 2001; Sims and
Gamon, 2002).

First-Derivative Reflectance
First-Derivative Reflectance spectral transformation technique
was applied to reduce the impacts of multiple scattering of
radiation (Ihuoma and Madramootoo, 2019). The FDR formula
is as follows (Miphokasap et al., 2012):

FDR(λi =

[
R(λi+1)− R(λi−1)

]
21λ

(1)

Where R(λi+1) and R(λi−1)are the reflectance values at i+ 1 and
i−1, respectively; and 1λ is the wavelength increment.

Continuum Removal
The CR spectral transformation technique was also used to
estimate the leaf N concentration. The continuum line is a convex
hull to connect the local maxima of a spectrum (Figure 2). The
method was used to assess crop biochemicals with dried plant
leaves (Curran et al., 2001), and to the best of our knowledge,
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FIGURE 1 | Sites (A), close-up view (B) of the field experiments, aerial view of the N supply plots (C), and measurements of winter wheat canopy spectral
reflectance (D).

studies that have extended this technique to in situ canopy
spectra under field conditions combined with the quantification
of leaf N concentration in winter wheat are relatively rare
(Li et al., 2019).

Data Analysis
Four different multivariate regression methods were
comparatively analyzed and used to estimate the winter
wheat N status at the canopy levels: MLR, PCR, PLS, and support
vector machine (SVM).

Multiple Linear Regression Analysis
Multiple linear regression is a common approach used to
calibrate the relationship between multiple independent
variables and a dependent variable, which was successfully
used for the evaluation of in situ canopy spectra and
involved stretching the results of a simple linear regression
analysis from a single dimension into multiple dimensions
(Bruning et al., 2019).

Principal Component Regression
Analysis
Principal component regression is based on principal component
analysis and is also a widely adopted method for dimensionality
reduction of spectral data. The optimal number of components to
contain in the model was identified by the number of components
that had the lowest root mean square error of cross-validation
(RMSECV). A 20-fold leave-one-out cross-validation procedure
was applied for validating the PCR models to avoid overfitting
or underfitting.

Partial Least Square Analysis
Partial least square is a powerful method that can be used
to reduce the in situ reflectance data effectively into a few
latent variables with information content and thus maximize
the covariance between the spectra and leaf N concentration.
The optimal number of latent variables (ONLVs) of the PLS
was the same as that of the PCR and was confirmed based
on the lowest RMSECV using the leave-one-out method. In
addition, reflectance spectra obtained in this study contained 551
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FIGURE 2 | Schematic diagram of the continuum removal technique on the
winter wheat canopy.

bands in the range of 400–950 nm. The variable importance in
projection (VIP) scores resulting from the PLS were applied to
select the effective wavelengths for rapidly estimating the leaf N
concentration. The threshold score of a VIP is 1.0; therefore, a
higher VIP score indicates that the wavelength is more important
to estimate the leaf N concentration, while the wavelength
having a lower VIP score has less impact on the estimation
(Word et al., 2001).

Support Vector Machine Analysis
In this study, the Gaussian radial basis function (RBF) kernel
was used for the SVM technique, and the detailed introduction
of the SVM regression model is reported by Schölkopf et al.
(2000) and Bishop (2006).

Model Calibration and Validation
The data function from the four field experiments is shown in
Supplementary Table S1. Correlation analysis between the in situ
reflectance spectra and leaf N concentration was performed
using the SAS 8.0 (SAS Institute, Cary, NC, United States).
The MLR, PCR, PLS, and SVM methods were analyzed using
MATLAB 2019a (MathWorks, Natick, MA, United States). The
performance of all the regression models was evaluated by the
coefficient of determination (r2), root mean square error (RMSE),
and relative percent deviation (RPD) in both the calibration
and validation datasets. Detailed information concerning the r2

and RPD values of the regression methods is shown in Table 1
(Chang et al., 2001).

RESULTS

Leaf Nitrogen Concentration in Winter
Wheat
Table 2 shows the results of the descriptive analyses of
the leaf N concentration in the calibration, validation,
and combined datasets. In the combined datasets, the

TABLE 1 | Classification of the performance of the regression methods in terms of
r2 and RPD values.

Standards Model performance

Unacceptable Acceptable Excellent

r2 <0.50 0.75–0.50 >0.75

RPD <1.40 2.00–1.40 >2.00

RPD, relative percent deviation.

treatments (N rates, ecological sites, and growing seasons
and stages) generated a wide range of leaf N concentration
(1.06–6.16%). Among the datasets, compared with those of
validation datasets, the mean and range of the calibration
datasets were greater, showing that the classification of the
data is appropriate.

Variability of the in situ Spectra Obtained
at Various Nitrogen Supplies
The spectral characteristics of canopy reflectance were
significantly different under the different N treatments but
exhibited similar patterns in both the calibration and validation
datasets (Figure 3). In the visible spectral region (400–710 nm),
the in situ canopy reflectance was higher at low N supply,
whereas in the near-infrared spectral region (70–950 nm), the
canopy reflectance tended to decrease with decreasing N rates.
In addition, reflectance in the near-infrared region led to greater
variability compared with that in the visible region, the radiation
of which chlorophyll absorbs. The results show that radiation
in the near-infrared region was responsive to the different N
supply during different growth stages but tended to saturate
at high N supply.

Correlation of the Leaf Nitrogen
Concentration With In situ Canopy
Spectra for the Calibration Datasets
To clarify the relationships of the canopy raw spectra and their
subsequent transformation (via the FDR and CR techniques)
with the winter wheat leaf N concentration, correlation analysis
was applied to 551 spectral bands from 400 to 950 nm for
the calibration datasets (Figure 4). First, a negative correlation
was detected for the visible wavelengths, with the lowest r
in the 525–570 nm range (r < 0.60, n = 165), whereas a
positive correlation was found in the near-infrared region, with
the greatest r value in the 720–745 nm region (r > 0.80,
n = 165) for the raw spectra (Figure 4A). The FDR spectra
showed a correlations throughout the full wavelength region
(400–950 nm) that was stronger than the region of the raw
spectra and exhibited more prominent valleys and peaks, for
example, at 508, 525, 572, 709, 780, 876, and 925 nm, etc.,
(Figure 4B). Moreover, the leaf N concentrations exhibited
a weak negative correlation with the CR spectra in the
ultraviolet wavelength region (400–420 nm) and a strong
positive relationship in the visible near-infrared wavelength
region (420–950 nm). The average r values in the ultraviolet,
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TABLE 2 | Statistics of winter wheat leaf nitrogen concentration for the calibration and validation datasets.

Datasets Number of samples Mean (%) Maximum (%) Minimum (%) SD CV (%)

Calibration datasets 165 3.90 6.16 1.06 1.21 31.03

Validation datasets 150 3.70 6.02 1.12 1.27 34.32

All datasets 315 3.80 6.16 1.06 1.24 32.63

SD, standard deviation; CV (%), coefficient of variation.

FIGURE 3 | Effect of nitrogen (N) status on the in situ canopy spectral reflectance of winter wheat for the calibration (A,B) and validation (C,D) datasets.

FIGURE 4 | Correlation analysis between the leaf nitrogen concentration in winter wheat and canopy hyperspectral reflectance and its transformation in the
calibration dataset under various N rates: (A) R spectra, (B) FDR spectra and (C) CR spectra.
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visible, and near-infrared regions were −0.021, 0.551, and 0.636,
respectively (Figure 4C).

Accuracy of Leaf Nitrogen Concentration
Estimation With the Multiple Linear
Regression, Principal Component
Regression, Partial Least Square, and
Support Vector Machine
The robustness and accuracy of the four regression methods for
leaf N concentration estimation using the statistical indicators
r2

cal/val, RMSEcal/val, and RPDcal/val based on different spectral
transformation techniques (raw, FDR and CR spectra) were
evaluated and compared (Table 3). The FDR based on the PLS
analysis generally yielded a measurement accuracy (r2

cal = 0.886,
RPDcal = 2.973; r2

val = 0.857, RPDval = 2.535) that was greater
than that of the other three methods and models. Moreover,
the second most important technique for leaf N concentration
estimation after the FDR-PLS was FDR-SVM, which yielded
relatively low r2

cal/val (1.96 and 1.78%, respectively) and
RPDcal/val (3.69 and 6.38%, respectively) values in the calibration
and validation datasets, respectively. The poorest performance
was acquired using the FDR-MLR model (Table 3), with an r2

cal
of 0.784, RPDcal of 2.086, r2

val of 0.746, and RPDval of 1.584,
respectively. The aforementioned results indicate that the FDR-
PLS model estimated the leaf N concentration the best and was
identified as the preferred model for use in subsequent analyses.

Effective Wavelength Identification
Number of Latent Variables and Cross-Validation
In this study, the ONLVs was first determined according to the
lowest value of the RMSECV (Figure 5A) via the leave-one-out
method based on the FDR-PLS model (Figure 5B). To identify
the ONLVs, the calibration datasets were applied to investigate
how well the model with a different number of latent variables
fit the data. As shown in Figure 5A, when the number of

latent variables increased, the RMSECV value of the FDR-PLS
model tended to decrease. However, the presence of inadequate
latent variables led to underfitting, showing the requirement of
a balance between the RMSECV value and the number of latent
variables. With this criterion, the ONLVs for the FDR-PLS was 7.
Figure 5B shows the accuracy of the cross-validation based on the
FDR-PLS for the leaf N concentration estimation. Compared with
those from the best fit technique (FDR) for the PLS method, both
the r2 (r2

CV = 0.868) and RPD (RPDCV = 2.756) values in the
cross-validation were relatively high, indicating that the model
was acceptable and that the ONLVs was suitable.

Loading Weights of the First-Derivative
Reflectance–Partial Least Square
Regression Model
To first clarify the relative impact of each wavelength, the loading
weight value was computed and analyzed on the basis of the
FDR-PLS model output (Figure 6). The loading weights showed
how the latent variables resulting from the FDR-PLS model were
developed from scaled estimators of the in situ reflectance spectra
(Figures 5, 6). A relatively high absolute loading weight value
indicates that the specific wavelength is crucial for the estimation
of the leaf N concentration of winter wheat. In this study, the
first four latent variables elucidated more than 81% of the canopy
spectral reflectance variances and 82% of the leaf N concentration
variances. The highest absolute loading weight values of each
wavelength for rapidly estimating the leaf N concentration were
in the visible (525 and 573 nm), red-edge (710 nm), and near-
infrared wavelengths region (785, 870, and 930 nm) in the first
latent variables of the FDR-PLS model (Figure 6). The selected
wavelengths of the second loading weight were also in the visible
(525 and 570 nm), red-edge (678, and 730 nm), and near-infrared
wavelengths region (930 nm), while those of the third and fourth
loading weights were nearly the same as those of the first and
second loading weights.

TABLE 3 | MLR, PCR, PLS, and SVM for predicting leaf nitrogen concentration in winter wheat based on different spectral transformation techniques.

Methods Spectral techniques Calibration datasets Validation datasets

r2
cal RMSEcal RPDcal r2

val RMSEval RPDval

MLR Raw Spectra 0.706 0.699 1.731 0.681 0.824 1.542

FDR Spectra 0.784 0.580 2.086 0.746 0.802 1.584

CR Spectra 0.753 0.631 1.918 0.731 0.792 1.604

PCR Raw Spectra 0.764 0.585 2.068 0.755 0.631 2.013

FDR Spectra 0.837 0.501 2.415 0.811 0.575 2.209

CR Spectra 0.814 0.522 2.318 0.793 0.603 2.106

PLS Raw Spectra 0.816 0.518 2.336 0.806 0.601 2.113

FDR Spectra 0.886 0.407 2.973 0.857 0.501 2.535

CR Spectra 0.854 0.463 2.613 0.824 0.576 2.205

SVM R Spectra 0.804 0.573 2.112 0.789 0.624 2.035

FDR Spectra 0.869 0.422 2.867 0.842 0.533 2.383

CR Spectra 0.831 0.501 2.415 0.807 0.604 2.103

The FDR is highlighted to emphasize the best predictive performance of the four models for predicting leaf nitrogen concentration. MLR, multiple linear regression; PCR,
principal component regression; PLS, partial least square; SVM, support vector machine.
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FIGURE 5 | Plots with the root mean square error of cross-validation (RMSECV) with the number of latent variables (A) and cross-validation between the observed
and predicted leaf nitrogen concentration values (B).

FIGURE 6 | Loading weight over the full wavelength regions for the first four latent variables (PC1–PC4) of the first-derivative reflectance (FDR)-partial least square
(PLS) for leaf nitrogen concentration estimation: (A) PC1, (B) PC2, (C) PC3, and (D) PC4.
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FIGURE 7 | The variable importance in projection (VIP) values over the full
wavelength regions for leaf N concentration estimation.

Effective Wavelength Identification by
Variable Importance in Projection Values
Based on the First-Derivative
Reflectance–Partial Least Square Model
Owing to the high dimensionality of canopy spectral reflectance
data with redundancy between the adjacent wavelengths, it was
necessary to select several effective wavelengths that have the
most representative information for rapidly estimating the leaf
N concentration of winter wheat. Thus, the VIP scores were
applied to select the effective wavelengths for predicting the leaf
N concentration from the full spectral region on the basis of
the FDR-PLS model (Figure 7). Generally, a high VIP score
shows that the specific wavelength is of vital importance (the
threshold value of VIP is 1.0). As shown in Figure 7, given that
numerous wavelengths have relatively high VIP scores (>1.0), it
was difficult to identify and distinguish the effective wavelengths
for rapidly estimating the leaf N concentration. Therefore, the
threshold value of the VIP was set at 2.0 in this study, and six
wavelengths were selected as effective, two in the visible (525 and
573 nm), one in the red-edge (710 nm), and three in the near-
infrared region (780, 875, and 924 nm) (Figure 7). Obviously, the
identified effective wavelengths based on the VIP for estimating
the leaf N concentration were shown in the same region of PC1
loading weight (Figure 6A).

Multiple Linear Regression, Principal
Component Regression, Partial Least
Square, and Support Vector Machine
Analysis With Effective Wavelengths
To further illuminate the potential and robustness of the
identified effective wavelengths for rapidly estimating the leaf
N concentration of winter wheat, MLR, PCR, PLS, and
SVM analyses were developed again based on these effective

wavelengths. Figure 8 shows the optimal setting of the meta-
parameters with the FDR-SVM model. In this study, the optimal
combination of epsilon (0.1), g (3.16), and c (100) were calculated
based on the RMSECV. Moreover, the results shown in Table 4
indicated that the FDR-PLS model not only exhibited better
performance on the calibration datasets, but also offered higher
prediction accuracy on the validation datasets. Although 98.91%
(551 vs. 6) of the canopy spectral reflectance variable information
was eliminated for the leaf N concentration estimation, the r2

val
(4.6% for FDR-PLS and 2.3% for FDR-SVM) and RPD (13.5%
for FDR-PLS and 4.5% for FDR-SVM) values only showed a
slight reduction. The results showed that the identified effective
wavelengths and selected revalidated models were promising for
rapidly estimating the leaf N concentration of winter wheat with
less computational effort.

DISCUSSION

Our study demonstrates that CSRS can successfully estimate
winter wheat N status. Canopy reflectance decreased from
visible region and increased from near-infrared region as
leaf N concentration increased (Figure 3). Increased N
rates could increase greenness, reflecting a combination of
chlorophyll concentration, structural agronomic parameters, and
leaf anatomical structure characteristics (Colwell, 1974; Yao et al.,
2013; Barankova et al., 2016). The interpretation of the effect of
canopy spectral reflectance followed the general assumption that
a decrease in greenness or chlorophyll creates higher reflectance
in the visible region due to decreased light absorption from a
lower chlorophyll concentration (Hinzman et al., 1986; Li et al.,
2018a,b). The opposite effect was found in the near-infrared
region; the relative high reflectance spectra observed were due to
the canopy and leaf internal scattering and the apparent structure
parameters, such as leaf area index and biomass (Colwell, 1974;
Hansen and Schjoerring, 2003).

In general, two major approaches have been developed for
remote estimation of crop N status: (i) empirical statistical
methods and (ii) physically based retrieval methods such
as canopy radiative transfer models (RTMs) (Darvishzadeh
et al., 2011; Li et al., 2016). These two methods are
mutually complementary (Viña et al., 2011), however, the
main disadvantages in using RTM is the ill-posed nature of
model inversion (Combal et al., 2002; Houborg et al., 2009),
meaning that the inverse solution is not always unique as
various combinations of canopy parameters may yield almost
similar spectra (Fang et al., 2003). Consequently, the empirical
approaches are used more extensively than RTM due to their
straightforward mechanisms and efficient computations and have
been proposed as better predictors of crop N status (Viña et al.,
2011; Delegido et al., 2013). Our study also demonstrates that
CSRS can successfully estimate winter wheat N status using
the multivariate statistical approaches. Results indicated that
the FDR-PLS was superior to the other models in estimation
accuracy (Table 3). These results are consistent with those of
Wang et al. (2017) and Nguyen and Lee (2006), showing that
the PLS method could reduce the high dimensionality and
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FIGURE 8 | Contour map view of g, c, selected by the grid-search method with the first-derivative reflectance (FDR)–support vector machine (SVM) model for leaf
nitrogen concentration prediction.

multicollinearity problem of spectral data. The PCR method
accounts for only the variance of the explanatory independent
variables without considering the internal relationships between
the wavelengths and response dependent variables, whereas
the PLS accounts for both (Atzberger et al., 2010). Although
MLR is the most widely used method for crop biophysical and
biochemical estimation using spectral method (Curran et al.,
2001; Wang et al., 2011), it might have a collinearity problem
(Grossman et al., 1996).

To further rank the estimation models in their predictive
power, we calculated several other statistical parameters like the
slope (b), intercept (a), and coefficient of deviation (CD) of the
linear regressions (y = a + bx) (Supplementary Table S2). The
CD values are all higher than 1.0, indicating that the four models
overestimated the predicted values compared to the measured

TABLE 4 | FDR-MLR, FDR-PCR, FDR-PLS, and FDR-SVM analysis for leaf
nitrogen concentration prediction of winter wheat using effective wavelengths.

Models Calibration datasets Validation datasets

r2
cal RMSE cal RPD cal r2

val RMSE val RPD val

FDR-MLR 0.753 0.642 1.885 0.713 0.895 1.419

FDR-PCR 0.808 0.581 2.083 0.784 0.615 2.065

FDR-PLS 0.854 0.452 2.677 0.819 0.569 2.232

FDR-SVM 0.857 0.458 2.642 0.823 0.557 2.280

data (Müller et al., 2008). The reason for this is presumably
the higher range of the calibration datasets than the validation
datasets (Table 2), which can be subject to the field conditions
uncertainty and as a result lead to considerably overestimation
error in the modeling process.

In this study, we mainly discussed the effect of the visible
near-infrared range of canopy reflectance on winter wheat N
estimation. For a typical crop canopy, reflectance in the visible
spectrum and near-infrared region is often used to estimate leaf
N concentration indirectly due to the strong positive correlation
with leaf chlorophyll content and pronounced sensitivity to
canopy structures (Kokaly, 2001; Gitelson et al., 2005; Li et al.,
2019). However, the sensitive absorption wavelength of N lies
in short-wave-infrared, which is easily obscured by water-vapor
absorption characteristics (Curran, 1989; Fourty et al., 1996;
Feng et al., 2008). Moreover, the spectral sensing information
obtained in this study was from field-based spectral radiometers;
research on aerial-based hyperspectral imagery for crop N status
estimation is an important tendency in precision agriculture
(Nigon et al., 2015; Bruning et al., 2019). Unlike conventional
field-based spectrometers that only collect spectral information
for a single point, a hyperspectral imaging system can obtain
images of the whole target for each wavelength recorded (Wu
and Sun, 2013). Future work should evaluate these results
for diverse species, under different environmental conditions,
and using not only in situ measurements but also airborne
and satellite data.
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CONCLUSION

The overall results from this research showed that winter wheat
leaf N concentration could be assessed with reasonable accuracy
from field in situ canopy spectral data. We conclude that: (i)
the FDR-PLS regression model was performed better than other
model techniques evaluated for leaf N concentration of winter
wheat; (ii) Six bands centered at 525, 573, 710, 780, 875, and
924 nm were identified as effective wavelengths for leaf N
concentration estimation using the in situ canopy spectra; (iii)
An acceptable accuracy with r2 (r2

cal = 0.857; r2
val = 0.823) and

RPD (RPDcal = 2.642; RPDval = 2.280) was acquired using the
FDR-SVM based on the effective wavelengths.
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