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The word “melanin” refers to a group of high molecular weight, black, and brown pigments 
formed through the oxidation and polymerization of phenolic compounds. This pigment 
is present in all kingdoms of living organisms, but it remains the most enigmatic pigment 
in plants. The poor solubility of melanin in particular solvents and its complex polymeric 
nature significantly constrain its study. Plant melanin synthesis is mostly associated with 
the enzymatic browning reaction that occurs in wounded plant tissues. This reaction 
occurs when, due to the disruption of cellular compartmentation, the chloroplast-located 
polyphenol oxidases (PPOs) release from the chloroplast and interact with their vacuolar 
substrates to produce o-quinones, which in turn polymerize to melanin. Furthermore, 
the presence of melanin in intact seed tissues has been demonstrated by diagnostic 
physicochemical tests. Unlike the well-studied enzymatic browning reaction, little is known 
about how melanin is formed in seeds. Recent data have shown that it is a tightly 
controlled genetic process that involves many genes, among which the genes encoding 
PPOs might be key. The present article aims to provide an overview of the current 
knowledge on melanin in plants and to discuss future perspectives on its study in light 
of recent findings.
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INTRODUCTION

Brown and black seed color is a widespread trait in plants. The color can be  caused by melanin, 
which is a high molecular weight pigment formed by the oxidation and polymerization of phenols 
(Britton, 1985; Solano, 2014). It is present in all kingdoms of living organisms but remains hitherto 
the most enigmatic pigment in plants. The lack of scientific attention to this plant pigment is 
due to the absence of obvious functions that might be  ascribed to it (Thomas, 1955). For a long 
time, this plant pigment was not considered to be  melanin since, according to the definition of 
the term “melanin,” which was formulated based on explorations of melanin in animals, it must 
be  a nitrogen-containing pigment; melanin in plants does not contain nitrogen (Thomas, 1955; 
Prota, 1992). Comparative studies of the black pigments extracted from microorganisms, plants, 
and animals revealed their common physicochemical properties except for the presence of nitrogen 
(Nicolaus et  al., 1964). The terminology was reconsidered, and the requirement for nitrogen was 
excluded from the definition of the term “melanin” (Britton, 1985; Solano, 2014). Currently, three 
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FIGURE 1 | Some plant species accumulate melanins in seeds; the presence 
of melanins was confirmed by physicochemical methods. First row (from left to 
right): chestnut (Castanea mollissima) and oat (Avena sativa), second row: 
sunflower (Helianthus annuus), watermelon (Citrullus lanatus), and barley 
(Hordeum vulgare), third row: buckwheat (Fagopyrum esculentum), grape (Vítis 
vinífera), and ipomoea (Ipomoea purpurea), fourth row: sesame (Sesamum 
indicum), rape (Brassica napus), and black mustard (Brassica nigra).

types of melanin are recognized: eumelanins, pheomelanins, and 
allomelanins. Eumelanins are predominant forms found in animals 
and microorganisms, and occur in some fungi; pheomelanins 
are specific of higher animals, mammals, or birds. Both of  
them are derivatives of tyrosine, but pheomelanins consist of  
sulfur-containing monomeric units, mostly benzothiazine and 
benzothiazol, instead of indole units in eumelanins. Plant and 
fungal melanin, devoid of nitrogen is generically named as 
allomelanin (other melanins). It is the most heterogeneous group; 
its precursors are varied. Fungal melanin can be  formed  
from gamma-glutaminyl-3,4-dihydroxybenzene, catechol, and 
1,8-dihydroxynaphthalene, while catechol, caffeic, chlorogenic, 
protocatechuic, and gallic acids are considered to be  the possible 
precursors in plants (Lyakh, 1981; Bell and Wheeler, 1986; Solano, 
2014). Due to the unique features of melanin, such as its stable 
free radical state, ultraviolet-visible (UV-Vis) light absorption, 
and complexation and ion-exchange capacities, these pigments 
have attracted growing interest as materials for a broad range 
of biomedical and technological applications (d’Ischia et al., 2015; 
Di Mauro et  al., 2017; Vahidzadeh et  al., 2018). Since plant 
melanin is present in most cases in low-cost agricultural waste 
products (e.g., grape pomace and sunflower seed husks), it has 
attracted special attention. The potential of melanin from sunflower 
husks as a sorbent with high enterosorption efficiency and as 
an antiaging agent in elastomer compositions has been demonstrated 
(Gracheva and Zheltobryukhov, 2019; Kablov et  al., 2019).

In comparison with those in animals and microorganisms, 
the biochemical and molecular-genetic aspects of melanin 
formation in plants have been less studied. One of the reasons, 
in addition to the complex polymeric nature of the pigment, 
is that plant melanin accumulates in hard seed envelopes where 
other compounds with similar colors, such as proanthocyanidins, 
can be  present. It seems clear that the starting point of any 
biochemical and molecular-genetic study of melanogenesis in 
plants is to confirm the melanic nature of the pigment. To 
evaluate the current state of research on plant melanogenesis 
and outline future research directions, in this review, we gathered 
data on the functions, localization, and molecular-genetic control 
of melanin formation in seeds with an emphasis on studies 
in which the melanic nature of the pigment was proven by 
physicochemical methods.

PHYSICOCHEMICAL METHODS TO 
IDENTIFY AND STUDY PLANT 
MELANINS

The standard protocol of melanin detection includes their 
alkaline extraction and subsequent precipitation in acid 
conditions (Sava et  al., 2001). Extracted this way pigment 
material represents a dark glossy powder, which is insoluble 
in water and in the most organic solvents, partially soluble 
in concentrated sulfuric and nitric acids, and fully soluble 
in sodium hydroxide. When exposed to strong oxidizing 
agents, such as hydrogen peroxide, potassium permanganate, 
or bromine water, the pigment loses its color, while exposure 
to ferric chloride results in the precipitation of a flocculent 

material that gradually redissolves when the concentration 
of ferric chloride is raised. The results of the reactions 
indicate the presence of quinoid and phenolic groups in 
melanins (Thomas, 1955; Fox and Kuchnow, 1965; Lyakh, 1981; 
Downie et  al., 2003; Shoeva et  al., 2020).

In addition to chemical tests, spectroscopic techniques have 
been applied to confirm the melanic nature of pigments. 
UV-Vis spectroscopy is the most broadly used to identify 
and quantify melanins. Melanins of different origin are 
characterized by high absorbance in visible and ultraviolet 
spectrum with the maximum at 196–300  nm (Lyakh, 1981; 
Pralea et  al., 2019). To identify the major functional groups 
in the melanin macromolecules, Fourier transform infrared 
(FT-IR) spectroscopy has been used. The typical FT-IR spectra 
of melanin include characteristic bands for phenolic fragments, 
quinone, aliphatic hydrocarbon groups, and an aromatic carbon 
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backbone (Mbonyiryivuze et  al., 2015; Pralea et  al., 2019). 
Nuclear magnetic resonance (NMR) analysis can be  used to 
confirm the presence in melanins aromatic hydrogens and 
carbons, methyl, or methylene groups attached to nitrogen 
and/or oxygen atoms, NH-group linked to indole, alkyl fragments 
(Pralea et  al., 2019). Melanins are paramagnetic biopolymers 
due to the presence of stable free radicals, which can be detected 
by electron paramagnetic resonance (EPR) spectroscopy 
(Butterfield, 1982). A characteristic EPR signal of melanins 
is attributed to semiquinone radicals (Enochs et  al., 1993).

Through the use of chemical tests in combination with 
some of the described spectroscopic techniques, the melanic 
nature of the black pigments in seeds has been proved for 
the following species: watermelon (Nicolaus et  al., 1964), 
sunflower (Nicolaus et al., 1964; Gracheva and Zheltobryukhov, 
2016), buckwheat (Zhuravel, 2010), grape (Zherebin and Litvina, 
1991), tomato (Downie et al., 2003), fragrant olive (Wang et al., 
2006), night jasmine (Kannan and Ganjewala, 2009), sesame 
(Panzella et  al., 2012), ipomoea (Park, 2012), black mustard 
and rape (Yu, 2013), chestnut (Yao et  al., 2012), garlic (Wang 
and Rhim, 2019), oat (Varga et  al., 2016), and barley (Shoeva 
et  al., 2020; Figure  1). Promising results in determining the 
structure of plant melanins were recently obtained by matrix-
assisted laser desorption/ionization-time of flight mass 
spectrometry (MALDI-TOF MS), that was applied to resolve 
the structure of oat melanin, which turned out to be  a 
homopolymer built up from p-coumaric acid and consists 
mainly of low molecular weight oligomers of 3–9 monomer 
units (Varga et  al., 2016).

Although melanins were confirmed in the seeds of a few 
plant species, the fact that these species belong to distinct 
taxonomical groups implies a wider distribution of the pigments 
than has currently been demonstrated.

THE FUNCTIONS OF MELANIN 
PIGMENTS IN PLANTS

It is believed that black pigmentation arose as a result of the 
adaptation of living organisms to unfavorable environmental 
conditions. The functional importance of this type of pigment 
has been reviewed in detail for animals, insects, and 
microorganisms (Solano, 2014; Cordero and Casadevall, 2017). 
The role of the pigment in plants is still vague, but the gathered 
information demonstrates that the black color might grant 
some advances to them as well.

As in animals, melanin-based coloration in plants is important 
for camouflage. For instance, most wild cereals have black 
hull pigmentation. Falling to the ground when mature, the 
seeds covered by black hulls are considered to be  invisible to 
birds on a background of dark soil (Zhu et  al., 2011).

Due to the ability of black surfaces to absorb more solar 
energy than light surfaces and convert it to heat, theoretically, 
black-grained seeds can mature earlier than yellow seeds. A 
comparative study of barley landraces with black and white 
seeds demonstrated that the former tend to mature earlier 
than the latter (Ceccarelli et  al., 1987).

Melanins provide additional mechanical strength to seed 
shells, protecting them from damage. Moreover, melanin 
provides resistance to insects and pests due to its toxicity 
(Jana and Mukherjee, 2014). In sunflower, seeds with black 
seed coats are less damaged by mole larvae than white  
seeds (Pandey and Dhakal, 2001).

As melanins are strong antioxidants (Panzella et  al., 2012; 
Lopusiewicz, 2018), they can confer more vigor to seeds 
that accumulate them and can protect seeds under stress. 
There are some examples to support this hypothesis. In 
watermelon, the brown seeds were more vigorous than the 
light-colored seeds; they had higher seed weight, germination 
and emergence percentages, and seedling fresh and dry weight 
than light-colored seeds (Mavi, 2010). In Brassica species, 
yellow seeds with transparent seed coatings have thinner 
hulls and less fiber than varieties with dark, thicker, and 
more lignified seeds (Marles and Gruber, 2004). The local 
Syrian barley landraces with black seeds are grown in the 
most arid regions of the country, unlike the white-grained 
landraces that are adapted to milder growing conditions 
(Ceccarelli et  al., 1987). A comparison of these samples 
showed that samples with black grains are more cold-and 
drought-tolerant than samples with white grains (Ceccarelli 
et  al., 1987; Weltzien, 1988). Attempts to demonstrate the 
protective functions of melanin in barley grain under salinity, 
drought, and cadmium toxicity using a precise genetic model 
of near-isogenic lines (NILs) differing by grain color have 
been conducted. The data obtained demonstrated that melanin 
does not confer any advantages to barley seedlings under 
the stress conditions tested (Glagoleva et  al., 2019). More 
convincing results on the protective functions of melanins 
were obtained while testing resistance to pathogen infection. 
Varieties of barley and oat with a dark spike color were less 
affected by Fusarium infection than varieties without dark 
husk pigments (Zhou et  al., 1991; Loskutov et  al., 2016). 
The barley recombinant inbred lines (RILs) with black grains 
demonstrated lower Fusarium head blight incidence and lower 
accumulation of the mycotoxin deoxynivalenol than RILs 
with yellow grains (Choo et  al., 2015).

Compounds accumulating in seed envelopes are known 
to affect the dormancy and germination rate of seeds 
(Debeaujon et  al., 2000; Gu et  al., 2011). This is true in 
the case of flavonoid pigments, but some controversial  
results have been obtained in the case of melanin. For 
example, two tomato mutants with dark testa caused by 
melanin displayed a poor germination rate and percentage 
on both water and gibberellin compared with those of wild-
type seeds in which melanin pigments were not detected 
(Downie et  al., 2003). However, a comparative study of the 
germination rate of barley seeds of NILs with different grain 
colors did not reveal any differences between yellow and black 
grains (Glagoleva et  al., 2019).

Based on the summarized data, one can conclude that 
melanins are not essential for plants. Therefore, it is likely 
difficult to reveal their functional role. However, the widespread 
distribution of this pigment implies its functional importance, 
which is yet to be  identified in plants.
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MELANIN SYNTHESIS IN PLANTS AND 
ITS MOLECULAR-GENETIC CONTROL

Melanin synthesis in plants is associated with the enzymatic 
browning reactions that occur in damaged tissues by polyphenol 
oxidases (PPOs), which belong to a family of Cu-containing 
oxidoreductases that are able to act on phenols in the presence 
of oxygen (Nicolas et  al., 1994). The loss of the integrity of 
cellular compartments due to senescence, wounding, interactions 
with pests and pathogens, or handling during postharvest 
processing and storage results in the release of PPOs from 
plastids where they are located into the cytoplasm. The PPOs 
come into contact with vacuolar phenolic substrates and form 
highly reactive o-quinones. The o-quinones subsequently either 
undergo nonenzymatic polymerization or interact with other 
compounds, such thiols, amino acids, and peptides, and form 
colored products; they can also slowly interact with water, 
resulting in the formation of triphenols or can be  reduced to 
the original phenols (Figure  2). Since PPOs cause undesirable 
browning in plant products, the physicochemical properties of 
these enzymes have been studied in many economically important 
species, including in vitro studies of substrate specificity of the 
purified enzymes (Jukanti, 2017; Taranto et al., 2017). Nevertheless, 
PPOs remain one of the most intensively studied enzymes, 

since they are expected to have other functions besides the 
enzymatic browning reaction; of these possible functions, the 
functions related to their localization in chloroplasts are the 
most intriguing puzzle (Sullivan, 2014; Boeckx et al., 2015, 2017).

The participation of PPOs in melanin formation in intact seed 
tissues is in question. Until recently, melanin pigments were 
considered to accumulate extracellularly in the form of a 
phytomelanin layer. This would exclude the participation of plastid-
located PPOs in melanin formation and implies some other 
phenol-oxidizing enzymes with extracellular localization as 
candidates for melanin synthesis, such as cell wall-associated 
laccases (Wang et  al., 2015). However, recent observations of 
melanin accumulation in chloroplast-derived melanoplasts identified 
in black grains of barley (Shoeva et al., 2020), forces us to reconsider 
the association of melanin synthesis with the phytomelanin layer. 
The phytomelanin layer has been described as a black, hard, 
resistant material that fills intercellular spaces between the 
hypodermis and sclerenchyma in the pericarp of some sunflower 
family species (Pandey and Dhakal, 2001). The chemical structure 
of the material constituting the phytomelanin layer has not been 
defined. Some authors suggest that it is nonmelanic and consider 
it to be  a derivative of a polyvinyl aromatic alcohol (Pandey and 
Dhakal, 2001; Jana and Mukherjee, 2014). However, the 
simultaneous presence of the phytomelanin layer and melanin in 

FIGURE 2 | Reactions catalyzed by polyphenol oxidase (PPO) (A, and B) and reactions of o-quinone (1–6) according to Nicolas et al. (1994). Due to 
monophenolase (or cresolase) and diphenolase (or catecholase) activity, PPOs hydroxylate monophenols to o-diphenols (A) and subsequently oxidize o-diphenols to 
o-quinones (B), respectively. The resulting o-quinones can react with another molecule of phenol with the formation of dimers of the original phenol (reaction 1). 
These dimers with an o-diphenolic structure can be oxidized either enzymatically or by another o-quinone to a brown polymer. By nucleophilic addition, o-quinones 
can interact with thiol groups (reaction 2) or amino groups of amino acids or peptides (reaction 3), resulting in compounds with an o-diphenolic structure that can 
be further oxidized (by laccase or oxygen) or react with an excess of o-quinones to form colored products. Water can be added to o-quinones, leading to triphenols 
that can be oxidized by PPO or by o-quinones with the formation of p-quinones (reaction 4). Finally, the reactions with ascorbic acid or sulfites lead to the 
regeneration of the original phenol (reaction 5). All reactions are nonenzymatic except for those with laccase and PPO. AA-NH*, amino acids or peptides; Asc A, 
ascorbic acid; R’-SH, small thiol compounds (e.g., cysteine or glutathione).
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the seeds of some species, such as in the husks of sunflower 
plants (Thomas, 1955; Rogers and Kreitner, 1983; Gracheva and 
Zheltobryukhov, 2016), makes it difficult to distinguish these two 
terms. As melanin formation occurs intracellularly within plastids 
(Shoeva et  al., 2020), and the extracellular phytomelanin layer is 
formed as a result of the catabolism of hypodermal cells (Pandey 
and Dhakal, 2001), it seems likely that melanin synthesis and 
phytomelanin layer formation are different cellular processes that 
should be  distinguished.

Melanoplasts were discovered only in barley seeds, and additional 
studies on melanin-accumulating seeds are required to confirm 
melanin synthesis localization in this type of plastid. However, 
this finding, in addition to the data on the presence of the phenolic 
substrates of PPOs in chloroplasts (Zaprometov and Nikolaeva, 
2003; Boeckx et  al., 2017), suggests that PPOs are the main 
enzyme participating in plant melanogenesis in intact seed tissues. 
This hypothesis is supported by the molecular genetics data, which 
showed an association of the black color of seeds with PPO 
genes. For example, two complementary genes determining black 
pigmentation in rice hulls have been identified: Ph1, which encodes 
PPO, and Bh4, which encodes a tyrosine transporter (Fukuda 
et  al., 2012). However, the melanic nature of the black pigment 
in rice seeds was not confirmed chemically; it could only 
be suggested based on the observed association. The gene encoding 
PPO has been recently identified as a candidate gene responsible 
for melanin pigmentation in watermelon seeds (Li et  al., 2020).

In some other plant species, data on the mode of genetic 
inheritance are currently available. It was shown that the presence 
of the phytomelanin layer in sunflower achenes is a dominant 
trait that is controlled monogenically by the Pml gene (Johnson 
and Beard, 1977). Studies on the inheritance of the pigmentation 
pattern in three layers of sunflower pericarp also strongly support 
that the presence of the phytomelanin layer (the outer pericarp 
layer) is controlled by a single dominant gene (Mosjidis, 1982).

In barley, black spike color caused by melanin is under 
monogenic control by the Blp locus (Costa et  al., 2001). Three 
dominant alleles, Blp1.b, Blp1.mb, and Blp1.g, conferring extreme 
black, medium black, and light black or gray colors, respectively, 
have been reported. The segregation ratio of 3:1 was reported 
for crosses between barleys with different seed pigmentation 
intensities (Woodward, 1941). To date, the Blp locus has been 
narrowed down to 21 genes, and a gene encoding purple acid 
phosphatase has been suggested as a candidate (Long et al., 2019).

Data on melanin metabolism in relationship to other metabolic 
processes taking place in plant seeds were obtained. It was shown 
that dark-colored barley seeds have higher contents of phenolic 
compounds and lignin than uncolored seeds. Therefore, it was 
suggested that melanin biosynthesis genes may be  connected to 
phenylpropanoid-derived biosynthesis pathways such as those for 
flavonoids and lignins (Choo et  al., 2005; Shoeva et  al., 2016). 
A comparative transcriptome analysis performed using barley NILs 
with black and uncolored seeds demonstrated the influence of 
the dominant Blp allele on the expression of more than a thousand 
genes, among which phenylpropanoid and fatty acid biosynthesis 
genes were over-represented (Glagoleva et  al., 2017). In Ipomoea 
tricolor, it has been shown that accumulation of melanins in the 
seed coat are under control of the same ItIVS gene, which encodes 

a transcription factor with the bHLH domain that regulates 
anthocyanin biosynthesis (Park, 2012). In tomato, an epistatic 
analysis of the bks mutant, which accumulates dark melanin 
pigments in the testa, in respect to anthocyaninless mutants that 
are impaired in anthocyanin synthesis demonstrated that bks is 
truly epistatic to the anthocyaninless mutants. The data imply that 
the black-seed phenotype is caused by a lesion in a gene required 
for a step before the flavonoid biosynthesis branch (Downie et al., 
2003). As a support for this finding, flavonoid biosynthesis pathway 
genes were demonstrated to be  uninvolved in the formation of 
melanin in barley (Shoeva et al., 2016). The examples demonstrate 
that comparative molecular genetics studies represent an effective 
means of understanding melanin synthesis in the context of the 
total metabolic processes occurring in plant tissues.

CONCLUSIONS AND PERSPECTIVES

In the past decade, the study of melanin synthesis in plants has 
advanced significantly. One of the achievements in this field has 
been the acceptance of the fact that melanins are broadly distributed 
in the plant kingdom. Although their presence in seed envelopes 
is still not associated with any obvious function, their wide 
distribution suggests the existence of some functions, among 
which protection against pathogens is the most probable. The 
discovery of the association of melanin synthesis with intracellular 
plastids can be recognized as another achievement in plant melanin 
research. Localization of melanin synthesis in plastids of grain 
envelopes has been demonstrated in only one species; additional 
studies on other plant species are required to confirm this finding. 
Moreover, the functional importance of the localization of PPOs 
in chloroplasts has long been an unsolved puzzle. Given the 
evidence, it seems likely that the presence of PPOs in chloroplasts 
is not an accident and may be directly connected to melanogenesis. 
At a minimum, such a connection should be  explored.
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