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Skeleton extraction from 3D plant point cloud data is an essential prior for myriads of

phenotyping studies. Although skeleton extraction from 3D shapes have been studied

extensively in the computer vision and graphics literature, handling the case of plants

is still an open problem. Drawbacks of the existing approaches include the zigzag

structure of the skeleton, nonuniform density of skeleton points, lack of points in the

areas having complex geometry structure, and most importantly the lack of biological

relevance. With the aim to improve existing skeleton structures of state-of-the-art, we

propose a stochastic framework which is supported by the biological structure of the

original plant (we consider plants without any leaves). Initially we estimate the branching

structure of the plant by the notion of β-splines to form a curve tree defined as a finite set

of curves joined in a tree topology with certain level of smoothness. In the next phase,

we force the discrete points in the curve tree to move toward the original point cloud by

treating each point in the curve tree as a center of Gaussian, and points in the input cloud

data as observations from the Gaussians. The task is to find the correct locations of the

Gaussian centroids by maximizing a likelihood. The optimization technique is iterative

and is based on the Expectation Maximization (EM) algorithm. The E-step estimates

which Gaussian the observed point cloud was sampled from, and the M-step maximizes

the negative log-likelihood that the observed points were sampled from the Gaussian

Mixture Model (GMM) with respect to the model parameters. We experiment with several

real world and synthetic datasets and demonstrate the robustness of the approach over

the state-of-the-art.

Keywords: skeletonization, point cloud, curve tree, spline, stochastic optimization, Gaussian mixture model,

expectation maximization

1. INTRODUCTION

Automated analysis of phenotyping traits of plants using imaging techniques are becoming
off-the-shelf tool for botanical analyses these days (Spalding and Miller, 2013; Tardieu et al.,
2017). Although high throughput 2D imaging based phenotyping systems have shown promising
results on the accuracy and precision for many cases (Brichet et al., 2017; Zhang et al., 2017;
Choudhury et al., 2019), but these systems suffer from the inherent limitations of 2D image based
analysis techniques. In recent years, 3D point cloud based analysis is getting extremely popular in
phenotyping and agricultural applications (Vázquez-Arellano et al., 2016). Typical applications of
point cloud based phenotyping include plant organ segmentation (Ziamtsov and Navlakha, 2019),
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robotic branch pruning (Chattopadhyay et al., 2016), automated
growth analysis (Chaudhury et al., 2019), etc. Many of these
applications require skeleton structure of the input point cloud
data as a prior for further processing. Also, as a skeleton is
a compact representation of the original object, dealing with
skeleton requires less computational overhead than dealing with
the original point cloud data. That is why skeletons are widely
used for varieties of shape analysis tasks in different application
areas (Cornea et al., 2007).

In general, a skeleton is a thin structure obtained from an
object, which encodes the topology and basic geometry of the
object. Ideally, the skeleton should follow the exact centerline of
the object. That means within a local neighborhood, the distance
from each skeleton point to the enclosing shape boundaries
should be the same. Although skeleton extraction from 2D
images is a well-studied area, 3D point cloud skeletonization
is still an open problem (Tagliasacchi et al., 2016). For the
case of plants, skeleton extraction is extremely challenging due
to their complex geometry, thin structure, missing data due
to self-occlusion, etc. State-of-the-art algorithms (Tagliasacchi
et al., 2009; Cao et al., 2010; Huang et al., 2013) which are
proposed as general skeletonization techniques for regular 3D
objects, often produce degraded results when applied to complex
plant branching structures. Skeletonization of 3D plant point
cloud data is a little worked problem, and only a handful of
techniques have been proposed in recent years. These techniques
can be broadly classified into two categories: (i) initial skeleton
construction, and (ii) skeleton refinement.

The first type of algorithm refers to skeleton construction from
the input point cloud data. A notable work in this category is
the method proposed by Xu et al. (2007). Initially, a Riemannian
graph is constructed from the point cloud by connecting the
points using nearest neighbor strategy. Then the whole point
cloud is clustered based on graph adjacency information and
quantized shortest path lengths from the root to all points in the
cloud. The center of each cluster is assigned as a skeleton point
and the edges are defined as the connection of cluster centers
based on their spatial locations. One problem of the technique
is that, the skeleton does not maintain the centeredness criteria,
and results in a zigzag structure near the junction point where
two or more branches meet. Also, the computed skeleton points
sometimes end up being outside the boundary of the point cloud
(we discuss about these issues in the next section). Bucksch
et al. (2009) proposed a solution of these type of problems by
subdividing the point cloud into octree cells and used some local
heuristics to form a skeleton graph from the cells. Zhang et al.
(2015) later applied this technique locally to individual branches.
However, these methods rely on several heuristic assumptions
and require many parameters to be tuned to obtain the desired
result. On a different type of approach, particle flow based
techniques (Rodkaew et al., 2003; Zeng et al., 2007) are built
on the motivation on the process of transport and exchange of
energy and water between root, branches and leaves of a plant.
However, the skeleton is not guaranteed to follow the actual
geometry of the input point cloud data, and thus suffers from
biological irrelevance of the results. This technique is mainly used
in computer graphics applications. Space colonization algorithm

(Runions et al., 2007; Preuksakarn et al., 2010) extracts skeleton
from input data by an iterative technique to eat-up the points
in the cloud starting from the root node at the bottom. The
overall technique is a local optimization based strategy. Although
the technique can produce visually pleasing skeleton structure,
the algorithm might result in creating branching structure in
the wrong directions, and there is no mechanism to perform
backtracking to correct the biological irrelevance of the branches.

The second type of approach of skeletonization is based
on the motivation to improve the initial skeleton. Livny et al.
(2010) proposed a series of optimization techniques to smooth
the branches of a skeleton in a realistic manner. However, the
optimization strategy does not involve prior botanical knowledge
of plants. Branch smoothing is performed independently without
taking into consideration the original data, and can produce
over-smoothing or under-smoothing of branches which suffer
from botanical inconsistency of the results. In a similar line of
work, Zhen et al. (2016) proposed a strategy to refine an existing
skeleton to handle the case of occlusion and missing data. The
approach is based on a combined local and global optimization
strategy, where the coarse skeleton is pushed to move toward the
original point cloud, and the original point cloud is forced to
contract toward the skeleton points. Themethod is explicitly built
to handle the occlusion cases and overlooks factors like zigzag
problem and biological irrelevance of the skeleton. In a recent
work, Wu et al. (2019) proposed a skeleton refinement technique
for Maize plants. The issue of centeredness criteria and zigzag
problem is explicitly addressed. The refinement technique is
based on a local neighborhood based approximation strategy and
some heuristics are used. The method is tested only on a single
plant species. Other types of recent skeletonization techniques are
shown to be successful for some applications (Jin et al., 2016; Tabb
and Medeiros, 2018), where it is assumed that the point cloud
is voxelized along with voxel connectivity information, instead
of considering raw point cloud data without any connectivity
information. Geometric model fittingmethods (Liang et al., 2013;
Raumonen et al., 2013; Hackenberg et al., 2014) fit cylinder
models to the tree branches. Although the methods do not
explicitly consider problem of skeleton extraction from point
cloud data, but ideally computing the central axes of the fitted
cylinders can be performed to extract the skeleton. However, no
experimental results are reported in this aspect.

We propose a skeletonization technique that belongs to the
second category. The aim is to improve an existing skeleton
obtained from the state-of-the-art by maintaining the biological
relevance with the input point cloud data. Initially we represent a
coarse skeleton as a tree structure which consists of superposition
of parametric curves having uniform density of discrete points.
Then we propose a stochastic optimization technique to
transform the skeleton points so that the transformed points
maintain the centeredness criteria as well as the biological
relevance with the input data. Existing skeleton refinement
techniques typically aim at improving an initial coarse skeleton
by optimizing an objective function. Often the objective function
is constructed using biological prior, and the optimization does
not make use of the original input point cloud data (Livny et al.,
2010). Other approaches (Zhen et al., 2016) deform the original
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FIGURE 1 | Problems with the existing approaches on skeletonizing plant point cloud data. Original point cloud is shown as black point cloud and the skeleton points

are shown as red points. (Left) The problem of zigzag structure, where the skeleton does not follow the centerline of the stem and tends to deviate toward the

branching point (Xu et al., 2007) (only the main stem skeleton is shown in the figure). (Middle) The problem of biologically irrelevant skeleton points which falls beyond

the boundary of the input data (shown at the top part), and inability to capture the geometric details for some branches (Delagrange et al., 2014; Ziamtsov and

Navlakha, 2019). (Right) Overlooking tiny geometrical structures (Xu et al., 2007).

point cloud data during the optimization process. However,
these types of approaches do not guarantee the optimized
skeleton to be geometrically consistent with the original point
cloud data. One of the main strength of our approach is the
exploitation of the input point cloud data during the optimization
process. This explicitly helps the skeleton to retain biologically
supported structure.

2. PROBLEM STATEMENT

The motivation of this work is to extract the skeleton from plant
point cloud data. Before we discuss our model in the next section,
we first demonstrate the limitations of the existing approaches
on real datasets. We identify the following 3 problems associated
with the existing techniques, as shown visually in Figure 1.

2.1. The Zigzag Structure Problem
One of the typical problems associated with skeletonizing plant
point cloud data is the deviation of skeleton points from the
centerline of the branch toward the junction point where two
or more branches are joined Xu et al. (2007), thus creating
a zigzag type skeleton as shown in the left of Figure 1. The
zigzag problem occurs mainly because of the local nature
of the algorithm. During the clustering phase, the data is
quantized into several levels, and the center of each cluster
is computed as a skeleton point. For a simple branch, the
cluster center is computed at the center of the branch. However,
for the case of a bifurcation, the cluster center tends to shift
toward the bifurcating branch, thus resulting in a zigzag like
structure. Ideally the skeleton points should follow the exact
centerline of the branch representing the actual geometry of
the plant. However, the zigzag skeleton structure is a wrong
approximation of the plant geometry, which results in wrong
phenotyping parameter estimation in quantitative measurement
of phenotypes such as internode distance, branch length, etc.
Although this problem is handled locally in Wu et al. (2019), the
method is based on many heuristics to skeletonize a handful of
Maize plant point cloud data.

2.2. Invalid and Inaccurate Geometry
Estimation Problem
As shown in the middle of Figure 1, sometimes skeleton points
do not lie within the enclosing boundary of the original point
cloud data (Delagrange et al., 2014; Ziamtsov and Navlakha,
2019). This results in invalid geometry estimation of the input
data. For example, in the upper part of the figure we can see
the red dots which are located outside the boundary of the point
cloud. Also for the case of curved branches, insufficient number
of skeleton points are not able to represent the actual geometry of
the branch. This is shown at the bottom of the figure where the
curved branches are not represented by the skeleton points. One
way to handle this problem might be to generate more skeleton
points in the curved areas using interpolation or similar point
approximation strategies. However, the generated points will be
independent of the original point cloud data, and will fail to
reconstruct the original geometry of the branch.

2.3. Inability to Handle Tiny Structures
Tiny branches are often treated as noise in the point cloud
data, and the extracted skeleton fails to represent these branches.
This is shown at the right of Figure 1. Two tiny branches are
completely overlooked in terms of skeleton representation of the
input data (Xu et al., 2007).

3. BUILDING AND OPTIMIZING THE
SKELETON

3.1. Skeleton Intialization
Initially we obtain a coarse skeleton graph of the input point
cloud P = {p1, · · · , pn} ∈ R

3 by the method of Xu et al. (2007).
Note that other skeletonization algorithms can also be used to
obtain the coarse skeleton, but we have used this method because
the algorithm is simple, fast, works reasonably well, and the open
source implementation is available1. Next we remove the cycles
in the graph by the method of Yan et al. (2009). The resultant
skeleton point set is a rooted tree graph embedded in R

3. In this

1https://github.com/fredboudon/plantscan3d
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FIGURE 2 | Representation of skeleton tree graph as a curve tree via quotient graph. (A) Each branch (a1, · · · , a9) in the skeleton tree represents an axis where the

discrete points are shown as colored dots using a hierarchical color convention. The main stem is represented as red dots, next level branches as green dots, and

further level branches as blue dots. The successor of a node of certain color is colored with the same color. (B) Each node in the quotient graph represents each

branch (or axis) of the skeleton graph, and the directed edges represent their hierarchical relationship in the skeleton structure. (C) Corresponding curve tree where

each branch in the skeleton graph is approximated as a parametric curve (C1, · · · ,C9).

work, we represent the input skeleton and its branching structure
as an axial tree (Prusinkiewicz and Lindenmayer, 1990; Godin
and Caraglio, 1998).

Formally, let G = (V ,E) be a graph where V = {vi}1≤i≤I

(where I is an integer≥ 1) is the set of vertices, and E = (vi, vj) is
the set of edges connecting to the ordered pairs of vertices vi and
vj. The vertex vj is the child of vi denoted as, child(vi) = {vj ∈
V|(vi, vj) ∈ E}, and the vertex vi is the parent of vj denoted as
vi = parent(vj). A rooted tree graph is a graph G that contains no
cycle, only one connected component, and there exists a unique
vertex in V , called the root that has no parent. The descendants of
a vertex vi ∈ V is defined as the set of vertices that belong to the
branching system starting from vi excluding itself.
Definition 1: Axial Tree, adapted from Godin and Caraglio
(1998): An Axial Tree T is defined as a tree graph along with a
successor function succ associated with each vertex in the graph
defined as,

succ :V → V ,

vi 7→ vi′ , where vi′ ∈ child(vi),

where vi′ is called the successor of vi.
From the definition, we see that all the vertices vi ∈ V in an

axial tree, there exists at most one successor vi′ ∈ V . Note that
there may be vertices that do not have a successor in V (such
as leaf nodes in particular). Maximal set of vertices connected
by successor relationship are paths in T (called the axes of T ).
For example in Figure 2A, the axes are denoted as a1, · · · , a9. In
this paper, a skeleton is thus represented by an axial tree T for
which the vertices correspond to the points in the skeleton, and
the edges as the ordering of these points within their axis. The
3D coordinates si of each point is attached to the corresponding
vertex vi.

In a given axis a = {v1, · · · , vk} (with slight abuse of notation),
we define the bearing vertex w as, w = b(a) ⇔ w = parent(v1), if
it exists. The order relationship between the vertices derived from
their order on the path in the axis is defined as, vi < vj ⇔ vi is an
antecedent of vj.

3.2. Parametric Representation of the Tree
Skeleton
Now we want to define for each axis in the axial tree a parametric
model representing its geometry. For this, we first define a
conceptual model representing the branching geometry of the
skeleton, and then explain how it is constructed from the data.
Let us first introduce the following definitions.

In an axial tree T , we say that two vertices vi and vj are in
equivalence relationship (denoted as vi ≡ vj) if and only if vi and
vj belong to the same axis of an axial tree. This allows us to define
the notion of quotient tree graph as follows.
Definition 2: Quotient Tree Graph, adapted from Godin and
Caraglio (1998): Given an axial tree graph T = (V ,E), aQuotient
Tree Graph T = (V ,E) is the quotient graph of the axial tree
graph T , which is made of the axes of T , and is also a tree graph.

The vertices in an axial tree having equivalence relationship
with each other, are collapsed to a single node in the quotient
graph (Figure 2B).

Now consider a family of curves C defined in R
3. With each

vertex va ∈ V in the quotient graph T , we associate a curve
Ca ∈ C defined as,

Ca :[0, 1] → R
3,

u 7→ Ca(u),

where u ∈ [0, 1] is the parameter of the curve. Curves on the axes
must respect the following attachment conditions to one another.
For any two vertices ai, aj ∈ V such that aj = parent(ai), then the
following condition holds:

∃u′0 ∈ [0, 1], s.t. Cai (0) = Caj (u
′
0). (1)

Ideally, we want to represent the skeleton as a union of curves,
one curve is being attached with a vertex of the quotient tree
graph, where the order of the branching points in the skeleton is
the order of vertices in the quotient graph for the attachment of
the curves. In order to achieve this, the following condition must
hold true in T . Consider the axes ai, aj, ak, where ai = parent(aj)
and ai = parent(ak). Let wj and wk be the respective bearing
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vertices for the axes aj and ak. Then the following condition
holds true:

wj ≤ wk

Caj (0) = Cai (u
′
0)

Cak (0) = Cai (u
′′
0)











⇒ u′0 ≤ u′′0 . (2)

Definition 3: Curve Tree: A curve tree TC = (T , g) is
an axial tree T augmented with a mapping g that attaches
one parametric curve to each vertex of T , and verifying the
attachment conditions in Equations (1) and (2) on its quotient
tree graph. The mapping g is defined as,

g :V → C

va 7→ Ca,

where the curve Ca is associated with each vertex va ∈ T

(Figure 2C). In order to instantiate the curve associated with each
axis a, we choose a family of curves that may be parameterized
using the 3D points {v1, · · · , vk} of the axis a.

3.3. Estimation of the Curve Tree
Parameters
From a given axial tree, we can define a curve tree by attaching a
parametric curve to each axis a of the quotient tree graph from a
chosen family of parametric curves C .

In this work, we choose to model curves representing axes
using the family of splines. Splines are powerful mathematical
tools to approximate curves and surfaces. In the general case, a
spline curve S(u) defined by (n+1) control points2 P0, P1, · · · , Pn
can be defined as,

S(u) =
⌈nu+2⌉
∑

i=⌊nu−2⌋

B(nu− i)Pi, (3)

where B(·) is the blending function of the spline, and u ∈

[0, 1] (Burger and Gillies, 1989). For a cubic B-spline, at most
four nearest control points are used to compute the blending
function for one spline point. We aim at resampling each branch
of the curve tree, where the number of points in a branch
can be modeled to the desired number. We have used the
following strategy. Let the Euclidean distance (we are not taking
into account the branch bending in the distance computation)
between the endpoints of a branch is d (in mm). Then we
approximate the number of spline points as ⌈d/d0⌉, where we use
d0 = 1.0. Depending on the application, higher or lower density
of points can be achieved easily by changing the value of d0 to
a lower or higher value, respectively. Number of spline points
can be greater than, equal to or less than the number of control
points. Any curve thus can be represented as the polyline joining
continuous set of spline points. Although cubic B-splines are
widely used in modeling curves, we model the branch curves as
β-splines, which provide an intermediate representation between
approximation and interpolation and thus captures the local

2By control points, we mean the given set of discrete input points, whereas by spline
points we mean the generated points on the spline curve.

geometry better than cubic B-spline. Given the fact that β

splines are 1st and 2nd order continuous (Goodman, 1985), we
can approximate the branches as smooth enough. The blending
function of a β-spline denoted as β(v), parameterized by v is
given by,

β(v) =



































































2
δ
(2+ v)3, −2 ≤ v ≤ −1

1
δ
((t + 4s+ 4s2)− 6(1− s2)v− 3v2(2+ t + 2s)

−2v3(1+ t + s+ s2)), −1 ≤ v ≤ 0

1
δ
((t + 4s+ 4s2)− 6v(s− s3)− 3v2(t + 2s2+

2s3)+ 2v3(t + s+ s2 + s3)), 0 ≤ v ≤ 1

2
δ
s3(2− v)3, 1 ≤ v ≤ 2,

(4)
where v = nu − i, t is the tension parameter and s is the skew
parameter (Goodman, 1985; Goodman and Unsworth, 1986),
which are kept constant. We used t = 10 and s = 1 for all of
our experiments. While the skew parameter is always set to 1
to ensure the smoothness of the curve, we have tested different
values of t on several datasets. From empirical observation, we
notice that keeping t ∈ [5, 15] produces best approximation
of the curve (very low error value of mean square distance
between the original points and generated points), while other
values of t outside this range yields high error value (the error
corresponding to t = 10 was the minimum). δ is given by δ =

t + 2s3 + 4s2 + 4s + 2. Basically the blending function is defined
for 4 discrete intervals (2 in each side) around each control point.
While computing the spline points near the endpoints, we use the
trick of truncating the generated spline points to the endpoints of
the curve in order to prevent the generated points to go beyond
the boundary of the curve.

At this stage, the curve tree represents a coarse skeleton of the
plant having uniform distribution of discrete points. However,
the skeleton still has the zigzag structure and non-centeredness
problem. We introduce a stochastic optimization approach to
improve the current skeleton to follow the geometry of the
original point cloud in order to obtain a biologically relevant
skeleton of the input point cloud data.

3.4. Stochastic Modeling
Ideally, the skeleton points should follow the exact centerline of
the input point cloud data. For the case where the branches of the
plant are cylindrical, the skeleton should follow the central axis of
the cylinder in each branch. In case of cross-sectional branches,
the skeleton should go through the middle of the points by
maintaining equidistance criteria from the enclosing boundaries.
The initial skeleton suffers from the problem of not maintaining
the centerline criteria as defined above, thus resulting in having
points which are deviated from the centerline. Our goal is to
improve the deviated skeleton by moving the points toward the
centerline and maintain the geometry of the branching structure
of the plant using a stochastic approach.
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We frame the problem of skeleton refinement as a
transformation estimation problem. We aim at moving (or
transforming) the discrete points of the skeleton toward the
original input point cloud data, so that the skeleton points get
aligned with the centerline of the original point cloud data. We
consider points in P (defined in section 3) as the observations
of a Gaussian Mixture Model (GMM), and the centroids of
the Gaussians are considered as the skeleton point set. Now
in order to estimate the correct location of the centroids, we
aim at finding which Gaussians the points in the skeleton
point set are sampled from. Initially, the discrete points of
the resampled curve tree represents the initial location of the
Gaussian centroids. Then we iteratively use the Expectation
Maximization (EM) algorithm to automatically approximate the
optimal centroid locations and reparameterize the Gaussians in
each iteration by maximizing a likelihood function. However,
the problem is highly non-rigid in nature. Global transformation
of points is not sufficient to achieve the optimal solution,
and we aim at estimating transformation for every point in
the skeleton. Exploiting the recent advancements of Gaussian
Mixture Model based approaches (Myronenko and Song, 2010;
Jian andVemuri, 2011;Ma et al., 2016), we formulate the problem
in a probabilistic framework.

We denote the original point cloudP as the fixed point set, and
the skeleton point cloud S = {s1, · · · , sm} ∈ R

d of the resampled
curve tree as themoving point set, where d is the dimension of the
point cloud (which is 3 in our case). In a typical case of point set
registration,m ≈ n, and there is a correspondence between most
of the point pairs (si, pj). However in our casem≪n, and instead
of one-to-one correspondence, a group of points in the original
point set corresponds to a single point in the skeleton point set.
Let 2 be the set of unknown model parameters (we define 2

later). We estimate the centroid locations S
∗ from the optimal set

of model parameters 2∗, which is obtained by minimizing the
following negative log-likelihood,

2∗ = argmin
2

− ln(p(S|P,2). (5)

This type of problem can be solved by the classical framework,
where the E-step estimates which Gaussian the observed point
cloud was sampled from, and the M-step maximizes the negative
log-likelihood that the observed points were sampled from the
GMM with respect to the model parameters. Each si is assumed
to be the centroid of a Gaussian, and the corresponding pj’s are
assumed to be normally distributed around si. The probability
density function is then given by,

p(pj|si) =
1

(2πσ 2)d/2
exp

(

−
1

2

∥

∥

∥

∥

pj − si

σ

∥

∥

∥

∥

2 )

, (6)

where σ is the covariance of the Gaussian, whose initial value σ(0)
is set as,

σ 2
(0) =

1

dmn

m
∑

i=1

n
∑

j=1

∥

∥pj − si
∥

∥

2
. (7)

Now we introduce outliers in the model, assuming the outlier
probability to have uniform distribution for all data points. Let

ǫ ∈ [0, 1] be the weight of the outlier distribution in the original
point set (that means, each point has the probability ǫ/n), and
(1− ǫ) be the weight in the skeleton point set. Then the mixture
model takes the form,

p(pj|2) =
ǫ

n
+ (1− ǫ)

m
∑

i=1

p(pj|si), (8)

where 2 = {σ 2, ǫ} is the set of model parameters, which we
wish to estimate in EM framework in order to minimize the
negative log-likelihood energy of Equation (5). Next, we propose
a membership probability p(S) for the GMM components.
Instead of assigning equal probability for all the points, a weight
factor is used to indicate the probability of point correspondence
between the two point sets. The probability that the point pj is an
observation of the Gaussian of point si is defined by αij as the
membership probability. We use a local Principal Component
Analysis (PCA) based technique to estimate the membership
probability as follows. Considering a local neighborhood Ni

around the i-th point defined as the points within a ball of radious
r, the 3× 3 covariance matrix Ci is computed as,

Ci =
1

N

N
∑

k=1

(vk − v̄k)(vk − v̄k)
T , (9)

where vk are the points in the local neighborhood of i-th
point, N is the number of points in the neighborhood, and
v̄i = 1

N

∑

k∈N vk. If the eigenvalues of the matrix Ci are
λ0, λ1, λ2 (where λ0 ≤ λ1 ≤ λ2), then we compute the
normalized eigenvalue of the neighborhood as,

µi =
λ0

λ0 + λ1 + λ2
. (10)

Note that instead of normalizing the lowest eigenvalue, other
eigenvalues can also be normalized to compute µi. We use µi

as an estimate of the local structure of the neighborhood of i-th
point. Similarly we compute µj for the other point set. Large
difference of µ = |µi − µj| between the local neighborhood is
penalized by assigning low probability, whereas small difference
contributes to high probability. The membership probability
that i-th point corresponds to j-th point is computed as an
exponentially decaying function as,

αij = exp (−α|µi − µj|), (11)

where α is a tuning parameter (set to 1 for all of our experiments).
Along with the membership probability in the negative log-

likelihood, we minimize the following energy by EM algorithm,

L = −

n
∑

j=1

log

m+1
∑

i=1

p(si)p(pj|si). (12)

E-step: In the E-step, the current parameter values (the “old" set
of parameters) are used to estimate the posterior distribution
pold(pj|qi) using Bayes’ theorem as,

pold(si|pj) =
p(si) p(pj|si)

p(pj)
. (13)
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In order to evaluate the probability pold in the above equation,
we use the expressions from Equations (6), (11), and (8). The
first term in the numerator is the probability of correspondence
of pj with si. This term is estimated as αij as in Equation (11).
Incorporating the outliers ǫ in the model, the second term in
the numerator is estimated as (1 − ǫ)p(pj|si). The denominator
is obtained from Equation (8). Hence the expression for pold is
written as,

pold(si|pj) =
αij exp

(

−
‖pj−si‖

2

2σ 2

)

ǫ(2πσ 2)d/2
n(1−ǫ) +

∑m
k=1 αik exp

(

−
‖pj−sk‖

2

2σ 2

) . (14)

M-step: In the M-step, “new” parameter set is obtained by
minimizing the expectation of the complete negative log-
likelihood function of Equation (12) as,

L = −

n
∑

j=1

m+1
∑

i=1

pold(si|pj) log(p
new(si)p

new(pj|si)). (15)

Ignoring the constants independent of 2, we can write the
expression for complete likelihood Lc as (Ma et al., 2016),

Lc =
1

2σ 2

n
∑

j=1

m+1
∑

i=1

pold(si|pj)
∥

∥pj − si
∥

∥

2
+

ξd

2
log(σ 2)−

ξ log(1− ǫ)− (m− ξ ) log(ǫ)+ λ ||G||,

(16)

where ξ =
∑n

j=0
∑m

i=0 p
old(si|pj), and the last term is a

regularizer weighted by a factor λ to restrict the spread of the
data by the transformation. For a skeleton point si and the
corresponding transformed point s′i is regularized as the Gaussian
kernel, G(si, s′i) = exp−||si − s′i||

2/2β2, where the variable β

controls the spread of the data. If the value of β is too small, the
transformation will have negligible effect on the data, while large
value of β will result in badly scattered points. Minimizing Lc

decreases the negative log-likelihood of the energy function.
The EM algorithm iterates until there is not sufficient update

of the parameters (we keep the tolerance at 10−4). The updated
location of skeleton point set S is the optimal transformed point
set S

∗.

4. EXPERIMENTS AND ANALYSES

We performed several experiments with real world and synthetic
datasets in both qualitative and quantitative manners. More
specifically, we have experimented with the data from 3 datasets.
The first dataset we have used is the PlantScan3D dataset (pla,
2010), which contains different varieties of plants including
Cherry, and Apple tree point cloud data. Next, we used the
dataset from Tabb and Medeiros (2018). The dataset contains
“Fuji” apple tree data in voxel format. We have extracted the raw
point cloud from the data, and performed experiments without
using any connectivity information from the voxel structure.
Finally, we have generated point cloud data by scanning real
Arabidopsis thaliana plants. For all the datasets, we obtained

the initial coarse skeleton using the method of Xu et al. (2007),
and performed the proposed optimization technique. Although
other types of skeletonization methods can be used to obtain the
initial skeleton, the result of the optimization algorithm depends
on the quality of the initial skeleton. We have performed the
optimization by using Space Colonization algorithm (Runions
et al., 2007; Preuksakarn et al., 2010) as the initial skeleton, where
we selected the set of parameters which produced best results.
We noticed that in many cases, the results suffer from problems
where the skeleton points are too far from the centerline.
Especially the branch junction points are located out of the
boundary of the point cloud in many cases. The optimization
performs poorly in these cases than using the method of Xu
et al. (2007) as the initial skeleton. We used Python 2.7 version
along with PlantScan3D library for the implementation. The
experiments were performed in a MacBook Pro with 2.2 GHz
Intel Core i7 processor and 32GB DDR4 RAM. The datasets in
Figure 4 contain about 124, 30, and 18 k points in the Apple tree,
Cherry tree, and Arabidopsis data, respectively. The respective
computation times are 4080 s, 81 s, and 34 s.

First we demonstrate some qualitative results in Figure 3,
where we show the skeletonization results on Arabidopsis plant
and Cherry tree point cloud data. For visual clarity, we show part
of the original data for the Arabidopsis plant. Similarly for the
Cherry tree data, we removed the noise and truncated part of a
branch to demonstrate the quality of the skeleton. In Figure 4,
we show the full skeleton structures along with the original point
cloud data for a “Fuji” apple tree (Tabb and Medeiros, 2018),
cherry tree, and arabidopsis plant, respectively.

Next, we demonstrate the quantitative results of different
plant phenotypes obtained from the computed skeleton. We
have generated ground truth of junction points of the branches
(branching point) for 3 cases: synthetic data, Arabidopsis plant
data, and Cherry tree data. We notice that the quality of the
skeleton explicitly affects the location of the branching point and
the relative length of branch segment between the branching
points with respect to the average branch length. By branch
point, we mean the point where two or more branches meet.
By branch segment, we mean the length/distance between two
consecutive branch points. In order to evaluate the quality of
the skeleton, we use two metrics based on the above mentioned
factors to quantify the errors. The first metric is the deviation
of the computed junction point from the ground truth location,
and the second metric is the difference between the ground
truth branch segment length and the computed branch segment
length with respect to the average branch length. We compare
our results with the state-of-the-art skeletonization algorithms
which are built specifically for plants, consider raw point cloud
data as input to the algorithm, and the implementation is publicly
available. More specifically, we compare our algorithm with Xu
et al. (2007) and Space Colonization algorithm (Runions et al.,
2007; Preuksakarn et al., 2010) implemented in PlantScan3D
library. In Figure 5, we show the error bar plots for relative
distance error of junction point location and branch segment
length error in top and bottom row, respectively.

We also show the statistical distribution of the corresponding
error values in the box plots of Figure 6. Similar to Figure 5,
the top row shows the results of junction point location errors
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FIGURE 3 | Skeletonization results on 2 datasets: Arabidopsis plant (top) and Cherry tree (bottom) point cloud data. Note that the red skeleton points lie inside the

plant stem, and that is why the visibility is not always clear due to the occlusion by the original (black) point cloud. We show some parts of the data by zooming-in and

showing the skeleton points at the surface of the plant by taking the points out of the plant.
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FIGURE 4 | Results of skeletonization on the whole plant point cloud data. (Left) Dataset from Tabb and Medeiros (2018), (middle) apple tree dataset from INRIA

Plantscan3d dataset, (right) arabidopsis data.

and the bottom row shows the results of relative branch segment
length errors. As can be seen from the figure, the span of error
values for the proposed optimization algorithm is always less than
the other methods.

5. DISCUSSION

In this work, we have proposed a technique to improve
an existing skeleton by a stochastic optimization technique.
The idea of exploiting the original point cloud data in the
optimization process allows the skeleton to retain biological
relevance with respect to the input point cloud data. The method
is tested on different types of data, and improvement over
the existing technique is demonstrated. We have demonstrated
the effectiveness of the approach by quantifying the junction
point location and branch length segment errors, where the
branch segment is considered as the length between two

consecutive junction points. While the performance varies
among the type of the datasets, the optimization clearly
improves over the initial skeleton obtained by state-of-the-art
(Runions et al., 2007; Xu et al., 2007; Preuksakarn et al., 2010)
in the general case. The proposed optimization method can
be beneficial to accurate measurements of different types of
plant phenotypes.

The method is designed for plants of moderate size having
about 100 k points. To optimize skeleton of large tree with huge
number of points, computation time will be a crucial factor. In
these cases, the number of points need to be downsampled to
obtain the optimization result in reasonable amount of time.
In this work, we did not consider optimizing the computation
time or parallelizing the solution for multiple processors. In the
current framework, we are not considering the cases of plants
with leaves. Although the method might be able to handle the
type of leaves having long and narrow shape, but handling other

Frontiers in Plant Science | www.frontiersin.org 9 June 2020 | Volume 11 | Article 773

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Chaudhury and Godin Skeletonization

FIGURE 5 | Error bar graphs for relative junction point location (top) and branch segment length (bottom) for 3 datasets: a synthetic data, Arabidopsis plant data

(shown in each column), and Cherry tree data. In each graph, the vertical bar represents the value of error with respect to the groundtruth. Performance of each

algorithm is shown in different colors, as defined by the legend in each graph.

types of complex leaf shapes will be challenging. Given the large
variety of leaves of different types of plant species, considering the
general case of any type of leaf is beyond the scope of the current
work. Another crucial factor is the initial skeleton, which is used
as the starting point of the optimization. We have demonstrated
that using the method of Xu et al. (2007) can be reliably used
as the initial skeleton for varieties of cases. However, other types
of methods can also be used to compute the primary skeleton,
given the fact that the skeleton is reasonably good. As shown in
the results, optimization using the Space Colonization (Runions
et al., 2007; Preuksakarn et al., 2010) as the initial skeleton is also
performed. However, the results are slightly worse than using
the method of Xu et al. The reason is that, the optimization
result is dependent on the starting point. If the initial skeleton
points are too far from the centerline (which results in many
cases of Space Colonization algorithm), the optimization fails to
move the points to the exact center. Basically the initial skeleton
points which are far away, results in getting the optimization
to stuck to a bad local minima. In the current formulation we
did not consider handling these type of cases, and we assume
that the initial skeleton is reasonably correct. The optimization
parameters λ and β play an important role on the final result.
By default we keep the values as λ = 5, β = 5. We tested
with different values of λ and β between the range 1 to 15, and
in general the best results are obtained with the default values
as stated above. However, we notice that for larger trees, higher

values of λ and β slightly improve the result. For any particular
species, using a fixed set of values of the parameters should
be sufficient.

The centerline assumption of the Gaussian Mixture Model
is tested on small plants. However, we have not tested the
optimization performance for very thick stems, where the
skeleton curve might have discontinuous derivatives or high
curvature near the branching points. In order to reconstruct the
geometry of the branching structure by the notion of generalized
cylinders, it will be problematic with the high curvature areas.
Handling these types of cases are not considered here, and the
framework might need to be reformulated for considering more
complex and thicker branching structures. With the goal of
reconstructing the geometry of the original plant point cloud
data using the skeleton, finding a minimum spanning tree
that optimizes the connection between the discrete skeleton
points in terms of some biological prior might further improve
the skeleton structure. However, this is a challenging problem,
and we leave it as a future work. Similar type of problem is
handled by some heuristic approach in Wu et al. (2019), but a
generic solution to the problem can be a major part of plant
geometry reconstruction.

The proposed method considers plants having no leaves.
Skeletonization by considering plant leaves will be worth
studying in order to reconstruct the geometry of leafy plants.
We have not considered the case where there is lot of noise in
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FIGURE 6 | Box plots corresponding to the data values in Figure 5. (Top and bottom) row shows the relative results of junction point location and branch segment

length errors with respect to the groundtruth, respectively. In each graph, the central mark of each box indicates the median, while the bottom and top edges of the

box indicate the 25-th and 75-th percentiles of the data, respectively. The whiskers extend to the most extreme data points which are not considered as outliers. The

red “+” symbols plot the outliers in the data, if there is any.

the data. Also, explicit handling of occlusion is not modeled in
the framework.
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