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Seeding rate in hard red spring wheat (HRSW; Triticum aestivum L.) production impacts
input cost and grain yield. Predicting the optimal seeding rate (OSR) for HRSW cultivars
can eliminate the need for costly seeding rate research and growers using OSRs can
maximize yield and seeding efficiency. Data were compiled from seeding rate studies
conducted in 32 environments in the Northern Plains United States to determine the
OSR of HRSW cultivars grown in diverse environments. Twelve cultivars with diverse
genetic and phenotypic characteristics were evaluated at five seeding rates in 2013–
2015, and nine cultivars were evaluated in 2017–2018. OSR varied among cultivar within
environments. Cultivar x environment interactions were explored with the objective of
developing a decision support system (DSS) to aid growers in determining the OSR for
the cultivar they select, and for the environment in which it is sown. A 10-fold repeated
cross-validation of the seeding rate data was used to fit 10 decision tree models and the
most robust model was selected based on minimizing the value for model variance. The
final decision tree model for predicting OSR of HRSW cultivars in diverse environments
was considered the most reliable as bias was minimized by pruning methods, and
model variance was acceptable for OSR predictions (RMSE = 1.24). Findings from this
model were used to develop the grower DSS for determining OSR dependent on cultivar
straw strength (as a measure of lodging resistance), tillering capacity, and yield of the
environment. Recommendations for OSR ranged from 3.1 to 4.5 million seeds ha−1.
Growers can benefit from using this DSS by sowing at OSR relative to their average
yields; especially when seeding new HRSW cultivars.

Keywords: seeding rate, decision support system, modeling, straw strength, tillering capacity, maximum yield,
decision tree

INTRODUCTION

Genetic improvement through continued breeding efforts leads to the development of new hard
red spring wheat (HRSW) cultivars that typically provide a yield advantage over cultivars released
in prior years (Austin et al., 1980). Adaptations in plant growth habit, phenotypic traits, or
physiological processes related to stress, are a few examples of ways that newer cultivars may
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provide increased yield potential over older cultivars (Austin
et al., 1989; Christopher et al., 2008; Reynolds et al., 2012).
Growers have shown preference for newer cultivars, primarily
driven by the opportunity for increased grain yield potential
and protein content (Dahl et al., 2004). This prompts public
and private seed organizations to continuously release new
HRSW cultivars, resulting in the subsequent “retirement” of older
cultivars. When these new cultivars are first released, they are
not accompanied by a seeding rate recommendation. Growers
rely on accurate recommendations for optimal seeding rates
(OSR) to avoid economic losses due to uncaptured yield or
excess seed waste. With the continual release of new cultivars
(and subsequent discontinuation of older cultivars), growers may
benefit from knowing OSR that are specific to cultivar and
environment type, as this will aid growers in maximizing seeding
efficiency and improve wheat yield potential.

University extension specialists commonly provide seeding
rate recommendations for new cultivars based on prior seeding
rate studies of cultivars released in the preceding years. After
these new cultivars are subsequently tested in multi-year
seeding rate studies, the actual OSR can greatly differ from
the original extension recommendation. These differences can
reveal 2 + years of reduced yields and economic losses due
to genotype x management (GxM) interactions (Mehring et al.,
2020). Although this reinforces the importance of proper seeding
rate selection, with the continued release of new cultivars (and
discontinuation of older cultivars), determining OSR for each
cultivar is expensive, time-consuming, and repetitive research.
Furthermore, the potential for genotype x environment x
management (GxExM) interactions is apparent as environment-
specific factors (e.g., yield potential, annual precipitation, and
seasonal temperature) impact cultivar yield, and can have an
interactive effect on seeding rate (Fischer, 1985; Geleta et al.,
2002; Lloveras et al., 2004). Briggs and Ayten-Fisu (1979) noted
the importance of including diverse environments in seeding
rate studies of new cultivars; especially as some environment
and cultivar combinations favor lower seeding rates. Identifying
factors that may aid in predicting OSR for new varieties can
eliminate the need for costly experimentation, and help growers
maximize productivity and economic return. This demonstrates
the importance of exploring GxExM interactions by evaluating
cultivar yield and agronomic response at different seeding rates,
and in diverse growing conditions, to ensure robustness in the
OSR recommendation for a cultivar.

Decision support systems (DSS) have been developed to
address agricultural production problems related to soil, nutrient,
and precipitation, with the objective to reduce economic
losses for growers and promote sustainability by minimizing
environmental impact (Bonfil et al., 2004; Wang et al.,
2010). These type of systems can provide environment-specific
management recommendations based on location and field-
specific information provided as inputs in a computer-based
algorithmic model. For example, Small et al. (2015) developed a
DSS to aid growers in managing late blight disease in potatoes
(Solanum tuberosum L.). Weather data, crop information, and
grower management practices were all variables incorporated
into this system that would alert growers when conditions

were favorable for late blight, so growers could ensure timely
management for disease prevention. Most DSS developed to date
have focused on nutrient or disease management. Other DSS have
been developed that are specific to crop management, but they are
commonly modeled in high productivity regions (i.e., southern
United States), and thereby likely to be highly-sensitive to even
slight changes in input variables.

Developing a predictive model for determining OSR for new
cultivars could eliminate the time lag, expense, and repetition of
the current method with field trials. This type of model could be
coupled with environment-specific data and incorporated into a
DSS to allow for the varying effects of environmental interactions
to be accounted for when determining an OSR for a new cultivar.

Regression functions (linear and non-linear) are commonly
used to model agronomic responses in seeding rate studies
(Geleta et al., 2002; Lemerle et al., 2004). Regression equations
from these models are useful when considering yield tradeoffs
relative to seeding rate changes and can also be used to determine
an estimate for OSR (Wiersma, 2002). However, when these
models are fit to only one set of data, predictions produced by the
model can be greatly biased and parameters have large standard
error (Jones and Carberry, 1994). Various methods of splitting of
datasets can be used to minimize these errors when conducting
statistical analyses (Crowley, 1992). A prior HRSW seeding rate
study conducted in ND and MN produced regression models
predictive for grain yield by dividing the original dataset into
two subsets (Mehring et al., 2020). This method represents the
validation set approach.

When using the validation set approach, only a portion of
the dataset (training set) is used to fit a predictive model. The
other portion of the dataset (validation set) is then used to
test the fit of the training model. Results for this test include
the root mean squared error (RMSE) value, which provides
an estimate for model accuracy as it represents the test error
associated with differences in predicted and observed values.
Akin to using several regression functions to identify a regression
model best-fit for data, comparisons among models produced by
various statistical learning methods can be readily accomplished
by evaluating RMSE values (James et al., 2014). This process
of evaluating the accuracy (fit) of these predictive models
is called model assessment. Model assessment is critical for
identifying and selecting the machine learning method that will
best represent the data, while minimizing bias and error.

The validation approach is an efficient way to develop and
test a predictive model. However, decreasing the number of
observations used to train the model will inherently decrease
the power of the test, increasing the likelihood of committing a
Type-II error (fail to reject the null hypothesis, when the null
hypothesis is false). As it is unlikely that training set data will
be exactly representative of the validation set data, validation-
trained models are likely to have higher RMSE values compared
to models fit to only one dataset. To address these issues,
cross-validation approaches are used in place of the traditional
validation approach. Cross-validation is a resampling method
that is used to perform multiple “model-training” iterations prior
to producing a final model that is based on the average fit
of these iterations. Wu et al. (2012) demonstrated the benefits
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of cross-validation in regression-based modeling as they noted
reduced bias in predicted values and a lower RMSE value
compared to one-time regression analysis. An improvement on
this method can be made by dividing the original dataset, and
performing multiple cross-validation iterations on each subset,
then averaging these results to determine a final model. This
k-fold cross-validation method is a considerable improvement on
the validation approach, as it can provide for a stable, reliable
predictive model. The application of the k-fold cross-validation
method has been demonstrated previously in various ecological
and agricultural studies (Wiens et al., 2008; Yost et al., 2018).

Numerous algorithms have been developed to guide
classification of data to produce decision trees that are user
friendly as they do not require extensive knowledge to interpret.
In experiments with multiple levels for each independent
variable, the classification and regression trees (CART) algorithm
can be used to readily produce decision trees. The use of
this approach was demonstrated by Waheed et al. (2006),
as they applied the CART decision tree algorithm to classify
experimental plots based on irrigation use, weed management,
and fertilization.

The objective of this research was to develop a DSS to improve
grower selection of OSR for newer HRSW cultivars sown in the
varying growing environments throughout North Dakota and
Minnesota. This DSS will benefit HRSW growers by providing
them with a tool to promote optimal seeding efficiency and
maximum yield for sustainable production.

MATERIALS AND METHODS

Site and Experiment Description
Data from seeding rate trials conducted in North Dakota (ND)
and Minnesota (MN) in the northern United States from 2013–
2015 and 2017–2018 (32 total environments) were compiled for
this research. Four locations were from 2013–2015 experiments
at Prosper, ND and Crookston, Hallock, and Perley, MN. Two
locations were from 2014 and 2015 experiments at Kimball,
and Lamberton, MN. Experiment locations in 2017 and 2018
included Dickinson (2018 only), Hettinger, Minot, and Prosper,
in ND, and Crookston, and Lamberton, in MN. Location and site
descriptions for combined dataset are detailed in Table 1.

The OSR was determined for each cultivar x environment
combination based on regression equation output from SAS 9.4
(PROC REG). The model considered best fit for data (linear or
quadratic) was determined by maximizing R2 and minimizing
RMSE values. For linear fits, OSR was the seeding rate treatment
at which maximum yield was observed. For quadratic fits, OSR
was determined by evaluating the coefficients of the equation.
Quadratic equations with a negative linear coefficient (second
term) were assigned the lowest seeding rate treatment as the OSR.
For all other quadratic models, the OSR was calculated by solving
the first derivative of the quadratic equation.

Data Structure
Environments and cultivars were characterized prior to
modeling. Environments were characterized based on latitude

and longitude (decimal degrees), planting date (d of the year),
and average HRSW yield (Mg ha−1) observed in environment
for the respective year (Table 2). These factors were selected as
they can be readily determined by growers (or estimated based
on field records from prior years) to be used as inputs in a
DSS. The use of continuous variables to represent environments
was used to minimize bias when grouping similar data across
environments, and reduce model overfitting, that could increase
error in OSR prediction. This also ensured models were robust,
and thereby relevant to a greater number of growers.

Specific phenotypic and genetic traits were used to
characterize the HRSW cultivars evaluated in this study
(Table 3). Twelve cultivars were evaluated in 2013–2015
(Albany, Briggs, Faller, Kelby, Knudson, Kuntz, Marshall, Oklee,
Rollag, Sabin, Samson, and Vantage) and nine cultivars in
2017–2018 (LCS Anchor, Lang-MN, Linkert, Prevail, Shelly,
Surpass, SY Valda, ND VitPro, and TCG Wildfire). Data
specific to each cultivar included gene expression for Ppd-D
(photoperiod response), Rht-B and Rht-D (semi-dwarfing
genes), and phenotypic characteristics for plant height, tillering
capacity, straw strength (as a measure of lodging resistance),
and heading date. Genotyping of the cultivars was done by
the Wheat Genotyping Center at the USDA-ARS Cereal Crops
Research utilizing polymerase chain reaction (PCR) methods.
Agronomic measures compiled from published HRSW variety
trial data from ND (NDSU, 2014–2018) and MN (Univ. of MN,
2008–2018) were used to characterize cultivars for phenotypic
traits. A Z-score analysis approach [similar to that demonstrated
by Laundre and Reynolds (1993); Ellsworth et al. (1998), and
Rahman et al. (2009)] was utilized to determine cultivar tillering
capacity (Stanley, 2019). Tillering capacity was based on Z-score
standardized values from tillering evaluations of HRSW cultivars
at spaced plantings by Stanley (2019); where cultivar tillering
capacity rating is: High (Z > 0.67), Moderate (0.67≤ Z≥−0.67),
or Low (Z <−0.67).

Statistical Analysis and Model
Development
Analysis and modeling were completed in R 3.5.3 statistical
software (R Development Core Team, 2019) using the caret
package (Kuhn et al., 2016). Variable independence was verified
by Pearson’s correlation test prior to modeling. Highly correlated
variables (r ≥ |0.8|) were excluded to minimize multicollinearity
and overfitting of models. Various machine learning approaches
were considered for use in fitting a robust model that would
support a grower DSS, including ridge regression, elastic net, least
absolute shrinkage and selection operator (LASSO) regression,
stepwise regression, decision tree, and random forest. These
techniques were considered as they have been demonstrated in
numerous agronomic and production-focused studies (Williams
et al., 1979; Piaskowski et al., 2016; Sharif et al., 2016; Qin
et al., 2018; Ransom et al., 2019). The decision tree machine
learning technique was considered the most appropriate for
this study as the primary objective of this study was to
develop a DSS for growers, and results from this technique
were readily transferrable to a DSS. Additionally, based on
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TABLE 1 | Location and soil characteristics† of environments in seeding rate study.

Location‡‡‡ Soil series Taxonomy Slope (%)

North Dakota

Dickinson Arnegard Fine-loamy, mixed, superactive, frigid Pachic Haplustolls 0–2

Hettinger Shambo Fine-loamy, mixed, superactive, frigid Typic Haplustolls 0–2

Minot Forman Fine-loamy, mixed, superactive, frigid Calcic Argiudolls 3–6

Aastad Fine-loamy, mixed, superactive, frigid Pachic Argiudolls 3–6

Prosper Kindred Fine-silty, mixed, superactive, frigid Typic Endoaquolls 0–2

Bearden Fine-silty, mixed, superactive, frigid Aeric Calciaquolls 0–2

Minnesota

Hallock Northcote Very-fine, smectitic, frigid Typic Epiaquerts 0–1

Perley Fargo Fine, smectitic, frigid Typic Epiaquerts 0–1

Crookston Wheatville Coarse-silty over clayey, mixed over smectitic, superactive, frigid Aeric Calciaquolls 0–2

Lamberton Webster Fine-loamy, mixed, superactive, mesic Typic Endoaquolls 0–2

Normania Fine-loamy, mixed, superactive, mesic Aquic Hapludolls 0–2

Kimball (2014) Fairhaven Fine-loamy over sandy or sandy-skeletal, mixed, superactive, mesic Typic Hapludolls 0–2

Kimball (2015) Dakota Fine-loamy over sandy or sandy-skeletal, mixed, superactive, mesic Typic Argiudolls 2–6

Ridgeport Coarse-loamy, mixed, superactive, mesic Typic Hapludolls 2–6

†Soil data obtained from NRCS-USDA, 2018. ‡Ordered by longitude, west to east.

prior knowledge of environment interactions with both seeding
rate and HRSW cultivars (Stanley, 2019) and the diversity
of wheat production environments throughout the Northern
Plains region, a tree-based approach would minimize bias when
determining groupings of environments in the dataset. Therefore,
the methods and results of this study are focused on the decision
tree algorithm utilized in R.

To ensure robustness in the final decision tree model,
preliminary models were fit to data split into k random subsets,
with k-1 subsets used as a training set, and the remaining subset
withheld from the training step and used as the validation
set; repeated for k iterations. Utilizing an approach similar
to James et al. (2014), a k-fold repeated cross-validation was
performed with two different settings for k (k = 5 and k = 10)
to produce resampling measures for assessing models and
determining tuning parameters for each model. The model
with the lowest RMSE value was selected as the optimal model
(Breiman et al., 1984).

Utilizing an approach demonstrated in other studies
(Mohammadi et al., 2010; Hitziger and Ließ, 2014), Mallows’
complexity parameter (Cp) statistic was used in R to guide
variable selection at each split in the decision tree to prevent
overfitting of a model (Sreenivasulu and Rayalu, 2018). The
variable producing the lowest Cp value at a split was selected as
the primary variable at that branching point. Variable importance
measures were selected for inclusion in R output, with variables
ranked according to level of impact on OSR prediction based
on the absolute value of the t-statistic for each model parameter
(Strobl et al., 2007; Ruβ and Brenning, 2010).

RESULTS AND DISCUSSION

Cultivar and environment variables were considered
independent, as values for Pearson’s correlation coefficient

were all acceptable (r ≤ |0.8|). Initial models were prone to
overfitting to specific latitude and longitude, so these variables
were excluded from analyses. This coincides with the objective
of this study, to develop a predictive model that is relevant
to a broad audience of growers. Additionally, models overfit
to individual locations or environments are not robust, and
likely to be poor predictors of OSR for the same location
in future years.

The 10-fold repeated cross-validation provided a training
dataset that was most representative of the whole dataset, as the
decision tree models fit by the 10-fold repeated cross-validation
was more accurate at predicting OSR than models fit by the 5-
fold (average RMSE of 1.250 and 1.264, respectively). This is
because the additional subsets in the 10-fold provided for a more
robust model, as the ratio of data comprising the training and
validation sets were 316:35 samples for the 10-fold, and 281:70
samples for the 5-fold. With greater representation of cultivar and
environment data in each 10-fold train set, and fewer samples
in each validation set, the final decision tree model was fit after
“viewing” the dataset from multiple angles.

For the decision tree algorithm, the 10-fold repeated cross-
validation provided a selection of 10 decision tree models. The
model selected for the final decision tree had a RMSE of 1.2386
(Table 4). As RMSE values are reported in the same units as
OSR (million seeds ha−1), and OSR observations were recorded
to three decimals in the seeding rate dataset, one may postulate
that any of the models from iterations 6, 8, or 9 could have
been selected for the final decision tree. To avoid bias in this
decision, the final model for the decision tree was automatically
selected in R, by including a data step for making the selection
based on the iteration with the lowest RMSE value. Mallows’
Cp value used to guide variable selection (to prevent overfitting
of the decision tree model) at each potential branching point
was 0.0151 (Table 4). Branching ceased when all variables at a
potential branch point produced a Cp value > 0.0151. The OSR at
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TABLE 2 | Location and year details for 32 environments in North Dakota and Minnesota.

Location††† Year Latitude Longitude Previous crop Planting date Harvest date Yield (Mg ha−1)

Dickinson, ND 46.981 −102.824

2018 HRSW‡ 2-May 13-Aug 3.82

Hettinger, ND 46.012 −102.647

2017 Soybean 26-Apr 3-Aug 1.94

2018 Soybean 27-Apr 16-Aug 3.09

Minot, ND 48.180 −101.304

2017 Soybean 21-Apr 19-Aug 1.81

2018 Soybean 3-May 8-Aug 4.31

Prosper, ND 47.003 −97.116

2013 Soybean 16-May 22-Aug 4.69

2014 Soybean 27-May 3-Sep 4.43

2015 Soybean 9-Apr 21-Aug 4.67

2015 Soybean 22-May 25-Aug 3.62

2017 HRSW 22-Apr 21-Aug 4.51

2018 HRSW 30-Apr 31-Jul 4.22

Hallock, MN 48.802 −96.982

2013 Soybean 16-May 3-Sep 7.27

2014 Soybean 23-May 6-Sep 5.45

2015 Soybean 16-Apr 13-Aug 5.62

Perley, MN 47.151 −96.752

2013 Soybean 8-May 16-Aug 5.80

2014 Soybean 22-May 2-Sep 6.00

2015 Soybean 13-Apr 11-Aug 7.03

Crookston, MN 47.815 −96.616

2013 Soybean 10-May 8-Aug 6.14

2013 Soybean 29-May 26-Aug 6.38

2014 Soybean 17-May 27-Aug 4.95

2014 Soybean 4-Jun 27-Aug 4.55

2015 Soybean 23-Apr 21-Aug 6.35

2015 Soybean 22-May 25-Aug 5.38

2017 Soybean 3-May 29-Aug 5.09

2018 Soybean 7-May 8-Aug 3.23

Lamberton, MN 44.241 −95.312

2014 Soybean 21-Apr 20-Aug 5.14

2015 Soybean 4-Apr 12-Aug 5.62

2015 Soybean 27-Apr 12-Aug 4.55

2017 Soybean 17-Apr 23-Aug 3.69

2018 Soybean 7-May 10-Aug 2.52

Kimball, MN 45.417 −94.324

2014 Soybean 26-Apr 14-Aug 5.54

2015 Soybean 8-Apr 31-Jul 5.97

†Ordered by longitude, west to east. ‡HRSW, hard red spring wheat, Triticum aestivum, L.; Soybean, Glycine max (L.) Merr.

each terminal node (leaf) is the mean OSR of the data comprising
that node (Figure 1).

The global model from the decision tree algorithm was
predictive of OSR with 67% accuracy (based on 1–mean absolute
percent error). The R model output for the decision tree
algorithm revealed variables impacting OSR (Figure 1). Nodes
(branching points) included both phenotypic characteristics
(straw strength, tillering capacity) and environment (yield of the
environment). Based on variable importance measures (Pratt,
1987) reported in R (scaled relative to 1), the primary variable

influencing OSR in the decision tree model was straw strength,
with a relative variable importance of 25.7% (Figure 1). Other
variables affecting OSR included yield of the environment
(21.0%), tillering capacity (17.6%), and plant height (17.3%). Rht-
D and Rht-B partially influenced OSR determined by the decision
tree at 13.4% and 5.0%, respectively. According to the decision
tree model, cultivar differences in expression for Ppd-D (gene for
photoperiod response) did not influence OSR.

The root node in the decision tree represented GxM influences
on yield, as OSR were differentiated based on cultivar straw
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TABLE 3 | Genetic and phenotypic characteristics of HRSW cultivars.

Cultivar Photoperiod response (Ppd-D1) Semi-dwarf gene Tillering capacity Plant height††† Straw strength Heading

z-score cm 1 to 9‡‡‡ DAP§§§

Albany Insensitive Rht-B1 1.33¶ 77.0 5 63

LCS Anchor Sensitive Rht-D1 −0.23 71.9 4 58

Briggs Insensitive Wild-type −1.03 83.3 7 57

Faller Insensitive Rht-B1 1.70 83.3 5 61

Kelby Sensitive Rht-D1 −1.10 72.6 4 58

Knudson Sensitive Rht-B1 0.63 78.0 5 60

Kuntz Sensitive Rht-D1 −0.37 75.4 4 60

Lang-MN Sensitive Wild-type 0.37 82.6 5 61

Linkert Insensitive Rht-D1 −0.83 72.9 2 59

Marshall Insensitive Rht-D1 0.73 78.2 4 63

Oklee Sensitive Wild-type −0.80 80.5 6 58

Prevail Sensitive Wild-type 0.67 78.2 4 58

Rollag Insensitive Rht-D1 −0.73 75.9 3 59

Sabin Sensitive Wild-type 1.47 78.0 6 61

Samson Sensitive Rht-B1 −1.77 73.9 3 60

Shelly Insensitive Rht-B1 1.07 77.0 5 62

Surpass Insensitive Wild-type −0.27 79.8 6 57

SY Valda Insensitive Rht-D1 −0.90 75.9 4 60

Vantage Insensitive Wild-type −0.07 77.5 2 64

ND VitPro Insensitive Rht-B1 1.33 80.0 4 59

TCG Wildfire Sensitive Rht-B1 −1.20 86.6 4 60

†Agronomic measures for phenotypic traits averaged from HRSW variety trial results (NDSU, 2014–2018; Univ. of MN, 2008–2018). ‡1–9; 1 is erect, 9 is lying flat. §DAP,
days after planting. ¶Rating based on Z-score analysis approach described by Stanley (2019); High, Z ≥ 0.67; Moderate, 0.67 ≤ Z ≥ −0.67; Low, <0.67.

strength rating (Figure 1). This follows previous reportings of
differences in OSR for cultivars varying in straw characteristics
that affected lodging potential (Faris and De Pauw, 1980).
The model also indicated GxExM interactions, as differential
effects on OSR were dependent on straw strength and average
yield of the environment (Figure 1). This is similar to what
Otteson et al. (2007) documented for GxE interactions, where
different seeding rates were considered optimal for yield.
For HRSW cultivars with a favorable straw strength rating
≤4 (where 1 is best, 9 is poor), tillering capacity was a

TABLE 4 | Modeling summary from the 10 iterations of the decision tree algorithm
in R analyzing the seeding rate dataset (n = 351).

Iteration RMSE††† Cp

1 1.2650 0.0057

2 1.2629 0.0060

3 1.2633 0.0063

4 1.2537 0.0077

5 1.2487 0.0083

6 1.2395 0.0097

7 1.2386 0.0151

8 1.2390 0.0187

9 1.2411 0.0433

10 1.2669 0.0734

†RMSE, root mean squared error; Cp, Mallows’ complexity parameter.

determinant of OSR, but only in environments with average
yield ≥3.2 Mg ha−1 (Figure 1). This revealed differences in
management practices that are optimal for yield due to GxE
interactions (demonstrated by cultivar phenotype expression
as determined by growing conditions). This is explained by
the understanding that in resource-limited environments (e.g.,
water or nutrient deficiencies), expression of plant phenotype(s)
associated with yield can be severely restricted (Richards et al.,
2010; Wasson et al., 2012). This is further demonstrated
by findings of Hucl and Baker (1990) for HRSW cultivars
grown in semi-arid environments in Canada (average yield of
3.55 Mg ha−1). Though cultivars differed in tillering capacity,
OSR for maximum yield was similar among cultivars in
environments with average yield ≥3.2 Mg ha−1. Variables
absent from the final decision tree were plant height and all
of the genetic traits (Rht-B, Rht-D, and Ppd-D). However, as
previously indicated, all of these variables (except Ppd-D) were
of importance to the decision tree model, thereby of influence on
OSR (Figure 2).

Based on the decision tree model, growers seeding in
high yielding (average yield ≥ 5.5 Mg ha−1), or moderate
yielding (average yield 5.4 to 3.2 Mg ha−1) environments,
should seed at a rate of 4.5 million seeds ha−1, unless
growers are seeding a cultivar with known phenotypic
characteristics requiring a lower seeding rate [i.e., poor
straw strength (rating ≥ 5) or high tillering capacity]
(Figure 1). Growers in low yielding environments (average
yield < 3.2 Mg ha−1) can maximize yield by seeding HRSW
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FIGURE 1 | R decision tree model for selecting optimal seeding rate for HRSW cultivars in differing environments in ND and MN (n = 351). Straw strength rating (1–9;
1 is erect, 9 is lying flat) for varieties in HRSW variety trial publications from North Dakota State University Extension, 2018 and University of Minnesota, 2018.
Tillering capacity determined from Z-score standardized values from tillering evaluations of HRSW cultivars at spaced plantings by Stanley (2019); where cultivar
tillering capacity rating is: High (Z > 0.67), Moderate (0.67 ≤ Z ≥ −0.67), or Low (Z < −0.67). Number of samples and percent of whole dataset are reported for
root, nodes and leaves. Model Accuracy = 1–mean absolute percent error.

at a rate of 3.7 million seeds ha−1 (Figure 1). In general, OSR
for these environment types differentiated by average yield
are similar to recommendations made by Holliday (1960) and
Donald (1963), where environments with greater resource
availability are expected to have higher OSR. Figure 3 was
produced to provide growers with a DSS to readily determine
OSR based on their selection for HRSW cultivar and the
environment in which it is sown.

Though the level of variance was slightly higher for the
decision tree model compared to linear regression models, the
trade-off was for reduced bias in OSR predictions produced by
the decision tree model. Similar to the other algorithms included
in this study, the accuracy of the OSR produced by the decision
tree model are greatly dependent on the data used to develop
the model. This is why it was important to utilize the same
resources when characterizing cultivars. Additionally, with the
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FIGURE 2 | Results for Variable Importance output from decision tree model analyzing seeding rate dataset (n = 351) in R. Importance is relative to 100%.

FIGURE 3 | Decision support system (DSS) for growers to determine optimal seeding rates for HRSW cultivars sown in diverse yielding environments in ND and MN.
Based on decision tree model in R from analysis of seeding rate dataset (n = 351).
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expectation for year-to-year variability in environmental factors
(i.e., temperature, rainfall accumulation, and growing season
length) influencing wheat growth in each environment, average
grain yield was used to characterize environments (Slafer et al.,
2014; Alvarez Prado et al., 2017). This is primarily because yield
as a model parameter allows growers to readily determine OSR
based on yields on their individual operations.

The recommendations outlined in the DSS improve the
accuracy of predictions for OSR (Model RMSE = 1.17 million seeds
ha−1; Cross-validation RMSE = 1.24 million seeds ha−1) in
comparison to the current generalized recommendation of
Wiersma and Ransom (2017) for 3.8 to 4.1 million seeds ha−1

(RMSE = 1.27 million seeds ha−1). However, as RMSE values
for the terminal nodes (leaves) in the decision tree model ranged
from 1.0 to 1.5 million seeds ha−1, there are apparent limitations
in these findings due to the amount of error in predicted versus
observed OSR values. Variability in the OSR recommendations
at each terminal node could be reduced by allowing additional
branching points, however, this would lead to overfitting of the
decision tree model and reduce the scope of these findings. This
indicates that growers should not simply default to the OSR
indicated by the DSS, but rather utilize information from this
tool to guide seeding rates of newer HRSW cultivars. Growers
can adapt seeding rates as needed, to account for operational
differences in agronomic and environmental factors influencing
OSR relative to yield (Figure 2).

CONCLUSION

Environment and phenotypic characteristics for straw strength
and tillering capacity, influence the seeding rate that is optimal

for yield in HRSW production. For environments where average
yield is ≥3.2 Mg ha−1, the OSR is generally higher in
comparison to OSR for lower yielding environments (4.5 versus
3.7 million seeds ha−1), and when seeding cultivars with high
tillering capacity. Adjustments to OSR can also be expected
when seeding cultivars with poor straw strength (rating ≥ 5).
Breeders and agronomists should utilize this information to
focus efforts on characterizing advanced breeding lines and new
cultivars for specific genetic and phenotypic traits influencing
OSR. Growers can benefit from these findings by adapting
seeding rates relative to their average yields; especially when
seeding new HRSW cultivars.
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